use crate::arena::Arena; use crate::hir::map::{Entry, HirOwnerData, Map}; use crate::hir::{Owner, OwnerNodes, ParentedNode}; use crate::ich::StableHashingContext; use crate::middle::cstore::CrateStore; use rustc_data_structures::fingerprint::Fingerprint; use rustc_data_structures::fx::FxHashMap; use rustc_data_structures::stable_hasher::{HashStable, StableHasher}; use rustc_data_structures::svh::Svh; use rustc_hir as hir; use rustc_hir::def_id::CRATE_DEF_INDEX; use rustc_hir::def_id::{LocalDefId, LOCAL_CRATE}; use rustc_hir::definitions::{self, DefPathHash}; use rustc_hir::intravisit::{self, NestedVisitorMap, Visitor}; use rustc_hir::*; use rustc_index::vec::{Idx, IndexVec}; use rustc_session::{CrateDisambiguator, Session}; use rustc_span::source_map::SourceMap; use rustc_span::{Span, Symbol, DUMMY_SP}; use std::iter::repeat; /// A visitor that walks over the HIR and collects `Node`s into a HIR map. pub(super) struct NodeCollector<'a, 'hir> { arena: &'hir Arena<'hir>, /// The crate krate: &'hir Crate<'hir>, /// Source map source_map: &'a SourceMap, map: IndexVec>, /// The parent of this node parent_node: hir::HirId, current_dep_node_owner: LocalDefId, definitions: &'a definitions::Definitions, hcx: StableHashingContext<'a>, // We are collecting HIR hashes here so we can compute the // crate hash from them later on. hir_body_nodes: Vec<(DefPathHash, Fingerprint)>, } fn insert_vec_map(map: &mut IndexVec>, k: K, v: V) { let i = k.index(); let len = map.len(); if i >= len { map.extend(repeat(None).take(i - len + 1)); } map[k] = Some(v); } fn hash( hcx: &mut StableHashingContext<'_>, input: impl for<'a> HashStable>, ) -> Fingerprint { let mut stable_hasher = StableHasher::new(); input.hash_stable(hcx, &mut stable_hasher); stable_hasher.finish() } fn hash_body( hcx: &mut StableHashingContext<'_>, def_path_hash: DefPathHash, item_like: impl for<'a> HashStable>, hir_body_nodes: &mut Vec<(DefPathHash, Fingerprint)>, ) -> Fingerprint { let hash = hash(hcx, HirItemLike { item_like: &item_like }); hir_body_nodes.push((def_path_hash, hash)); hash } fn upstream_crates(cstore: &dyn CrateStore) -> Vec<(Symbol, Fingerprint, Svh)> { let mut upstream_crates: Vec<_> = cstore .crates_untracked() .iter() .map(|&cnum| { let name = cstore.crate_name_untracked(cnum); let disambiguator = cstore.crate_disambiguator_untracked(cnum).to_fingerprint(); let hash = cstore.crate_hash_untracked(cnum); (name, disambiguator, hash) }) .collect(); upstream_crates.sort_unstable_by_key(|&(name, dis, _)| (name.as_str(), dis)); upstream_crates } impl<'a, 'hir> NodeCollector<'a, 'hir> { pub(super) fn root( sess: &'a Session, arena: &'hir Arena<'hir>, krate: &'hir Crate<'hir>, definitions: &'a definitions::Definitions, mut hcx: StableHashingContext<'a>, ) -> NodeCollector<'a, 'hir> { let root_mod_def_path_hash = definitions.def_path_hash(LocalDefId { local_def_index: CRATE_DEF_INDEX }); let mut hir_body_nodes = Vec::new(); let hash = { let Crate { ref item, // These fields are handled separately: exported_macros: _, non_exported_macro_attrs: _, items: _, trait_items: _, impl_items: _, bodies: _, trait_impls: _, body_ids: _, modules: _, proc_macros: _, trait_map: _, } = *krate; hash_body(&mut hcx, root_mod_def_path_hash, item, &mut hir_body_nodes) }; let mut collector = NodeCollector { arena, krate, source_map: sess.source_map(), parent_node: hir::CRATE_HIR_ID, current_dep_node_owner: LocalDefId { local_def_index: CRATE_DEF_INDEX }, definitions, hcx, hir_body_nodes, map: (0..definitions.def_index_count()) .map(|_| HirOwnerData { signature: None, with_bodies: None }) .collect(), }; collector.insert_entry( hir::CRATE_HIR_ID, Entry { parent: hir::CRATE_HIR_ID, node: Node::Crate(&krate.item) }, hash, ); collector } pub(super) fn finalize_and_compute_crate_hash( mut self, crate_disambiguator: CrateDisambiguator, cstore: &dyn CrateStore, commandline_args_hash: u64, ) -> (IndexVec>, Svh) { // Insert bodies into the map for (id, body) in self.krate.bodies.iter() { let bodies = &mut self.map[id.hir_id.owner].with_bodies.as_mut().unwrap().bodies; assert!