//! Lints in the Rust compiler. //! //! This contains lints which can feasibly be implemented as their own //! AST visitor. Also see `rustc_session::lint::builtin`, which contains the //! definitions of lints that are emitted directly inside the main compiler. //! //! To add a new lint to rustc, declare it here using `declare_lint!()`. //! Then add code to emit the new lint in the appropriate circumstances. //! You can do that in an existing `LintPass` if it makes sense, or in a //! new `LintPass`, or using `Session::add_lint` elsewhere in the //! compiler. Only do the latter if the check can't be written cleanly as a //! `LintPass` (also, note that such lints will need to be defined in //! `rustc_session::lint::builtin`, not here). //! //! If you define a new `EarlyLintPass`, you will also need to add it to the //! `add_early_builtin!` or `add_early_builtin_with_new!` invocation in //! `lib.rs`. Use the former for unit-like structs and the latter for structs //! with a `pub fn new()`. //! //! If you define a new `LateLintPass`, you will also need to add it to the //! `late_lint_methods!` invocation in `lib.rs`. use crate::{ types::{transparent_newtype_field, CItemKind}, EarlyContext, EarlyLintPass, LateContext, LateLintPass, LintContext, }; use rustc_ast::attr; use rustc_ast::tokenstream::{TokenStream, TokenTree}; use rustc_ast::visit::{FnCtxt, FnKind}; use rustc_ast::{self as ast, *}; use rustc_ast_pretty::pprust::{self, expr_to_string}; use rustc_data_structures::fx::{FxHashMap, FxHashSet}; use rustc_data_structures::stack::ensure_sufficient_stack; use rustc_errors::{Applicability, DiagnosticBuilder, DiagnosticStyledString}; use rustc_feature::{deprecated_attributes, AttributeGate, AttributeTemplate, AttributeType}; use rustc_feature::{GateIssue, Stability}; use rustc_hir as hir; use rustc_hir::def::{DefKind, Res}; use rustc_hir::def_id::{DefId, LocalDefId, LocalDefIdSet}; use rustc_hir::{ForeignItemKind, GenericParamKind, PatKind}; use rustc_hir::{HirId, Node}; use rustc_index::vec::Idx; use rustc_middle::lint::LintDiagnosticBuilder; use rustc_middle::ty::print::with_no_trimmed_paths; use rustc_middle::ty::subst::{GenericArgKind, Subst}; use rustc_middle::ty::Instance; use rustc_middle::ty::{self, layout::LayoutError, Ty, TyCtxt}; use rustc_session::Session; use rustc_span::edition::Edition; use rustc_span::source_map::Spanned; use rustc_span::symbol::{kw, sym, Ident, Symbol}; use rustc_span::{BytePos, Span}; use rustc_target::abi::{LayoutOf, VariantIdx}; use rustc_trait_selection::traits::misc::can_type_implement_copy; use crate::nonstandard_style::{method_context, MethodLateContext}; use std::fmt::Write; use tracing::{debug, trace}; // hardwired lints from librustc_middle pub use rustc_session::lint::builtin::*; declare_lint! { /// The `while_true` lint detects `while true { }`. /// /// ### Example /// /// ```rust,no_run /// while true { /// /// } /// ``` /// /// {{produces}} /// /// ### Explanation /// /// `while true` should be replaced with `loop`. A `loop` expression is /// the preferred way to write an infinite loop because it more directly /// expresses the intent of the loop. WHILE_TRUE, Warn, "suggest using `loop { }` instead of `while true { }`" } declare_lint_pass!(WhileTrue => [WHILE_TRUE]); /// Traverse through any amount of parenthesis and return the first non-parens expression. fn pierce_parens(mut expr: &ast::Expr) -> &ast::Expr { while let ast::ExprKind::Paren(sub) = &expr.kind { expr = sub; } expr } impl EarlyLintPass for WhileTrue { fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) { if let ast::ExprKind::While(cond, _, label) = &e.kind { if let ast::ExprKind::Lit(ref lit) = pierce_parens(cond).kind { if let ast::LitKind::Bool(true) = lit.kind { if !lit.span.from_expansion() { let msg = "denote infinite loops with `loop { ... }`"; let condition_span = e.span.with_hi(cond.span.hi()); cx.struct_span_lint(WHILE_TRUE, condition_span, |lint| { lint.build(msg) .span_suggestion_short( condition_span, "use `loop`", format!( "{}loop", label.map_or_else(String::new, |label| format!( "{}: ", label.ident, )) ), Applicability::MachineApplicable, ) .emit(); }) } } } } } } declare_lint! { /// The `box_pointers` lints use of the Box type. /// /// ### Example /// /// ```rust,compile_fail /// #![deny(box_pointers)] /// struct Foo { /// x: Box, /// } /// ``` /// /// {{produces}} /// /// ### Explanation /// /// This lint is mostly historical, and not particularly useful. `Box` /// used to be built into the language, and the only way to do heap /// allocation. Today's Rust can call into other allocators, etc. BOX_POINTERS, Allow, "use of owned (Box type) heap memory" } declare_lint_pass!