use rustc::middle::{const_eval, def_id, ty}; use rustc_mir::mir_map::MirMap; use rustc_mir::repr::{self as mir, Mir}; use syntax::ast::Attribute; use syntax::attr::AttrMetaMethods; use std::iter; const TRACE_EXECUTION: bool = false; #[derive(Clone, Debug, PartialEq)] enum Value { Uninit, Bool(bool), Int(i64), // FIXME: Should be bit-width aware. Func(def_id::DefId), } #[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord)] enum Pointer { Stack(usize), // TODO(tsion): Heap } /// A stack frame: /// /// ```text /// +-----------------------+ /// | ReturnPointer | return value /// + - - - - - - - - - - - + /// | Arg(0) | /// | Arg(1) | arguments /// | ... | /// | Arg(num_args - 1) | /// + - - - - - - - - - - - + /// | Var(0) | /// | Var(1) | variables /// | ... | /// | Var(num_vars - 1) | /// + - - - - - - - - - - - + /// | Temp(0) | /// | Temp(1) | temporaries /// | ... | /// | Temp(num_temps - 1) | /// + - - - - - - - - - - - + /// | Aggregates | aggregates /// +-----------------------+ /// ``` #[derive(Debug)] struct Frame { offset: usize, num_args: usize, num_vars: usize, num_temps: usize, // aggregates } impl Frame { fn size(&self) -> usize { 1 + self.num_args + self.num_vars + self.num_temps } fn return_val_offset(&self) -> usize { self.offset } fn arg_offset(&self, i: u32) -> usize { self.offset + 1 + i as usize } fn var_offset(&self, i: u32) -> usize { self.offset + 1 + self.num_args + i as usize } fn temp_offset(&self, i: u32) -> usize { self.offset + 1 + self.num_args + self.num_vars + i as usize } } struct Interpreter<'a, 'tcx: 'a> { tcx: &'a ty::ctxt<'tcx>, mir_map: &'a MirMap<'tcx>, value_stack: Vec, call_stack: Vec, } impl<'a, 'tcx> Interpreter<'a, 'tcx> { fn new(tcx: &'a ty::ctxt<'tcx>, mir_map: &'a MirMap<'tcx>) -> Self { Interpreter { tcx: tcx, mir_map: mir_map, value_stack: Vec::new(), call_stack: Vec::new(), } } fn push_stack_frame(&mut self, mir: &Mir, args: &[Value]) { self.call_stack.push(Frame { offset: self.value_stack.len(), num_args: mir.arg_decls.len(), num_vars: mir.var_decls.len(), num_temps: mir.temp_decls.len(), }); let frame = self.call_stack.last().unwrap(); self.value_stack.extend(iter::repeat(Value::Uninit).take(frame.size())); for (i, arg) in args.iter().enumerate() { self.value_stack[frame.offset + 1 + i] = arg.clone(); } } fn pop_stack_frame(&mut self) { let frame = self.call_stack.pop().expect("tried to pop stack frame, but there were none"); self.value_stack.truncate(frame.offset); } fn call(&mut self, mir: &Mir, args: &[Value]) -> Value { self.push_stack_frame(mir, args); let mut block = mir::START_BLOCK; loop { let block_data = mir.basic_block_data(block); for stmt in &block_data.statements { if TRACE_EXECUTION { println!("{:?}", stmt); } match stmt.kind { mir::StatementKind::Assign(ref lvalue, ref rvalue) => { let ptr = self.eval_lvalue(lvalue); let value = self.eval_rvalue(rvalue); self.write_pointer(ptr, value); } mir::StatementKind::Drop(_kind, ref _lv) => { // TODO }, } } if TRACE_EXECUTION { println!("{:?}", block_data.terminator); } match block_data.terminator { mir::Terminator::Return => break, mir::Terminator::Goto { target } => block = target, mir::Terminator::Call { ref data, targets } => { let mir::CallData { ref destination, ref func, ref args } = *data; let ptr = self.eval_lvalue(destination); let func_val = self.eval_operand(func); if let Value::Func(def_id) = func_val { let node_id = self.tcx.map.as_local_node_id(def_id).unwrap(); let mir = &self.mir_map[&node_id]; let arg_vals: Vec = args.iter().map(|arg| self.eval_operand(arg)).collect(); // FIXME: Pass the destination lvalue such that the ReturnPointer inside // the function call will point to the destination. let return_val = self.call(mir, &arg_vals); self.write_pointer(ptr, return_val); block = targets[0]; } else { panic!("tried to call a non-function value: {:?}", func_val); } } mir::Terminator::If { ref cond, targets } => { match self.eval_operand(cond) { Value::Bool(true) => block = targets[0], Value::Bool(false) => block = targets[1], cond_val => panic!("Non-boolean `if` condition value: {:?}", cond_val), } } mir::Terminator::SwitchInt { ref discr, ref values, ref targets, .. } => { let discr_val = self.read_lvalue(discr); let index = values.iter().position(|v| discr_val == self.eval_constant(v)) .expect("discriminant matched no values"); block = targets[index]; } // mir::Terminator::Diverge => unimplemented!(), // mir::Terminator::Panic { target } => unimplemented!