// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Utilities for slice manipulation //! //! The `slice` module contains useful code to help work with slice values. //! Slices are a view into a block of memory represented as a pointer and a length. //! //! ``` //! // slicing a Vec //! let vec = vec![1, 2, 3]; //! let int_slice = &vec[..]; //! // coercing an array to a slice //! let str_slice: &[&str] = &["one", "two", "three"]; //! ``` //! //! Slices are either mutable or shared. The shared slice type is `&[T]`, //! while the mutable slice type is `&mut [T]`, where `T` represents the element //! type. For example, you can mutate the block of memory that a mutable slice //! points to: //! //! ``` //! let x = &mut [1, 2, 3]; //! x[1] = 7; //! assert_eq!(x, &[1, 7, 3]); //! ``` //! //! Here are some of the things this module contains: //! //! ## Structs //! //! There are several structs that are useful for slices, such as `Iter`, which //! represents iteration over a slice. //! //! ## Trait Implementations //! //! There are several implementations of common traits for slices. Some examples //! include: //! //! * `Clone` //! * `Eq`, `Ord` - for slices whose element type are `Eq` or `Ord`. //! * `Hash` - for slices whose element type is `Hash` //! //! ## Iteration //! //! The slices implement `IntoIterator`. The iterator yields references to the //! slice elements. //! //! ``` //! let numbers = &[0, 1, 2]; //! for n in numbers { //! println!("{} is a number!", n); //! } //! ``` //! //! The mutable slice yields mutable references to the elements: //! //! ``` //! let mut scores = [7, 8, 9]; //! for score in &mut scores[..] { //! *score += 1; //! } //! ``` //! //! This iterator yields mutable references to the slice's elements, so while the element //! type of the slice is `i32`, the element type of the iterator is `&mut i32`. //! //! * `.iter()` and `.iter_mut()` are the explicit methods to return the default //! iterators. //! * Further methods that return iterators are `.split()`, `.splitn()`, //! `.chunks()`, `.windows()` and more. #![doc(primitive = "slice")] #![stable(feature = "rust1", since = "1.0.0")] use alloc::boxed::Box; use core::clone::Clone; use core::cmp::Ordering::{self, Greater, Less}; use core::cmp::{self, Ord, PartialEq}; use core::iter::Iterator; use core::marker::Sized; use core::mem::size_of; use core::mem; use core::ops::FnMut; use core::option::Option::{self, Some, None}; use core::ptr; use core::result::Result; use core::slice as core_slice; use self::Direction::*; use borrow::{Borrow, BorrowMut, ToOwned}; use vec::Vec; pub use core::slice::{Chunks, Windows}; pub use core::slice::{Iter, IterMut}; pub use core::slice::{IntSliceExt, SplitMut, ChunksMut, Split}; pub use core::slice::{SplitN, RSplitN, SplitNMut, RSplitNMut}; pub use core::slice::{bytes, mut_ref_slice, ref_slice}; pub use core::slice::{from_raw_parts, from_raw_parts_mut}; //////////////////////////////////////////////////////////////////////////////// // Basic slice extension methods //////////////////////////////////////////////////////////////////////////////// // HACK(japaric) needed for the implementation of `vec!` macro during testing // NB see the hack module in this file for more details #[cfg(test)] pub use self::hack::into_vec; // HACK(japaric) needed for the implementation of `Vec::clone` during testing // NB see the hack module in this file for more details #[cfg(test)] pub use self::hack::to_vec; // HACK(japaric): With cfg(test) `impl [T]` is not available, these three // functions are actually methods that are in `impl [T]` but not in // `core::slice::SliceExt` - we need to supply these functions for the // `test_permutations` test mod hack { use alloc::boxed::Box; use core::clone::Clone; #[cfg(test)] use core::iter::Iterator; use core::mem; #[cfg(test)] use core::option::Option::{Some, None}; #[cfg(test)] use string::ToString; use vec::Vec; use super::{ElementSwaps, Permutations}; pub fn into_vec(mut b: Box<[T]>) -> Vec { unsafe { let xs = Vec::from_raw_parts(b.as_mut_ptr(), b.len(), b.len()); mem::forget(b); xs } } pub fn permutations(s: &[T]) -> Permutations where T: Clone { Permutations{ swaps: ElementSwaps::new(s.len()), v: to_vec(s), } } #[inline] pub fn to_vec(s: &[T]) -> Vec where T: Clone { let mut vector = Vec::with_capacity(s.len()); vector.push_all(s); vector } // NB we can remove this hack if we move this test to libcollectionstest - // but that can't be done right now because the test needs access to the // private fields of Permutations #[test] fn test_permutations() { { let v: [i32; 0] = []; let mut it = permutations(&v); let (min_size, max_opt) = it.size_hint(); assert_eq!(min_size, 1); assert_eq!(max_opt.unwrap(), 1); assert_eq!(it.next(), Some(to_vec(&v))); assert_eq!(it.next(), None); } { let v = ["Hello".to_string()]; let mut it = permutations(&v); let (min_size, max_opt) = it.size_hint(); assert_eq!