(BoxPointers => [BOX_POINTERS]); impl BoxPointers { fn check_heap_type(&self, cx: &LateContext<'_>, span: Span, ty: Ty<'_>) { for leaf in ty.walk() { if let GenericArgKind::Type(leaf_ty) = leaf.unpack() { if leaf_ty.is_box() { cx.struct_span_lint(BOX_POINTERS, span, |lint| { lint.build(&format!("type uses owned (Box type) pointers: {}", ty)).emit() }); } } } } } impl<'tcx> LateLintPass<'tcx> for BoxPointers { fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) { match it.kind { hir::ItemKind::Fn(..) | hir::ItemKind::TyAlias(..) | hir::ItemKind::Enum(..) | hir::ItemKind::Struct(..) | hir::ItemKind::Union(..) => { self.check_heap_type(cx, it.span, cx.tcx.type_of(it.def_id)) } _ => (), } // If it's a struct, we also have to check the fields' types match it.kind { hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => { for struct_field in struct_def.fields() { let def_id = cx.tcx.hir().local_def_id(struct_field.hir_id); self.check_heap_type(cx, struct_field.span, cx.tcx.type_of(def_id)); } } _ => (), } } fn check_expr(&mut self, cx: &LateContext<'_>, e: &hir::Expr<'_>) { let ty = cx.typeck_results().node_type(e.hir_id); self.check_heap_type(cx, e.span, ty); } } declare_lint! { /// The `non_shorthand_field_patterns` lint detects using `Struct { x: x }` /// instead of `Struct { x }` in a pattern. /// /// ### Example /// /// ```rust /// struct Point { /// x: i32, /// y: i32, /// } /// /// /// fn main() { /// let p = Point { /// x: 5, /// y: 5, /// }; /// /// match p { /// Point { x: x, y: y } => (), /// } /// } /// ``` /// /// {{produces}} /// /// ### Explanation /// /// The preferred style is to avoid the repetition of specifying both the /// field name and the binding name if both identifiers are the same. NON_SHORTHAND_FIELD_PATTERNS, Warn, "using `Struct { x: x }` instead of `Struct { x }` in a pattern" } declare_lint_pass!(NonShorthandFieldPatterns => [NON_SHORTHAND_FIELD_PATTERNS]); impl<'tcx> LateLintPass<'tcx> for NonShorthandFieldPatterns { fn check_pat(&mut self, cx: &LateContext<'_>, pat: &hir::Pat<'_>) { if let PatKind::Struct(ref qpath, field_pats, _) = pat.kind { let variant = cx .typeck_results() .pat_ty(pat) .ty_adt_def() .expect("struct pattern type is not an ADT") .variant_of_res(cx.qpath_res(qpath, pat.hir_id)); for fieldpat in field_pats { if fieldpat.is_shorthand { continue; } if fieldpat.span.from_expansion() { // Don't lint if this is a macro expansion: macro authors // shouldn't have to worry about this kind of style issue // (Issue #49588) continue; } if let PatKind::Binding(binding_annot, _, ident, None) = fieldpat.pat.kind { if cx.tcx.find_field_index(ident, &variant) == Some(cx.tcx.field_index(fieldpat.hir_id, cx.typeck_results())) { cx.struct_span_lint(NON_SHORTHAND_FIELD_PATTERNS, fieldpat.span, |lint| { let mut err = lint .build(&format!("the `{}:` in this pattern is redundant", ident)); let binding = match binding_annot { hir::BindingAnnotation::Unannotated => None, hir::BindingAnnotation::Mutable => Some("mut"), hir::BindingAnnotation::Ref => Some("ref"), hir::BindingAnnotation::RefMut => Some("ref mut"), }; let ident = if let Some(binding) = binding { format!("{} {}", binding, ident) } else { ident.to_string() }; err.span_suggestion( fieldpat.span, "use shorthand field pattern", ident, Applicability::MachineApplicable, ); err.emit(); }); } } } } } } declare_lint! { /// The `unsafe_code` lint catches usage of `unsafe` code. /// /// ### Example /// /// ```rust,compile_fail /// #![deny(unsafe_code)] /// fn main() { /// unsafe { /// /// } /// } /// ``` /// /// {{produces}} /// /// ### Explanation /// /// This lint is intended to restrict the usage of `unsafe`, which can be /// difficult to use correctly. UNSAFE_CODE, Allow, "usage of `unsafe` code" } declare_lint_pass!(UnsafeCode => [UNSAFE_CODE]); impl UnsafeCode { fn report_unsafe( &self, cx: &EarlyContext<'_>, span: Span, decorate: impl for<'a> FnOnce(LintDiagnosticBuilder<'a>), ) { // This comes from a macro that has `#[allow_internal_unsafe]`. if span.allows_unsafe() { return; } cx.struct_span_lint(UNSAFE_CODE, span, decorate); } fn report_overriden_symbol_name(&self, cx: &EarlyContext<'_>, span: Span, msg: &str) { self.report_unsafe(cx, span, |lint| { lint.build(msg) .note( "the linker's behavior with multiple libraries exporting duplicate symbol \ names is undefined and Rust cannot provide guarantees when you manually \ override them", ) .emit(); }) } } impl EarlyLintPass for UnsafeCode { fn check_attribute(&mut self, cx: &EarlyContext<'_>, attr: &ast::Attribute) { if cx.sess().check_name(attr, sym::allow_internal_unsafe) { self.report_unsafe(cx, attr.span, |lint| { lint.build( "`allow_internal_unsafe` allows defining \ macros using unsafe without triggering \ the `unsafe_code` lint at their call site", ) .emit() }); } } fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) { if let ast::ExprKind::Block(ref blk, _) = e.kind { // Don't warn about generated blocks; that'll just pollute the output. if blk.rules == ast::BlockCheckMode::Unsafe(ast::UserProvided) { self.report_unsafe(cx, blk.span, |lint| { lint.build("usage of an `unsafe` block").emit() }); } } } fn check_item(&mut self, cx: &EarlyContext<'_>, it: &ast::Item) { match it.kind { ast::ItemKind::Trait(box ast::TraitKind(_, ast::Unsafe::Yes(_), ..)) => self .report_unsafe(cx, it.span, |lint| { lint.build("declaration of an `unsafe` trait").emit() }), ast::ItemKind::Impl(box ast::ImplKind { unsafety: ast::Unsafe::Yes(_), .. }) => self .report_unsafe(cx, it.span, |lint| { lint.build("implementation of an `unsafe` trait").emit() }), ast::ItemKind::Fn(..) => { if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::no_mangle) { self.report_overriden_symbol_name( cx, attr.span, "declaration of a `no_mangle` function", ); } if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::export_name) { self.report_overriden_symbol_name( cx, attr.span, "declaration of a function with `export_name`", ); } } ast::ItemKind::Static(..) => { if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::no_mangle) { self.report_overriden_symbol_name( cx, attr.span, "declaration of a `no_mangle` static", ); } if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::export_name) { self.report_overriden_symbol_name( cx, attr.span, "declaration of a static with `export_name`", ); } } _ => {} } } fn check_fn(&mut self, cx: &EarlyContext<'_>, fk: FnKind<'_>, span: Span, _: ast::NodeId) { if let FnKind::Fn( ctxt, _, ast::FnSig { header: ast::FnHeader { unsafety: ast::Unsafe::Yes(_), .. }, .. }, _, body, ) = fk { let msg = match ctxt { FnCtxt::Foreign => return, FnCtxt::Free => "declaration of an `unsafe` function", FnCtxt::Assoc(_) if body.is_none() => "declaration of an `unsafe` method", FnCtxt::Assoc(_) => "implementation of an `unsafe` method", }; self.report_unsafe(cx, span, |lint| lint.build(msg).emit()); } } } declare_lint! { /// The `missing_docs` lint detects missing documentation for public items. /// /// ### Example /// /// ```rust,compile_fail /// #![deny(missing_docs)] /// pub fn foo() {} /// ``` /// /// {{produces}} /// /// ### Explanation /// /// This lint is intended to ensure that a library is well-documented. /// Items without documentation can be difficult for users to understand /// how to use properly. /// /// This lint is "allow" by default because it can be noisy, and not all /// projects may want to enforce everything to be documented. pub MISSING_DOCS, Allow, "detects missing documentation for public members", report_in_external_macro } pub struct MissingDoc { /// Stack of whether `#[doc(hidden)]` is set at each level which has lint attributes. doc_hidden_stack: Vec, /// Private traits or trait items that leaked through. Don't check their methods. private_traits: FxHashSet, } impl_lint_pass!(MissingDoc => [MISSING_DOCS]); fn has_doc(sess: &Session, attr: &ast::Attribute) -> bool { if attr.is_doc_comment() { return true; } if !sess.check_name(attr, sym::doc) { return false; } if attr.is_value_str() { return true; } if let Some(list) = attr.meta_item_list() { for meta in list { if meta.has_name(sym::include) || meta.has_name(sym::hidden) { return true; } } } false } impl MissingDoc { pub fn new() -> MissingDoc { MissingDoc { doc_hidden_stack: vec![false], private_traits: FxHashSet::default() } } fn doc_hidden(&self) -> bool { *self.doc_hidden_stack.last().expect("empty doc_hidden_stack") } fn check_missing_docs_attrs( &self, cx: &LateContext<'_>, id: Option, attrs: &[ast::Attribute], sp: Span, article: &'static str, desc: &'static str, ) { // If we're building a test harness, then warning about // documentation is probably not really relevant right now. if cx.sess().opts.test { return; } // `#[doc(hidden)]` disables missing_docs check. if self.doc_hidden() { return; } // Only check publicly-visible items, using the result from the privacy pass. // It's an option so the crate root can also use this function (it doesn't // have a `NodeId`). if let Some(id) = id { if !cx.access_levels.is_exported(id) { return; } } let has_doc = attrs.iter().any(|a| has_doc(cx.sess(), a)); if !has_doc { cx.struct_span_lint( MISSING_DOCS, cx.tcx.sess.source_map().guess_head_span(sp), |lint| { lint.build(&format!