(bodies.insert(id.hir_id.local_id, body).is_none()); } self.hir_body_nodes.sort_unstable_by_key(|bn| bn.0); let node_hashes = self.hir_body_nodes.iter().fold( Fingerprint::ZERO, |combined_fingerprint, &(def_path_hash, fingerprint)| { combined_fingerprint.combine(def_path_hash.0.combine(fingerprint)) }, ); let upstream_crates = upstream_crates(cstore); // We hash the final, remapped names of all local source files so we // don't have to include the path prefix remapping commandline args. // If we included the full mapping in the SVH, we could only have // reproducible builds by compiling from the same directory. So we just // hash the result of the mapping instead of the mapping itself. let mut source_file_names: Vec<_> = self .source_map .files() .iter() .filter(|source_file| source_file.cnum == LOCAL_CRATE) .map(|source_file| source_file.name_hash) .collect(); source_file_names.sort_unstable(); let crate_hash_input = ( ((node_hashes, upstream_crates), source_file_names), (commandline_args_hash, crate_disambiguator.to_fingerprint()), ); let mut stable_hasher = StableHasher::new(); crate_hash_input.hash_stable(&mut self.hcx, &mut stable_hasher); let crate_hash: Fingerprint = stable_hasher.finish(); let svh = Svh::new(crate_hash.to_smaller_hash()); (self.map, svh) } fn insert_entry(&mut self, id: HirId, entry: Entry<'hir>, hash: Fingerprint) { let i = id.local_id.as_u32() as usize; let arena = self.arena; let data = &mut self.map[id.owner]; if data.with_bodies.is_none() { data.with_bodies = Some(arena.alloc(OwnerNodes { hash, nodes: IndexVec::new(), bodies: FxHashMap::default(), })); } let nodes = data.with_bodies.as_mut().unwrap(); if i == 0 { // Overwrite the dummy hash with the real HIR owner hash. nodes.hash = hash; // FIXME: feature(impl_trait_in_bindings) broken and trigger this assert //assert!(data.signature.is_none()); data.signature = Some(self.arena.alloc(Owner { parent: entry.parent, node: entry.node })); } else { assert_eq!(entry.parent.owner, id.owner); insert_vec_map( &mut nodes.nodes, id.local_id, ParentedNode { parent: entry.parent.local_id, node: entry.node }, ); } } fn insert(&mut self, span: Span, hir_id: HirId, node: Node<'hir>) { self.insert_with_hash(span, hir_id, node, Fingerprint::ZERO) } fn insert_with_hash(&mut self, span: Span, hir_id: HirId, node: Node<'hir>, hash: Fingerprint) { let entry = Entry { parent: self.parent_node, node }; // Make sure that the DepNode of some node coincides with the HirId // owner of that node. if cfg!(debug_assertions) { let node_id = self.definitions.hir_id_to_node_id(hir_id); if hir_id.owner != self.current_dep_node_owner { let node_str = match self.definitions.opt_local_def_id(node_id) { Some(def_id) => self.definitions.def_path(def_id).to_string_no_crate(), None => format!("{:?}", node), }; span_bug!( span, "inconsistent DepNode at `{:?}` for `{}`: \ current_dep_node_owner={} ({:?}), hir_id.owner={} ({:?})", self.source_map.span_to_string(span), node_str, self.definitions.def_path(self.current_dep_node_owner).to_string_no_crate(), self.current_dep_node_owner, self.definitions.def_path(hir_id.owner).to_string_no_crate(), hir_id.owner, ) } } self.insert_entry(hir_id, entry, hash); } fn with_parent(&mut self, parent_node_id: HirId, f: F) { let parent_node = self.parent_node; self.parent_node = parent_node_id; f(self); self.parent_node = parent_node; } fn with_dep_node_owner< T: for<'b> HashStable>, F: FnOnce(&mut Self, Fingerprint), >( &mut self, dep_node_owner: LocalDefId, item_like: &T, f: F, ) { let prev_owner = self.current_dep_node_owner; let def_path_hash = self.definitions.def_path_hash(dep_node_owner); let hash = hash_body(&mut self.hcx, def_path_hash, item_like, &mut self.hir_body_nodes); self.current_dep_node_owner = dep_node_owner; f(self, hash); self.current_dep_node_owner = prev_owner; } } impl<'a, 'hir> Visitor<'hir> for NodeCollector<'a, 'hir> { type Map = Map<'hir>; /// Because we want to track parent items and so forth, enable /// deep walking so that we walk nested items in the context of /// their outer items. fn nested_visit_map(&mut self) -> NestedVisitorMap { panic!