(min_size, 1); assert_eq!(max_opt.unwrap(), 1); assert_eq!(it.next(), Some(to_vec(&v))); assert_eq!(it.next(), None); } { let v = [1, 2, 3]; let mut it = permutations(&v); let (min_size, max_opt) = it.size_hint(); assert_eq!(min_size, 3*2); assert_eq!(max_opt.unwrap(), 3*2); assert_eq!(it.next().unwrap(), [1,2,3]); assert_eq!(it.next().unwrap(), [1,3,2]); assert_eq!(it.next().unwrap(), [3,1,2]); let (min_size, max_opt) = it.size_hint(); assert_eq!(min_size, 3); assert_eq!(max_opt.unwrap(), 3); assert_eq!(it.next().unwrap(), [3,2,1]); assert_eq!(it.next().unwrap(), [2,3,1]); assert_eq!(it.next().unwrap(), [2,1,3]); assert_eq!(it.next(), None); } { // check that we have N! permutations let v = ['A', 'B', 'C', 'D', 'E', 'F']; let mut amt = 0; let mut it = permutations(&v); let (min_size, max_opt) = it.size_hint(); for _perm in it.by_ref() { amt += 1; } assert_eq!(amt, it.swaps.swaps_made); assert_eq!(amt, min_size); assert_eq!(amt, 2 * 3 * 4 * 5 * 6); assert_eq!(amt, max_opt.unwrap()); } } } /// Allocating extension methods for slices. #[lang = "slice"] #[cfg(not(test))] #[stable(feature = "rust1", since = "1.0.0")] impl [T] { /// Sorts the slice, in place, using `compare` to compare /// elements. /// /// This sort is `O(n log n)` worst-case and stable, but allocates /// approximately `2 * n`, where `n` is the length of `self`. /// /// # Examples /// /// ```rust /// let mut v = [5, 4, 1, 3, 2]; /// v.sort_by(|a, b| a.cmp(b)); /// assert!(v == [1, 2, 3, 4, 5]); /// /// // reverse sorting /// v.sort_by(|a, b| b.cmp(a)); /// assert!(v == [5, 4, 3, 2, 1]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn sort_by(&mut self, compare: F) where F: FnMut(&T, &T) -> Ordering { merge_sort(self, compare) } /// Consumes `src` and moves as many elements as it can into `self` /// from the range [start,end). /// /// Returns the number of elements copied (the shorter of `self.len()` /// and `end - start`). /// /// # Arguments /// /// * src - A mutable vector of `T` /// * start - The index into `src` to start copying from /// * end - The index into `src` to stop copying from /// /// # Examples /// /// ```rust /// # #![feature(collections)] /// let mut a = [1, 2, 3, 4, 5]; /// let b = vec![6, 7, 8]; /// let num_moved = a.move_from(b, 0, 3); /// assert_eq!(num_moved, 3); /// assert!(a == [6, 7, 8, 4, 5]); /// ``` #[unstable(feature = "collections", reason = "uncertain about this API approach")] #[inline] pub fn move_from(&mut self, mut src: Vec, start: usize, end: usize) -> usize { for (a, b) in self.iter_mut().zip(src[start .. end].iter_mut()) { mem::swap(a, b); } cmp::min(self.len(), end-start) } /// Divides one slice into two at an index. /// /// The first will contain all indices from `[0, mid)` (excluding /// the index `mid` itself) and the second will contain all /// indices from `[mid, len)` (excluding the index `len` itself). /// /// Panics if `mid > len`. /// /// # Examples /// /// ``` /// let v = [10, 40, 30, 20, 50]; /// let (v1, v2) = v.split_at(2); /// assert_eq!([10, 40], v1); /// assert_eq!([30, 20, 50], v2); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn split_at(&self, mid: usize) -> (&[T], &[T]) { core_slice::SliceExt::split_at(self, mid) } /// Returns an iterator over the slice. #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn iter(&self) -> Iter { core_slice::SliceExt::iter(self) } /// Returns an iterator over subslices separated by elements that match /// `pred`. The matched element is not contained in the subslices. /// /// # Examples /// /// Print the slice split by numbers divisible by 3 (i.e. `[10, 40]`, /// `[20]`, `[50]`): /// /// ``` /// let v = [10, 40, 30, 20, 60, 50]; /// for group in v.split(|num| *num % 3 == 0) { /// println!("{:?}", group); /// } /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn split(&self, pred: F) -> Split where F: FnMut(&T) -> bool { core_slice::SliceExt::split(self, pred) } /// Returns an iterator over subslices separated by elements that match /// `pred`, limited to returning at most `n` items. The matched element is /// not contained in the subslices. /// /// The last element returned, if any, will contain the remainder of the /// slice. /// /// # Examples /// /// Print the slice split once by numbers divisible by 3 (i.e. `[10, 40]`, /// `[20, 60, 50]`): /// /// ``` /// let v = [10, 40, 30, 20, 60, 50]; /// for group in v.splitn(2, |num| *num % 3 == 0) { /// println!("{:?}", group); /// } /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn splitn(&self, n: usize, pred: F) -> SplitN where F: FnMut(&T) -> bool { core_slice::SliceExt::splitn(self, n, pred) } /// Returns an iterator over subslices separated by elements that match /// `pred` limited to returning at most `n` items. This starts at the end of /// the slice and works backwards. The matched element is not contained in /// the subslices. /// /// The last element returned, if any, will contain the remainder of the /// slice. /// /// # Examples /// /// Print the slice split once, starting from the end, by numbers divisible /// by 3 (i.e. `[50]`, `[10, 40, 30, 20]`): /// /// ``` /// let v = [10, 40, 30, 20, 60, 50]; /// for group in v.rsplitn(2, |num| *num % 3 == 0) { /// println!