("missing documentation for {} {}", article, desc)).emit() }, ); } } } impl<'tcx> LateLintPass<'tcx> for MissingDoc { fn enter_lint_attrs(&mut self, cx: &LateContext<'_>, attrs: &[ast::Attribute]) { let doc_hidden = self.doc_hidden() || attrs.iter().any(|attr| { cx.sess().check_name(attr, sym::doc) && match attr.meta_item_list() { None => false, Some(l) => attr::list_contains_name(&l, sym::hidden), } }); self.doc_hidden_stack.push(doc_hidden); } fn exit_lint_attrs(&mut self, _: &LateContext<'_>, _attrs: &[ast::Attribute]) { self.doc_hidden_stack.pop().expect("empty doc_hidden_stack"); } fn check_crate(&mut self, cx: &LateContext<'_>, krate: &hir::Crate<'_>) { self.check_missing_docs_attrs(cx, None, &krate.item.attrs, krate.item.span, "the", "crate"); for macro_def in krate.exported_macros { let has_doc = macro_def.attrs.iter().any(|a| has_doc(cx.sess(), a)); if !has_doc { cx.struct_span_lint( MISSING_DOCS, cx.tcx.sess.source_map().guess_head_span(macro_def.span), |lint| lint.build("missing documentation for macro").emit(), ); } } } fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) { match it.kind { hir::ItemKind::Trait(.., trait_item_refs) => { // Issue #11592: traits are always considered exported, even when private. if let hir::VisibilityKind::Inherited = it.vis.node { self.private_traits.insert(it.hir_id()); for trait_item_ref in trait_item_refs { self.private_traits.insert(trait_item_ref.id.hir_id()); } return; } } hir::ItemKind::Impl(hir::Impl { of_trait: Some(ref trait_ref), items, .. }) => { // If the trait is private, add the impl items to `private_traits` so they don't get // reported for missing docs. let real_trait = trait_ref.path.res.def_id(); if let Some(def_id) = real_trait.as_local() { let hir_id = cx.tcx.hir().local_def_id_to_hir_id(def_id); if let Some(Node::Item(item)) = cx.tcx.hir().find(hir_id) { if let hir::VisibilityKind::Inherited = item.vis.node { for impl_item_ref in items { self.private_traits.insert(impl_item_ref.id.hir_id()); } } } } return; } hir::ItemKind::TyAlias(..) | hir::ItemKind::Fn(..) | hir::ItemKind::Mod(..) | hir::ItemKind::Enum(..) | hir::ItemKind::Struct(..) | hir::ItemKind::Union(..) | hir::ItemKind::Const(..) | hir::ItemKind::Static(..) => {} _ => return, }; let (article, desc) = cx.tcx.article_and_description(it.def_id.to_def_id()); self.check_missing_docs_attrs(cx, Some(it.hir_id()), &it.attrs, it.span, article, desc); } fn check_trait_item(&mut self, cx: &LateContext<'_>, trait_item: &hir::TraitItem<'_>) { if self.private_traits.contains(&trait_item.hir_id()) { return; } let (article, desc) = cx.tcx.article_and_description(trait_item.def_id.to_def_id()); self.check_missing_docs_attrs( cx, Some(trait_item.hir_id()), &trait_item.attrs, trait_item.span, article, desc, ); } fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) { // If the method is an impl for a trait, don't doc. if method_context(cx, impl_item.hir_id()) == MethodLateContext::TraitImpl { return; } let (article, desc) = cx.tcx.article_and_description(impl_item.def_id.to_def_id()); self.check_missing_docs_attrs( cx, Some(impl_item.hir_id()), &impl_item.attrs, impl_item.span, article, desc, ); } fn check_foreign_item(&mut self, cx: &LateContext<'_>, foreign_item: &hir::ForeignItem<'_>) { let (article, desc) = cx.tcx.article_and_description(foreign_item.def_id.to_def_id()); self.check_missing_docs_attrs( cx, Some(foreign_item.hir_id()), &foreign_item.attrs, foreign_item.span, article, desc, ); } fn check_struct_field(&mut self, cx: &LateContext<'_>, sf: &hir::StructField<'_>) { if !sf.is_positional() { self.check_missing_docs_attrs( cx, Some(sf.hir_id), &sf.attrs, sf.span, "a", "struct field", ) } } fn check_variant(&mut self, cx: &LateContext<'_>, v: &hir::Variant<'_>) { self.check_missing_docs_attrs(cx, Some(v.id), &v.attrs, v.span, "a", "variant"); } } declare_lint! { /// The `missing_copy_implementations` lint detects potentially-forgotten /// implementations of [`Copy`]. /// /// [`Copy`]: https://doc.rust-lang.org/std/marker/trait.Copy.html /// /// ### Example /// /// ```rust,compile_fail /// #![deny(missing_copy_implementations)] /// pub struct Foo { /// pub field: i32 /// } /// # fn main() {} /// ``` /// /// {{produces}} /// /// ### Explanation /// /// Historically (before 1.0), types were automatically marked as `Copy` /// if possible. This was changed so that it required an explicit opt-in /// by implementing the `Copy` trait. As part of this change, a lint was /// added to alert if a copyable type was not marked `Copy`. /// /// This lint is "allow" by default because this code isn't bad; it is /// common to write newtypes like this specifically so that a `Copy` type /// is no longer `Copy`. `Copy` types can result in unintended copies of /// large data which can impact performance. pub MISSING_COPY_IMPLEMENTATIONS, Allow, "detects potentially-forgotten implementations of `Copy`" } declare_lint_pass!