("`visit_nested_xxx` must be manually implemented in this visitor"); } fn visit_nested_item(&mut self, item: ItemId) { debug!("visit_nested_item: {:?}", item); self.visit_item(self.krate.item(item.id)); } fn visit_nested_trait_item(&mut self, item_id: TraitItemId) { self.visit_trait_item(self.krate.trait_item(item_id)); } fn visit_nested_impl_item(&mut self, item_id: ImplItemId) { self.visit_impl_item(self.krate.impl_item(item_id)); } fn visit_nested_body(&mut self, id: BodyId) { self.visit_body(self.krate.body(id)); } fn visit_param(&mut self, param: &'hir Param<'hir>) { let node = Node::Param(param); self.insert(param.pat.span, param.hir_id, node); self.with_parent(param.hir_id, |this| { intravisit::walk_param(this, param); }); } fn visit_item(&mut self, i: &'hir Item<'hir>) { debug!("visit_item: {:?}", i); debug_assert_eq!( i.hir_id.owner, self.definitions .opt_local_def_id(self.definitions.hir_id_to_node_id(i.hir_id)) .unwrap() ); self.with_dep_node_owner(i.hir_id.owner, i, |this, hash| { this.insert_with_hash(i.span, i.hir_id, Node::Item(i), hash); this.with_parent(i.hir_id, |this| { if let ItemKind::Struct(ref struct_def, _) = i.kind { // If this is a tuple or unit-like struct, register the constructor. if let Some(ctor_hir_id) = struct_def.ctor_hir_id() { this.insert(i.span, ctor_hir_id, Node::Ctor(struct_def)); } } intravisit::walk_item(this, i); }); }); } fn visit_foreign_item(&mut self, foreign_item: &'hir ForeignItem<'hir>) { self.insert(foreign_item.span, foreign_item.hir_id, Node::ForeignItem(foreign_item)); self.with_parent(foreign_item.hir_id, |this| { intravisit::walk_foreign_item(this, foreign_item); }); } fn visit_generic_param(&mut self, param: &'hir GenericParam<'hir>) { self.insert(param.span, param.hir_id, Node::GenericParam(param)); intravisit::walk_generic_param(self, param); } fn visit_trait_item(&mut self, ti: &'hir TraitItem<'hir>) { debug_assert_eq!( ti.hir_id.owner, self.definitions .opt_local_def_id(self.definitions.hir_id_to_node_id(ti.hir_id)) .unwrap() ); self.with_dep_node_owner(ti.hir_id.owner, ti, |this, hash| { this.insert_with_hash(ti.span, ti.hir_id, Node::TraitItem(ti), hash); this.with_parent(ti.hir_id, |this| { intravisit::walk_trait_item(this, ti); }); }); } fn visit_impl_item(&mut self, ii: &'hir ImplItem<'hir>) { debug_assert_eq!( ii.hir_id.owner, self.definitions .opt_local_def_id(self.definitions.hir_id_to_node_id(ii.hir_id)) .unwrap() ); self.with_dep_node_owner(ii.hir_id.owner, ii, |this, hash| { this.insert_with_hash(ii.span, ii.hir_id, Node::ImplItem(ii), hash); this.with_parent(ii.hir_id, |this| { intravisit::walk_impl_item(this, ii); }); }); } fn visit_pat(&mut self, pat: &'hir Pat<'hir>) { let node = if let PatKind::Binding(..) = pat.kind { Node::Binding(pat) } else { Node::Pat(pat) }; self.insert(pat.span, pat.hir_id, node); self.with_parent(pat.hir_id, |this| { intravisit::walk_pat(this, pat); }); } fn visit_arm(&mut self, arm: &'hir Arm<'hir>) { let node = Node::Arm(arm); self.insert(arm.span, arm.hir_id, node); self.with_parent(arm.hir_id, |this| { intravisit::walk_arm(this, arm); }); } fn visit_anon_const(&mut self, constant: &'hir AnonConst) { self.insert(DUMMY_SP, constant.hir_id, Node::AnonConst(constant)); self.with_parent(constant.hir_id, |this| { intravisit::walk_anon_const(this, constant); }); } fn