("{:?}", group); /// } /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn rsplitn(&self, n: usize, pred: F) -> RSplitN where F: FnMut(&T) -> bool { core_slice::SliceExt::rsplitn(self, n, pred) } /// Returns an iterator over all contiguous windows of length /// `size`. The windows overlap. If the slice is shorter than /// `size`, the iterator returns no values. /// /// # Panics /// /// Panics if `size` is 0. /// /// # Example /// /// Print the adjacent pairs of a slice (i.e. `[1,2]`, `[2,3]`, /// `[3,4]`): /// /// ```rust /// let v = &[1, 2, 3, 4]; /// for win in v.windows(2) { /// println!("{:?}", win); /// } /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn windows(&self, size: usize) -> Windows { core_slice::SliceExt::windows(self, size) } /// Returns an iterator over `size` elements of the slice at a /// time. The chunks do not overlap. If `size` does not divide the /// length of the slice, then the last chunk will not have length /// `size`. /// /// # Panics /// /// Panics if `size` is 0. /// /// # Example /// /// Print the slice two elements at a time (i.e. `[1,2]`, /// `[3,4]`, `[5]`): /// /// ```rust /// let v = &[1, 2, 3, 4, 5]; /// for win in v.chunks(2) { /// println!("{:?}", win); /// } /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn chunks(&self, size: usize) -> Chunks { core_slice::SliceExt::chunks(self, size) } /// Returns the element of a slice at the given index, or `None` if the /// index is out of bounds. /// /// # Examples /// /// ``` /// let v = [10, 40, 30]; /// assert_eq!(Some(&40), v.get(1)); /// assert_eq!(None, v.get(3)); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn get(&self, index: usize) -> Option<&T> { core_slice::SliceExt::get(self, index) } /// Returns the first element of a slice, or `None` if it is empty. /// /// # Examples /// /// ``` /// let v = [10, 40, 30]; /// assert_eq!(Some(&10), v.first()); /// /// let w: &[i32] = &[]; /// assert_eq!(None, w.first()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn first(&self) -> Option<&T> { core_slice::SliceExt::first(self) } /// Returns all but the first element of a slice. #[unstable(feature = "collections", reason = "likely to be renamed")] #[inline] pub fn tail(&self) -> &[T] { core_slice::SliceExt::tail(self) } /// Returns all but the last element of a slice. #[unstable(feature = "collections", reason = "likely to be renamed")] #[inline] pub fn init(&self) -> &[T] { core_slice::SliceExt::init(self) } /// Returns the last element of a slice, or `None` if it is empty. /// /// # Examples /// /// ``` /// let v = [10, 40, 30]; /// assert_eq!(Some(&30), v.last()); /// /// let w: &[i32] = &[]; /// assert_eq!(None, w.last()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn last(&self) -> Option<&T> { core_slice::SliceExt::last(self) } /// Returns a pointer to the element at the given index, without doing /// bounds checking. #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub unsafe fn get_unchecked(&self, index: usize) -> &T { core_slice::SliceExt::get_unchecked(self, index) } /// Returns an unsafe pointer to the slice's buffer /// /// The caller must ensure that the slice outlives the pointer this /// function returns, or else it will end up pointing to garbage. /// /// Modifying the slice may cause its buffer to be reallocated, which /// would also make any pointers to it invalid. #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn as_ptr(&self) -> *const T { core_slice::SliceExt::as_ptr(self) } /// Binary search a sorted slice with a comparator function. /// /// The comparator function should implement an order consistent /// with the sort order of the underlying slice, returning an /// order code that indicates whether its argument is `Less`, /// `Equal` or `Greater` the desired target. /// /// If a matching value is found then returns `Ok`, containing /// the index for the matched element; if no match is found then /// `Err` is returned, containing the index where a matching /// element could be inserted while maintaining sorted order. /// /// # Example /// /// Looks up a series of four elements. The first is found, with a /// uniquely determined position; the second and third are not /// found; the fourth could match any position in `[1,4]`. /// /// ```rust /// # #![feature(core)] /// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; /// /// let seek = 13; /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9)); /// let seek = 4; /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7)); /// let seek = 100; /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13)); /// let seek = 1; /// let r = s.binary_search_by(|probe| probe.cmp(&seek)); /// assert!