(MissingCopyImplementations => [MISSING_COPY_IMPLEMENTATIONS]); impl<'tcx> LateLintPass<'tcx> for MissingCopyImplementations { fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) { if !cx.access_levels.is_reachable(item.hir_id()) { return; } let (def, ty) = match item.kind { hir::ItemKind::Struct(_, ref ast_generics) => { if !ast_generics.params.is_empty() { return; } let def = cx.tcx.adt_def(item.def_id); (def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[]))) } hir::ItemKind::Union(_, ref ast_generics) => { if !ast_generics.params.is_empty() { return; } let def = cx.tcx.adt_def(item.def_id); (def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[]))) } hir::ItemKind::Enum(_, ref ast_generics) => { if !ast_generics.params.is_empty() { return; } let def = cx.tcx.adt_def(item.def_id); (def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[]))) } _ => return, }; if def.has_dtor(cx.tcx) { return; } let param_env = ty::ParamEnv::empty(); if ty.is_copy_modulo_regions(cx.tcx.at(item.span), param_env) { return; } if can_type_implement_copy(cx.tcx, param_env, ty).is_ok() { cx.struct_span_lint(MISSING_COPY_IMPLEMENTATIONS, item.span, |lint| { lint.build( "type could implement `Copy`; consider adding `impl \ Copy`", ) .emit() }) } } } declare_lint! { /// The `missing_debug_implementations` lint detects missing /// implementations of [`fmt::Debug`]. /// /// [`fmt::Debug`]: https://doc.rust-lang.org/std/fmt/trait.Debug.html /// /// ### Example /// /// ```rust,compile_fail /// #![deny(missing_debug_implementations)] /// pub struct Foo; /// # fn main() {} /// ``` /// /// {{produces}} /// /// ### Explanation /// /// Having a `Debug` implementation on all types can assist with /// debugging, as it provides a convenient way to format and display a /// value. Using the `#[derive(Debug)]` attribute will automatically /// generate a typical implementation, or a custom implementation can be /// added by manually implementing the `Debug` trait. /// /// This lint is "allow" by default because adding `Debug` to all types can /// have a negative impact on compile time and code size. It also requires /// boilerplate to be added to every type, which can be an impediment. MISSING_DEBUG_IMPLEMENTATIONS, Allow, "detects missing implementations of Debug" } #[derive(Default)] pub struct MissingDebugImplementations { impling_types: Option, } impl_lint_pass!(MissingDebugImplementations => [MISSING_DEBUG_IMPLEMENTATIONS]); impl<'tcx> LateLintPass<'tcx> for MissingDebugImplementations { fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) { if !cx.access_levels.is_reachable(item.hir_id()) { return; } match item.kind { hir::ItemKind::Struct(..) | hir::ItemKind::Union(..) | hir::ItemKind::Enum(..) => {} _ => return, } let debug = match cx.tcx.get_diagnostic_item(sym::debug_trait) { Some(debug) => debug, None => return, }; if self.impling_types.is_none() { let mut impls = LocalDefIdSet::default(); cx.tcx.for_each_impl(debug, |d| { if let Some(ty_def) = cx.tcx.type_of(d).ty_adt_def() { if let Some(def_id) = ty_def.did.as_local() { impls.insert(def_id); } } }); self.impling_types = Some(impls); debug!("{:?}", self.impling_types); } if !self.impling_types.as_ref().unwrap().contains(&item.def_id) { cx.struct_span_lint(MISSING_DEBUG_IMPLEMENTATIONS, item.span, |lint| { lint.build(&format!( "type does not implement `{}`; consider adding `#[derive(Debug)]` \ or a manual implementation", cx.tcx.def_path_str(debug) )) .emit() }); } } } declare_lint! { /// The `anonymous_parameters` lint detects anonymous parameters in trait /// definitions. /// /// ### Example /// /// ```rust,edition2015,compile_fail /// #![deny(anonymous_parameters)] /// // edition 2015 /// pub trait Foo { /// fn foo(usize); /// } /// fn main() {} /// ``` /// /// {{produces}} /// /// ### Explanation /// /// This syntax is mostly a historical accident, and can be worked around /// quite easily by adding an `_` pattern or a descriptive identifier: /// /// ```rust /// trait Foo { /// fn foo(_: usize); /// } /// ``` /// /// This syntax is now a hard error in the 2018 edition. In the 2015 /// edition, this lint is "allow" by default, because the old code is /// still valid, and warning