visit_expr(&mut self, expr: &'hir Expr<'hir>) { self.insert(expr.span, expr.hir_id, Node::Expr(expr)); self.with_parent(expr.hir_id, |this| { intravisit::walk_expr(this, expr); }); } fn visit_stmt(&mut self, stmt: &'hir Stmt<'hir>) { self.insert(stmt.span, stmt.hir_id, Node::Stmt(stmt)); self.with_parent(stmt.hir_id, |this| { intravisit::walk_stmt(this, stmt); }); } fn visit_path_segment(&mut self, path_span: Span, path_segment: &'hir PathSegment<'hir>) { if let Some(hir_id) = path_segment.hir_id { self.insert(path_span, hir_id, Node::PathSegment(path_segment)); } intravisit::walk_path_segment(self, path_span, path_segment); } fn visit_ty(&mut self, ty: &'hir Ty<'hir>) { self.insert(ty.span, ty.hir_id, Node::Ty(ty)); self.with_parent(ty.hir_id, |this| { intravisit::walk_ty(this, ty); }); } fn visit_trait_ref(&mut self, tr: &'hir TraitRef<'hir>) { self.insert(tr.path.span, tr.hir_ref_id, Node::TraitRef(tr)); self.with_parent(tr.hir_ref_id, |this| { intravisit::walk_trait_ref(this, tr); }); } fn visit_fn( &mut self, fk: intravisit::FnKind<'hir>, fd: &'hir FnDecl<'hir>, b: BodyId, s: Span, id: HirId, ) { assert_eq!(self.parent_node, id); intravisit::walk_fn(self, fk, fd, b, s, id); } fn visit_block(&mut self, block: &'hir Block<'hir>) { self.insert(block.span, block.hir_id, Node::Block(block)); self.with_parent(block.hir_id, |this| { intravisit::walk_block(this, block); }); } fn visit_local(&mut self, l: &'hir Local<'hir>) { self.insert(l.span, l.hir_id, Node::Local(l)); self.with_parent(l.hir_id, |this| intravisit::walk_local(this, l)) } fn visit_lifetime(&mut self, lifetime: &'hir Lifetime) { self.insert(lifetime.span, lifetime.hir_id, Node::Lifetime(lifetime)); } fn visit_vis(&mut self, visibility: &'hir Visibility<'hir>) { match visibility.node { VisibilityKind::Public | VisibilityKind::Crate(_) | VisibilityKind::Inherited => {} VisibilityKind::Restricted { hir_id, .. } => { self.insert(visibility.span, hir_id, Node::Visibility(visibility)); self.with_parent(hir_id, |this| { intravisit::walk_vis(this, visibility); }); } } } fn visit_macro_def(&mut self, macro_def: &'hir MacroDef<'hir>) { self.with_dep_node_owner(macro_def.hir_id.owner, macro_def, |this, hash| { this.insert_with_hash( macro_def.span, macro_def.hir_id, Node::MacroDef(macro_def), hash, ); }); } fn visit_variant(&mut self, v: &'hir Variant<'hir>, g: &'hir Generics<'hir>, item_id: HirId) { self.insert(v.span, v.id, Node::Variant(v)); self.with_parent(v.id, |this| { // Register the constructor of this variant. if let Some(ctor_hir_id) = v.data.ctor_hir_id() { this.insert(v.span, ctor_hir_id, Node::Ctor(&v.data)); } intravisit::walk_variant(this, v, g, item_id); }); } fn visit_struct_field(&mut self, field: &'hir StructField<'hir>) { self.insert(field.span, field.hir_id, Node::Field(field)); self.with_parent(field.hir_id, |this| { intravisit::walk_struct_field(this, field); }); } fn visit_trait_item_ref(&mut self, ii: &'hir TraitItemRef) { // Do not visit the duplicate information in TraitItemRef. We want to // map the actual nodes, not the duplicate ones in the *Ref. let TraitItemRef { id, ident: _, kind: _, span: _, defaultness: _ } = *ii; self.visit_nested_trait_item(id); } fn visit_impl_item_ref(&mut self, ii: &'hir ImplItemRef<'hir>) { // Do not visit the duplicate information in ImplItemRef. We want to // map the actual nodes, not the duplicate ones in the *Ref. let ImplItemRef { id, ident: _, kind: _, span: _, vis: _, defaultness: _ } = *ii; self.visit_nested_impl_item(id); } } struct HirItemLike { item_like: T, } impl<'hir, T> HashStable> for HirItemLike where T: HashStable>, { fn hash_stable(&self, hcx: &mut StableHashingContext<'hir>, hasher: &mut StableHasher) { hcx.while_hashing_hir_bodies(true, |hcx| { self.item_like.hash_stable(hcx, hasher); }); } }