(match r { Ok(1...4) => true, _ => false, }); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn binary_search_by(&self, f: F) -> Result where F: FnMut(&T) -> Ordering { core_slice::SliceExt::binary_search_by(self, f) } /// Returns the number of elements in the slice. /// /// # Example /// /// ``` /// let a = [1, 2, 3]; /// assert_eq!(a.len(), 3); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn len(&self) -> usize { core_slice::SliceExt::len(self) } /// Returns true if the slice has a length of 0 /// /// # Example /// /// ``` /// let a = [1, 2, 3]; /// assert!(!a.is_empty()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn is_empty(&self) -> bool { core_slice::SliceExt::is_empty(self) } /// Returns a mutable reference to the element at the given index, /// or `None` if the index is out of bounds #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn get_mut(&mut self, index: usize) -> Option<&mut T> { core_slice::SliceExt::get_mut(self, index) } /// Returns an iterator that allows modifying each value #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn iter_mut(&mut self) -> IterMut { core_slice::SliceExt::iter_mut(self) } /// Returns a mutable pointer to the first element of a slice, or `None` if it is empty #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn first_mut(&mut self) -> Option<&mut T> { core_slice::SliceExt::first_mut(self) } /// Returns all but the first element of a mutable slice #[unstable(feature = "collections", reason = "likely to be renamed or removed")] #[inline] pub fn tail_mut(&mut self) -> &mut [T] { core_slice::SliceExt::tail_mut(self) } /// Returns all but the last element of a mutable slice #[unstable(feature = "collections", reason = "likely to be renamed or removed")] #[inline] pub fn init_mut(&mut self) -> &mut [T] { core_slice::SliceExt::init_mut(self) } /// Returns a mutable pointer to the last item in the slice. #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn last_mut(&mut self) -> Option<&mut T> { core_slice::SliceExt::last_mut(self) } /// Returns an iterator over mutable subslices separated by elements that /// match `pred`. The matched element is not contained in the subslices. #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn split_mut(&mut self, pred: F) -> SplitMut where F: FnMut(&T) -> bool { core_slice::SliceExt::split_mut(self, pred) } /// Returns an iterator over subslices separated by elements that match /// `pred`, limited to returning at most `n` items. The matched element is /// not contained in the subslices. /// /// The last element returned, if any, will contain the remainder of the /// slice. #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn splitn_mut(&mut self, n: usize, pred: F) -> SplitNMut where F: FnMut(&T) -> bool { core_slice::SliceExt::splitn_mut(self, n, pred) } /// Returns an iterator over subslices separated by elements that match /// `pred` limited to returning at most `n` items. This starts at the end of /// the slice and works backwards. The matched element is not contained in /// the subslices. /// /// The last element returned, if any, will contain the remainder of the /// slice. #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn rsplitn_mut(&mut self, n: usize, pred: F) -> RSplitNMut where F: FnMut(&T) -> bool { core_slice::SliceExt::rsplitn_mut(self, n, pred) } /// Returns an iterator over `chunk_size` elements of the slice at a time. /// The chunks are mutable and do not overlap. If `chunk_size` does /// not divide the length of the slice, then the last chunk will not /// have length `chunk_size`. /// /// # Panics /// /// Panics if `chunk_size` is 0. #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn chunks_mut(&mut self, chunk_size: usize) -> ChunksMut { core_slice::SliceExt::chunks_mut(self, chunk_size) } /// Swaps two elements in a slice. /// /// # Arguments /// /// * a - The index of the first element /// * b - The index of the second element /// /// # Panics /// /// Panics if `a` or `b` are out of bounds. /// /// # Example /// /// ```rust /// let mut v = ["a", "b", "c", "d"]; /// v.swap(1, 3); /// assert!(v == ["a", "d", "c", "b"]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn swap(&mut self, a: usize, b: usize) { core_slice::SliceExt::swap(self, a, b) } /// Divides one `&mut` into two at an index. /// /// The first will contain all indices from `[0, mid)` (excluding /// the index `mid` itself) and the second will contain all /// indices from `[mid, len)` (excluding the index `len` itself). /// /// # Panics /// /// Panics if `mid > len`. /// /// # Example /// /// ```rust /// let mut v = [1, 2, 3, 4, 5, 6]; /// /// // scoped to restrict the lifetime of the borrows /// { /// let (left, right) = v.split_at_mut(0); /// assert!