for all old code can be noisy. This lint /// enables the [`cargo fix`] tool with the `--edition` flag to /// automatically transition old code from the 2015 edition to 2018. The /// tool will switch this lint to "warn" and will automatically apply the /// suggested fix from the compiler (which is to add `_` to each /// parameter). This provides a completely automated way to update old /// code for a new edition. See [issue #41686] for more details. /// /// [issue #41686]: https://github.com/rust-lang/rust/issues/41686 /// [`cargo fix`]: https://doc.rust-lang.org/cargo/commands/cargo-fix.html pub ANONYMOUS_PARAMETERS, Allow, "detects anonymous parameters", @future_incompatible = FutureIncompatibleInfo { reference: "issue #41686 ", edition: Some(Edition::Edition2018), }; } declare_lint_pass!( /// Checks for use of anonymous parameters (RFC 1685). AnonymousParameters => [ANONYMOUS_PARAMETERS] ); impl EarlyLintPass for AnonymousParameters { fn check_trait_item(&mut self, cx: &EarlyContext<'_>, it: &ast::AssocItem) { if let ast::AssocItemKind::Fn(box FnKind(_, ref sig, _, _)) = it.kind { for arg in sig.decl.inputs.iter() { if let ast::PatKind::Ident(_, ident, None) = arg.pat.kind { if ident.name == kw::Empty { cx.struct_span_lint(ANONYMOUS_PARAMETERS, arg.pat.span, |lint| { let ty_snip = cx.sess.source_map().span_to_snippet(arg.ty.span); let (ty_snip, appl) = if let Ok(ref snip) = ty_snip { (snip.as_str(), Applicability::MachineApplicable) } else { ("", Applicability::HasPlaceholders) }; lint.build( "anonymous parameters are deprecated and will be \ removed in the next edition.", ) .span_suggestion( arg.pat.span, "try naming the parameter or explicitly \ ignoring it", format!("_: {}", ty_snip), appl, ) .emit(); }) } } } } } } /// Check for use of attributes which have been deprecated. #[derive(Clone)] pub struct DeprecatedAttr { // This is not free to compute, so we want to keep it around, rather than // compute it for every attribute. depr_attrs: Vec<&'static (Symbol, AttributeType, AttributeTemplate, AttributeGate)>, } impl_lint_pass!(DeprecatedAttr => []); impl DeprecatedAttr { pub fn new() -> DeprecatedAttr { DeprecatedAttr { depr_attrs: deprecated_attributes() } } } fn lint_deprecated_attr( cx: &EarlyContext<'_>, attr: &ast::Attribute, msg: &str, suggestion: Option<&str>, ) { cx.struct_span_lint(DEPRECATED, attr.span, |lint| { lint.build(msg) .span_suggestion_short( attr.span, suggestion.unwrap_or("remove this attribute"), String::new(), Applicability::MachineApplicable, ) .emit(); }) } impl EarlyLintPass for DeprecatedAttr { fn check_attribute(&mut self, cx: &EarlyContext<'_>, attr: &ast::Attribute) { for &&(n, _, _, ref g) in &self.depr_attrs { if attr.ident().map(|ident| ident.name) == Some(n) { if let &AttributeGate::Gated( Stability::Deprecated(link, suggestion), name, reason, _, ) = g { let msg = format!("use of deprecated attribute `{}`: {}. See {}", name, reason, link); lint_deprecated_attr(cx, attr, &msg, suggestion); } return; } } if cx.sess().check_name(attr, sym::no_start) || cx.sess().check_name(attr, sym::crate_id) { let path_str = pprust::path_to_string(&attr.get_normal_item().path); let msg = format!("use of deprecated attribute `{}`: no longer used.", path_str); lint_deprecated_attr(cx, attr, &msg, None); } } } fn warn_if_doc(cx: &EarlyContext<'_>, node_span: Span, node_kind: &str, attrs: &[ast::Attribute]) { let mut attrs = attrs.iter().peekable(); // Accumulate a single span for sugared doc comments. let mut sugared_span: Option = None; while let Some(attr) = attrs.next() { if attr.is_doc_comment() { sugared_span = Some(sugared_span.map_or(attr.span, |span| span.with_hi(attr.span.hi()))); } if attrs.peek().map(|next_attr| next_attr.is_doc_comment()).unwrap_or_default() { continue; } let span = sugared_span.take().unwrap_or(attr.span); if attr.is_doc_comment() || cx.sess().check_name(attr, sym::doc) { cx.struct_span_lint(UNUSED_DOC_COMMENTS, span, |lint| { let mut err = lint.build("unused doc comment"); err.span_label( node_span, format!