(), // mir::Terminator::Switch { ref discr, adt_def, ref targets } => unimplemented!(), _ => unimplemented!(), } } let ret_val = self.read_lvalue(&mir::Lvalue::ReturnPointer); self.pop_stack_frame(); ret_val } fn eval_lvalue(&self, lvalue: &mir::Lvalue) -> Pointer { let frame = self.call_stack.last().expect("missing call frame"); match *lvalue { mir::Lvalue::ReturnPointer => Pointer::Stack(frame.return_val_offset()), mir::Lvalue::Arg(i) => Pointer::Stack(frame.arg_offset(i)), mir::Lvalue::Var(i) => Pointer::Stack(frame.var_offset(i)), mir::Lvalue::Temp(i) => Pointer::Stack(frame.temp_offset(i)), _ => unimplemented!(), } } fn eval_binary_op(&mut self, bin_op: mir::BinOp, left: Value, right: Value) -> Value { match (left, right) { (Value::Int(l), Value::Int(r)) => { match bin_op { mir::BinOp::Add => Value::Int(l + r), mir::BinOp::Sub => Value::Int(l - r), mir::BinOp::Mul => Value::Int(l * r), mir::BinOp::Div => Value::Int(l / r), mir::BinOp::Rem => Value::Int(l % r), mir::BinOp::BitXor => Value::Int(l ^ r), mir::BinOp::BitAnd => Value::Int(l & r), mir::BinOp::BitOr => Value::Int(l | r), mir::BinOp::Shl => Value::Int(l << r), mir::BinOp::Shr => Value::Int(l >> r), mir::BinOp::Eq => Value::Bool(l == r), mir::BinOp::Lt => Value::Bool(l < r), mir::BinOp::Le => Value::Bool(l <= r), mir::BinOp::Ne => Value::Bool(l != r), mir::BinOp::Ge => Value::Bool(l >= r), mir::BinOp::Gt => Value::Bool(l > r), } } _ => unimplemented!(), } } fn eval_rvalue(&mut self, rvalue: &mir::Rvalue) -> Value { match *rvalue { mir::Rvalue::Use(ref operand) => self.eval_operand(operand), mir::Rvalue::BinaryOp(bin_op, ref left, ref right) => { let left_val = self.eval_operand(left); let right_val = self.eval_operand(right); self.eval_binary_op(bin_op, left_val, right_val) } mir::Rvalue::UnaryOp(un_op, ref operand) => { match (un_op, self.eval_operand(operand)) { (mir::UnOp::Not, Value::Int(n)) => Value::Int(!n), (mir::UnOp::Neg, Value::Int(n)) => Value::Int(-n), _ => unimplemented!(), } } // mir::Rvalue::Aggregate(mir::AggregateKind::Adt(ref adt_def, variant, substs), // ref operands) => { // let num_fields = adt_def.variants[variant].fields.len(); // debug_assert_eq!(num_fields, operands.len()); // let data = operands.iter().map(|op| self.eval_operand(op)).collect(); // Value::Adt(variant, data) // } _ => unimplemented!(), } } fn eval_operand(&mut self, op: &mir::Operand) -> Value { match *op { mir::Operand::Consume(ref lvalue) => self.read_lvalue(lvalue), mir::Operand::Constant(ref constant) => { match constant.literal { mir::Literal::Value { ref value } => self.eval_constant(value), mir::Literal::Item { def_id, substs: _ } => { Value::Func(def_id) } } } } } fn eval_constant(&self, const_val: &const_eval::ConstVal) -> Value { match *const_val { const_eval::ConstVal::Float(_f) => unimplemented!(), const_eval::ConstVal::Int(i) => Value::Int(i), const_eval::ConstVal::Uint(_u) => unimplemented!(), const_eval::ConstVal::Str(ref _s) => unimplemented!(), const_eval::ConstVal::ByteStr(ref _bs) => unimplemented!(), const_eval::ConstVal::Bool(b) => Value::Bool(b), const_eval::ConstVal::Struct(_node_id) => unimplemented!(), const_eval::ConstVal::Tuple(_node_id) => unimplemented!(), const_eval::ConstVal::Function(_def_id) => unimplemented!(), } } fn read_lvalue(&self, lvalue: &mir::Lvalue) -> Value { self.read_pointer(self.eval_lvalue(lvalue)) } fn read_pointer(&self, p: Pointer) -> Value { match p { Pointer::Stack(offset) => self.value_stack[offset].clone(), } } fn write_pointer(&mut self, p: Pointer, val: Value) { match p { Pointer::Stack(offset) => self.value_stack[offset] = val, } } } pub fn interpret_start_points<'tcx>(tcx: &ty::ctxt<'tcx>, mir_map: &MirMap<'tcx>) { for (&id, mir) in mir_map { for attr in tcx.map.attrs(id) { if attr.check_name("miri_run") { let item = tcx.map.expect_item(id); println!("Interpreting: {}", item.name); let mut interpreter = Interpreter::new(tcx, mir_map); let val = interpreter.call(mir, &[]); let val_str = format!("{:?}", val); if !check_expected(&val_str, attr) { println!("=> {}\n", val_str); } } } } } fn check_expected(actual: &str, attr: &Attribute) -> bool { if let Some(meta_items) = attr.meta_item_list() { for meta_item in meta_items { if meta_item.check_name("expected") { let expected = meta_item.value_str().unwrap(); if actual == &expected[..] { println!("Test passed!\n"); } else { println!("Actual value:\t{}\nExpected value:\t{}\n", actual, expected); } return true; } } } false }