(left == []); /// assert!(right == [1, 2, 3, 4, 5, 6]); /// } /// /// { /// let (left, right) = v.split_at_mut(2); /// assert!(left == [1, 2]); /// assert!(right == [3, 4, 5, 6]); /// } /// /// { /// let (left, right) = v.split_at_mut(6); /// assert!(left == [1, 2, 3, 4, 5, 6]); /// assert!(right == []); /// } /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn split_at_mut(&mut self, mid: usize) -> (&mut [T], &mut [T]) { core_slice::SliceExt::split_at_mut(self, mid) } /// Reverse the order of elements in a slice, in place. /// /// # Example /// /// ```rust /// let mut v = [1, 2, 3]; /// v.reverse(); /// assert!(v == [3, 2, 1]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn reverse(&mut self) { core_slice::SliceExt::reverse(self) } /// Returns an unsafe mutable pointer to the element in index #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub unsafe fn get_unchecked_mut(&mut self, index: usize) -> &mut T { core_slice::SliceExt::get_unchecked_mut(self, index) } /// Returns an unsafe mutable pointer to the slice's buffer. /// /// The caller must ensure that the slice outlives the pointer this /// function returns, or else it will end up pointing to garbage. /// /// Modifying the slice may cause its buffer to be reallocated, which /// would also make any pointers to it invalid. #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn as_mut_ptr(&mut self) -> *mut T { core_slice::SliceExt::as_mut_ptr(self) } /// Copies `self` into a new `Vec`. #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn to_vec(&self) -> Vec where T: Clone { // NB see hack module in this file hack::to_vec(self) } /// Creates an iterator that yields every possible permutation of the /// vector in succession. /// /// # Examples /// /// ```rust /// # #![feature(collections)] /// let v = [1, 2, 3]; /// let mut perms = v.permutations(); /// /// for p in perms { /// println!("{:?}", p); /// } /// ``` /// /// Iterating through permutations one by one. /// /// ```rust /// # #![feature(collections)] /// let v = [1, 2, 3]; /// let mut perms = v.permutations(); /// /// assert_eq!(Some(vec![1, 2, 3]), perms.next()); /// assert_eq!(Some(vec![1, 3, 2]), perms.next()); /// assert_eq!(Some(vec![3, 1, 2]), perms.next()); /// ``` #[unstable(feature = "collections")] #[inline] pub fn permutations(&self) -> Permutations where T: Clone { // NB see hack module in this file hack::permutations(self) } /// Copies as many elements from `src` as it can into `self` (the /// shorter of `self.len()` and `src.len()`). Returns the number /// of elements copied. /// /// # Example /// /// ```rust /// # #![feature(collections)] /// let mut dst = [0, 0, 0]; /// let src = [1, 2]; /// /// assert!(dst.clone_from_slice(&src) == 2); /// assert!(dst == [1, 2, 0]); /// /// let src2 = [3, 4, 5, 6]; /// assert!(dst.clone_from_slice(&src2) == 3); /// assert!(dst == [3, 4, 5]); /// ``` #[unstable(feature = "collections")] pub fn clone_from_slice(&mut self, src: &[T]) -> usize where T: Clone { core_slice::SliceExt::clone_from_slice(self, src) } /// Sorts the slice, in place. /// /// This is equivalent to `self.sort_by(|a, b| a.cmp(b))`. /// /// # Examples /// /// ```rust /// let mut v = [-5, 4, 1, -3, 2]; /// /// v.sort(); /// assert!(v == [-5, -3, 1, 2, 4]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn sort(&mut self) where T: Ord { self.sort_by(|a, b| a.cmp(b)) } /// Binary search a sorted slice for a given element. /// /// If the value is found then `Ok` is returned, containing the /// index of the matching element; if the value is not found then /// `Err` is returned, containing the index where a matching /// element could be inserted while maintaining sorted order. /// /// # Example /// /// Looks up a series of four elements. The first is found, with a /// uniquely determined position; the second and third are not /// found; the fourth could match any position in `[1,4]`. /// /// ```rust /// # #![feature(core)] /// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; /// /// assert_eq!(s.binary_search(&13), Ok(9)); /// assert_eq!(s.binary_search(&4), Err(7)); /// assert_eq!(s.binary_search(&100), Err(13)); /// let r = s.binary_search(&1); /// assert!(match r { Ok(1...4) => true, _ => false, }); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn binary_search(&self, x: &T) -> Result where T: Ord { core_slice::SliceExt::binary_search(self, x) } /// Mutates the slice to the next lexicographic permutation. /// /// Returns `true` if successful and `false` if the slice is at the /// last-ordered permutation. /// /// # Example /// /// ```rust /// # #![feature(collections)] /// let v: &mut [_] = &mut [0, 1, 2]; /// v.next_permutation(); /// let b: &mut [_] = &mut [0, 2, 1]; /// assert!(v == b); /// v.next_permutation(); /// let b: &mut [_] = &mut [1, 0, 2]; /// assert!