("rustdoc does not generate documentation for {}", node_kind), ); err.emit(); }); } } } impl EarlyLintPass for UnusedDocComment { fn check_stmt(&mut self, cx: &EarlyContext<'_>, stmt: &ast::Stmt) { let kind = match stmt.kind { ast::StmtKind::Local(..) => "statements", // Disabled pending discussion in #78306 ast::StmtKind::Item(..) => return, // expressions will be reported by `check_expr`. ast::StmtKind::Empty | ast::StmtKind::Semi(_) | ast::StmtKind::Expr(_) | ast::StmtKind::MacCall(_) => return, }; warn_if_doc(cx, stmt.span, kind, stmt.kind.attrs()); } fn check_arm(&mut self, cx: &EarlyContext<'_>, arm: &ast::Arm) { let arm_span = arm.pat.span.with_hi(arm.body.span.hi()); warn_if_doc(cx, arm_span, "match arms", &arm.attrs); } fn check_expr(&mut self, cx: &EarlyContext<'_>, expr: &ast::Expr) { warn_if_doc(cx, expr.span, "expressions", &expr.attrs); } } declare_lint! { /// The `no_mangle_const_items` lint detects any `const` items with the /// [`no_mangle` attribute]. /// /// [`no_mangle` attribute]: https://doc.rust-lang.org/reference/abi.html#the-no_mangle-attribute /// /// ### Example /// /// ```rust,compile_fail /// #[no_mangle] /// const FOO: i32 = 5; /// ``` /// /// {{produces}} /// /// ### Explanation /// /// Constants do not have their symbols exported, and therefore, this /// probably means you meant to use a [`static`], not a [`const`]. /// /// [`static`]: https://doc.rust-lang.org/reference/items/static-items.html /// [`const`]: https://doc.rust-lang.org/reference/items/constant-items.html NO_MANGLE_CONST_ITEMS, Deny, "const items will not have their symbols exported" } declare_lint! { /// The `no_mangle_generic_items` lint detects generic items that must be /// mangled. /// /// ### Example /// /// ```rust /// #[no_mangle] /// fn foo(t: T) { /// /// } /// ``` /// /// {{produces}} /// /// ### Explanation /// /// An function with generics must have its symbol mangled to accommodate /// the generic parameter. The [`no_mangle` attribute] has no effect in /// this situation, and should be removed. /// /// [`no_mangle` attribute]: https://doc.rust-lang.org/reference/abi.html#the-no_mangle-attribute NO_MANGLE_GENERIC_ITEMS, Warn, "generic items must be mangled" } declare_lint_pass!(InvalidNoMangleItems => [NO_MANGLE_CONST_ITEMS, NO_MANGLE_GENERIC_ITEMS]); impl<'tcx> LateLintPass<'tcx> for InvalidNoMangleItems { fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) { match it.kind { hir::ItemKind::Fn(.., ref generics, _) => { if let Some(no_mangle_attr) = cx.sess().find_by_name(&it.attrs, sym::no_mangle) { for param in generics.params { match param.kind { GenericParamKind::Lifetime { .. } => {} GenericParamKind::Type { .. } | GenericParamKind::Const { .. } => { cx.struct_span_lint(NO_MANGLE_GENERIC_ITEMS, it.span, |lint| { lint.build( "functions generic over types or consts must be mangled", ) .span_suggestion_short( no_mangle_attr.span, "remove this attribute", String::new(), // Use of `#[no_mangle]` suggests FFI intent; correct // fix may be to monomorphize source by hand Applicability::MaybeIncorrect, ) .emit(); }); break; } } } } } hir::ItemKind::Const(..) => { if cx.sess().contains_name(&it.attrs, sym::no_mangle) { // Const items do not refer to a particular location in memory, and therefore // don't have anything to attach a symbol to cx.struct_span_lint(NO_MANGLE_CONST_ITEMS, it.span, |lint| { let msg = "const items should never be `#[no_mangle]`"; let mut err = lint.build(msg); // account for "pub const" (#45562) let start = cx .tcx .sess .source_map() .span_to_snippet(it.span) .map(|snippet| snippet.find("const").unwrap_or(0)) .unwrap_or(0) as u32; // `const` is 5 chars let const_span = it.span.with_hi(BytePos(it.span.lo().0 + start + 5)); err.span_suggestion( const_span, "try a static value", "pub static".to_owned(), Applicability::MachineApplicable, ); err.emit(); }); } } _ => {} } } } declare_lint! { /// The `mutable_transmutes` lint catches transmuting from `&T` to `&mut /// T` because it is [undefined behavior]. /// /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html /// /// ### Example /// /// ```rust,compile_fail /// unsafe { /// let y = std::mem::transmute::<&i32, &mut i32>(&5); /// } /// ``` /// /// {{produces}} /// /// ### Explanation /// /// Certain assumptions are made about aliasing of data, and this transmute /// violates those assumptions. Consider using [`UnsafeCell`] instead. /// /// [`UnsafeCell`]: https://doc.rust-lang.org/std/cell/struct.UnsafeCell.html MUTABLE_TRANSMUTES, Deny, "mutating transmuted &mut T from &T may cause undefined behavior" } declare_lint_pass!