(v == b); /// ``` #[unstable(feature = "collections", reason = "uncertain if this merits inclusion in std")] pub fn next_permutation(&mut self) -> bool where T: Ord { core_slice::SliceExt::next_permutation(self) } /// Mutates the slice to the previous lexicographic permutation. /// /// Returns `true` if successful and `false` if the slice is at the /// first-ordered permutation. /// /// # Example /// /// ```rust /// # #![feature(collections)] /// let v: &mut [_] = &mut [1, 0, 2]; /// v.prev_permutation(); /// let b: &mut [_] = &mut [0, 2, 1]; /// assert!(v == b); /// v.prev_permutation(); /// let b: &mut [_] = &mut [0, 1, 2]; /// assert!(v == b); /// ``` #[unstable(feature = "collections", reason = "uncertain if this merits inclusion in std")] pub fn prev_permutation(&mut self) -> bool where T: Ord { core_slice::SliceExt::prev_permutation(self) } /// Find the first index containing a matching value. #[unstable(feature = "collections")] pub fn position_elem(&self, t: &T) -> Option where T: PartialEq { core_slice::SliceExt::position_elem(self, t) } /// Find the last index containing a matching value. #[unstable(feature = "collections")] pub fn rposition_elem(&self, t: &T) -> Option where T: PartialEq { core_slice::SliceExt::rposition_elem(self, t) } /// Returns true if the slice contains an element with the given value. /// /// # Examples /// /// ``` /// let v = [10, 40, 30]; /// assert!(v.contains(&30)); /// assert!(!v.contains(&50)); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn contains(&self, x: &T) -> bool where T: PartialEq { core_slice::SliceExt::contains(self, x) } /// Returns true if `needle` is a prefix of the slice. /// /// # Examples /// /// ``` /// let v = [10, 40, 30]; /// assert!(v.starts_with(&[10])); /// assert!(v.starts_with(&[10, 40])); /// assert!(!v.starts_with(&[50])); /// assert!(!v.starts_with(&[10, 50])); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn starts_with(&self, needle: &[T]) -> bool where T: PartialEq { core_slice::SliceExt::starts_with(self, needle) } /// Returns true if `needle` is a suffix of the slice. /// /// # Examples /// /// ``` /// let v = [10, 40, 30]; /// assert!(v.ends_with(&[30])); /// assert!(v.ends_with(&[40, 30])); /// assert!(!v.ends_with(&[50])); /// assert!(!v.ends_with(&[50, 30])); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn ends_with(&self, needle: &[T]) -> bool where T: PartialEq { core_slice::SliceExt::ends_with(self, needle) } /// Converts `self` into a vector without clones or allocation. #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn into_vec(self: Box) -> Vec { // NB see hack module in this file hack::into_vec(self) } } //////////////////////////////////////////////////////////////////////////////// // Extension traits for slices over specific kinds of data //////////////////////////////////////////////////////////////////////////////// #[unstable(feature = "collections", reason = "recently changed")] /// An extension trait for concatenating slices pub trait SliceConcatExt { #[unstable(feature = "collections", reason = "recently changed")] /// The resulting type after concatenation type Output; /// Flattens a slice of `T` into a single value `Self::Output`. /// /// # Examples /// /// ``` /// assert_eq!(["hello", "world"].concat(), "helloworld"); /// ``` #[stable(feature = "rust1", since = "1.0.0")] fn concat(&self) -> Self::Output; /// Flattens a slice of `T` into a single value `Self::Output`, placing a given separator /// between each. /// /// # Examples /// /// ``` /// assert_eq!(["hello", "world"].connect(" "), "hello world"); /// ``` #[stable(feature = "rust1", since = "1.0.0")] fn connect(&self, sep: &T) -> Self::Output; } impl> SliceConcatExt for [V] { type Output = Vec; fn concat(&self) -> Vec { let size = self.iter().fold(0, |acc, v| acc + v.borrow().len()); let mut result = Vec::with_capacity(size); for v in self { result.push_all(v.borrow()) } result } fn connect(&self, sep: &T) -> Vec { let size = self.iter().fold(0, |acc, v| acc + v.borrow().len()); let mut result = Vec::with_capacity(size + self.len()); let mut first = true; for v in self { if first { first = false } else { result.push(sep.clone()) } result.push_all(v.borrow()) } result } } /// An iterator that yields the element swaps needed to produce /// a sequence of all possible permutations for an indexed sequence of /// elements. Each permutation is only a single swap apart. /// /// The Steinhaus-Johnson-Trotter algorithm is used. /// /// Generates even and odd permutations alternately. /// /// The last generated swap is always (0, 1), and it returns the /// sequence to its initial order. #[unstable(feature = "collections")] #[derive(Clone)] pub struct ElementSwaps { sdir: Vec, /// If `true`, emit the last swap that returns the sequence to initial /// state. emit_reset: bool, swaps_made : usize, } impl ElementSwaps { /// Creates an `ElementSwaps` iterator for a sequence of `length` elements. #[unstable(feature = "collections")] pub fn new(length: usize) -> ElementSwaps { // Initialize `sdir` with a direction that position should move in // (all negative at the beginning) and the `size` of the // element (equal to the original index). ElementSwaps{ emit_reset: true, sdir: (0..length).map(|i| SizeDirection{ size: i, dir: Neg }).collect(), swaps_made: 0 } } } //////////////////////////////////////////////////////////////////////////////// // Standard trait implementations for slices //////////////////////////////////////////////////////////////////////////////// #[stable(feature = "rust1", since = "1.0.0")] impl Borrow<[T]> for Vec { fn borrow(&self) -> &[T] { &self[..] } } #[stable(feature = "rust1", since = "1.0.0")] impl BorrowMut<[T]> for Vec { fn borrow_mut(&mut self) -> &mut [T] { &mut self[..] } } #[stable(feature = "rust1", since = "1.0.0")] impl ToOwned for [T] { type Owned = Vec; #[cfg(not(test))] fn to_owned(&self) -> Vec { self.to_vec() } // HACK(japaric): with cfg(test) the inherent `[T]::to_vec`, which is required for this method // definition, is not available. Since we don't require this method for testing purposes, I'll // just stub it // NB see the slice::hack module in slice.rs for more information #[cfg(test)] fn to_owned(&self) -> Vec { panic!("not available with cfg(test)") } } //////////////////////////////////////////////////////////////////////////////// // Iterators //////////////////////////////////////////////////////////////////////////////// #[derive(Copy, Clone)] enum Direction { Pos, Neg } /// An `Index` and `Direction` together. #[derive(Copy, Clone)] struct SizeDirection { size: usize, dir: Direction, } #[stable(feature = "rust1", since = "1.0.0")] impl Iterator for ElementSwaps { type Item = (usize, usize); // #[inline] fn next(&mut self) -> Option<(usize, usize)> { fn new_pos_wrapping(i: usize, s: Direction) -> usize { i.wrapping_add(match s { Pos => 1, Neg => !0 /* aka -1 */ }) } fn new_pos(i: usize, s: Direction) -> usize { match s { Pos => i + 1, Neg => i - 1 } } // Find the index of the largest mobile element: // The direction should point into the vector, and the // swap should be with a smaller `size` element. let max = self.sdir.iter().cloned().enumerate() .filter(|&(i, sd)| new_pos_wrapping(i, sd.dir) < self.sdir.len() && self.sdir[new_pos(i, sd.dir)].size < sd.size) .max_by(|&(_, sd)| sd.size); match max { Some((i, sd)) => { let j = new_pos(i, sd.dir); self.sdir.swap(i, j); // Swap the direction of each larger SizeDirection for x in &mut self.sdir { if x.size > sd.size { x.dir = match x.dir { Pos => Neg, Neg => Pos }; } } self.swaps_made += 1; Some((i, j)) }, None => if self.emit_reset { self.emit_reset = false; if self.sdir.len() > 1 { // The last swap self.swaps_made += 1; Some((0, 1)) } else { // Vector is of the form [] or [x], and the only permutation is itself self.swaps_made += 1; Some((0,0)) } } else { None } } } #[inline] fn size_hint(&self) -> (usize, Option) { // For a vector of size n, there are exactly n! permutations. let n: usize = (2..self.sdir.len() + 1).product(); (n - self.swaps_made, Some(n - self.swaps_made)) } } /// An iterator that uses `ElementSwaps` to iterate through /// all possible permutations of a vector. /// /// The first iteration yields a clone of the vector as it is, /// then each successive element is the vector with one /// swap applied. /// /// Generates even and odd permutations alternately. #[unstable(feature = "collections")] pub struct Permutations { swaps: ElementSwaps, v: Vec, } #[unstable(feature = "collections", reason = "trait is unstable")] impl Iterator for Permutations { type Item = Vec; #[inline] fn next(&mut self) -> Option> { match self.swaps.next() { None => None, Some((0,0)) => Some(self.v.clone()), Some((a, b)) => { let elt = self.v.clone(); self.v.swap(a, b); Some(elt) } } } #[inline] fn size_hint(&self) -> (usize, Option) { self.swaps.size_hint() } } //////////////////////////////////////////////////////////////////////////////// // Sorting //////////////////////////////////////////////////////////////////////////////// fn insertion_sort(v: &mut [T], mut compare: F) where F: FnMut(&T, &T) -> Ordering { let len = v.len() as isize; let buf_v = v.as_mut_ptr(); // 1 <= i < len; for i in 1..len { // j satisfies: 0 <= j <= i; let mut j = i; unsafe { // `i` is in bounds. let read_ptr = buf_v.offset(i) as *const T; // find where to insert, we need to do strict <, // rather than <=, to maintain stability. // 0 <= j - 1 < len, so .offset(j - 1) is in bounds. while j > 0 && compare(&*read_ptr, &*buf_v.offset(j - 1)) == Less { j -= 1; } // shift everything to the right, to make space to // insert this value. // j + 1 could be `len` (for the last `i`), but in // that case, `i == j` so we don't copy. The // `.offset(j)` is always in bounds. if i != j { let tmp = ptr::read(read_ptr); ptr::copy(&*buf_v.offset(j), buf_v.offset(j + 1), (i - j) as usize); ptr::copy_nonoverlapping(&tmp, buf_v.offset(j), 1); mem::forget(tmp); } } } } fn merge_sort(v: &mut [T], mut compare: F) where F: FnMut(&T, &T) -> Ordering { // warning: this wildly uses unsafe. const BASE_INSERTION: usize = 32; const LARGE_INSERTION: usize = 16; // FIXME #12092: smaller insertion runs seems to make sorting // vectors of large elements a little faster on some platforms, // but hasn't been tested/tuned extensively let insertion = if size_of::() <= 16 { BASE_INSERTION } else { LARGE_INSERTION }; let len = v.len(); // short vectors get sorted in-place via insertion sort to avoid allocations if len <= insertion { insertion_sort(v, compare); return; } // allocate some memory to use as scratch memory, we keep the // length 0 so we can keep shallow copies of the contents of `v` // without risking the dtors running on an object twice if // `compare` panics. let mut working_space = Vec::with_capacity(2 * len); // these both are buffers of length `len`. let mut buf_dat = working_space.as_mut_ptr(); let mut buf_tmp = unsafe {buf_dat.offset(len as isize)}; // length `len`. let buf_v = v.as_ptr(); // step 1. sort short runs with insertion sort. This takes the // values from `v` and sorts them into `buf_dat`, leaving that // with sorted runs of length INSERTION. // We could hardcode the sorting comparisons here, and we could // manipulate/step the pointers themselves, rather than repeatedly // .offset-ing. for start in (0.. len).step_by(insertion) { // start <= i < len; for i in start..cmp::min(start + insertion, len) { // j satisfies: start <= j <= i; let mut j = i as isize; unsafe { // `i` is in bounds. let read_ptr = buf_v.offset(i as isize); // find where to insert, we need to do strict <, // rather than <=, to maintain stability. // start <= j - 1 < len, so .offset(j - 1) is in // bounds. while j > start as isize && compare(&*read_ptr, &*buf_dat.offset(j - 1)) == Less { j -= 1; } // shift everything to the right, to make space to // insert this value. // j + 1 could be `len` (for the last `i`), but in // that case, `i == j` so we don't copy. The // `.offset(j)` is always in bounds. ptr::copy(&*buf_dat.offset(j), buf_dat.offset(j + 1), i - j as usize); ptr::copy_nonoverlapping(read_ptr, buf_dat.offset(j), 1); } } } // step 2. merge the sorted runs. let mut width = insertion; while width < len { // merge the sorted runs of length `width` in `buf_dat` two at // a time, placing the result in `buf_tmp`. // 0 <= start <= len. for start in (0..len).step_by(2 * width) { // manipulate pointers directly for speed (rather than // using a `for` loop with `range` and `.offset` inside // that loop). unsafe { // the end of the first run & start of the // second. Offset of `len` is defined, since this is // precisely one byte past the end of the object. let right_start = buf_dat.offset(cmp::min(start + width, len) as isize); // end of the second. Similar reasoning to the above re safety. let right_end_idx = cmp::min(start + 2 * width, len); let right_end = buf_dat.offset(right_end_idx as isize); // the pointers to the elements under consideration // from the two runs. // both of these are in bounds. let mut left = buf_dat.offset(start as isize); let mut right = right_start; // where we're putting the results, it is a run of // length `2*width`, so we step it once for each step // of either `left` or `right`. `buf_tmp` has length // `len`, so these are in bounds. let mut out = buf_tmp.offset(start as isize); let out_end = buf_tmp.offset(right_end_idx as isize); while out < out_end { // Either the left or the right run are exhausted, // so just copy the remainder from the other run // and move on; this gives a huge speed-up (order // of 25%) for mostly sorted vectors (the best // case). if left == right_start { // the number remaining in this run. let elems = (right_end as usize - right as usize) / mem::size_of::(); ptr::copy_nonoverlapping(&*right, out, elems); break; } else if right == right_end { let elems = (right_start as usize - left as usize) / mem::size_of::(); ptr::copy_nonoverlapping(&*left, out, elems); break; } // check which side is smaller, and that's the // next element for the new run. // `left < right_start` and `right < right_end`, // so these are valid. let to_copy = if compare(&*left, &*right) == Greater { step(&mut right) } else { step(&mut left) }; ptr::copy_nonoverlapping(&*to_copy, out, 1); step(&mut out); } } } mem::swap(&mut buf_dat, &mut buf_tmp); width *= 2; } // write the result to `v` in one go, so that there are never two copies // of the same object in `v`. unsafe { ptr::copy_nonoverlapping(&*buf_dat, v.as_mut_ptr(), len); } // increment the pointer, returning the old pointer. #[inline(always)] unsafe fn step(ptr: &mut *mut T) -> *mut T { let old = *ptr; *ptr = ptr.offset(1); old } }