(MutableTransmutes => [MUTABLE_TRANSMUTES]); impl<'tcx> LateLintPass<'tcx> for MutableTransmutes { fn check_expr(&mut self, cx: &LateContext<'_>, expr: &hir::Expr<'_>) { use rustc_target::spec::abi::Abi::RustIntrinsic; if let Some((&ty::Ref(_, _, from_mt), &ty::Ref(_, _, to_mt))) = get_transmute_from_to(cx, expr).map(|(ty1, ty2)| (ty1.kind(), ty2.kind())) { if to_mt == hir::Mutability::Mut && from_mt == hir::Mutability::Not { let msg = "mutating transmuted &mut T from &T may cause undefined behavior, \ consider instead using an UnsafeCell"; cx.struct_span_lint(MUTABLE_TRANSMUTES, expr.span, |lint| lint.build(msg).emit()); } } fn get_transmute_from_to<'tcx>( cx: &LateContext<'tcx>, expr: &hir::Expr<'_>, ) -> Option<(Ty<'tcx>, Ty<'tcx>)> { let def = if let hir::ExprKind::Path(ref qpath) = expr.kind { cx.qpath_res(qpath, expr.hir_id) } else { return None; }; if let Res::Def(DefKind::Fn, did) = def { if !def_id_is_transmute(cx, did) { return None; } let sig = cx.typeck_results().node_type(expr.hir_id).fn_sig(cx.tcx); let from = sig.inputs().skip_binder()[0]; let to = sig.output().skip_binder(); return Some((from, to)); } None } fn def_id_is_transmute(cx: &LateContext<'_>, def_id: DefId) -> bool { cx.tcx.fn_sig(def_id).abi() == RustIntrinsic && cx.tcx.item_name(def_id) == sym::transmute } } } declare_lint! { /// The `unstable_features` is deprecated and should no longer be used. UNSTABLE_FEATURES, Allow, "enabling unstable features (deprecated. do not use)" } declare_lint_pass!( /// Forbids using the `#[feature(...)]` attribute UnstableFeatures => [UNSTABLE_FEATURES] ); impl<'tcx> LateLintPass<'tcx> for UnstableFeatures { fn check_attribute(&mut self, cx: &LateContext<'_>, attr: &ast::Attribute) { if cx.sess().check_name(attr, sym::feature) { if let Some(items) = attr.meta_item_list() { for item in items { cx.struct_span_lint(UNSTABLE_FEATURES, item.span(), |lint| { lint.build("unstable feature").emit() }); } } } } } declare_lint! { /// The `unreachable_pub` lint triggers for `pub` items not reachable from /// the crate root. /// /// ### Example /// /// ```rust,compile_fail /// #![deny(unreachable_pub)] /// mod foo { /// pub mod bar { /// /// } /// } /// ``` /// /// {{produces}} /// /// ### Explanation /// /// A bare `pub` visibility may be misleading if the item is not actually /// publicly exported from the crate. The `pub(crate)` visibility is /// recommended to be used instead, which more clearly expresses the intent /// that the item is only visible within its own crate. /// /// This lint is "allow" by default because it will trigger for a large /// amount existing Rust code, and has some false-positives. Eventually it /// is desired for this to become warn-by-default. pub UNREACHABLE_PUB, Allow, "`pub` items not reachable from crate root" } declare_lint_pass!( /// Lint for items marked `pub` that aren't reachable from other crates. UnreachablePub => [UNREACHABLE_PUB] ); impl UnreachablePub { fn perform_lint( &self, cx: &LateContext<'_>, what: &str, id: hir::HirId, vis: &hir::Visibility<'_>, span: Span, exportable: bool, ) { let mut applicability = Applicability::MachineApplicable; match vis.node { hir::VisibilityKind::Public if !cx.access_levels.is_reachable(id) => { if span.from_expansion() { applicability = Applicability::MaybeIncorrect; } let def_span = cx.tcx.sess.source_map().guess_head_span(span); cx.struct_span_lint(UNREACHABLE_PUB, def_span, |lint| { let mut err = lint.build(&format!("unreachable `pub` {}", what)); let replacement = if cx.tcx.features().crate_visibility_modifier { "crate" } else { "pub(crate)" } .to_owned(); err.span_suggestion( vis.span, "consider restricting its visibility", replacement, applicability, ); if exportable { err.help("or consider exporting it for use by other crates"); } err.emit(); }); } _ => {} } } } impl<'tcx> LateLintPass<'tcx> for UnreachablePub { fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) { self.perform_lint(cx, "item", item.hir_id(), &item.vis, item.span, true); } fn check_foreign_item(&mut self, cx: &LateContext<'_>, foreign_item: &hir::ForeignItem<'tcx>) { self.perform_lint( cx, "item", foreign_item.hir_id(), &foreign_item.vis, foreign_item.span, true, ); } fn check_struct_field(&mut self, cx: &LateContext<'_>, field: &hir::StructField<'_>) { self.perform_lint(cx, "field", field.hir_id, &field.vis, field.span, false); } fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) { self.perform_lint(cx, "item", impl_item.hir_id(), &impl_item.vis, impl_item.span, false); } } declare_lint! { /// The `type_alias_bounds` lint detects bounds in type aliases. /// /// ### Example /// /// ```rust /// type SendVec = Vec; /// ``` /// /// {{produces}} /// /// ### Explanation /// /// The trait bounds in a type alias are currently ignored, and should not /// be included to avoid confusion. This was previously allowed /// unintentionally; this may become a hard error in the future. TYPE_ALIAS_BOUNDS, Warn, "bounds in type aliases are not enforced" } declare_lint_pass!( /// Lint for trait and lifetime bounds in type aliases being mostly ignored. /// They are relevant when using associated types, but otherwise neither checked /// at definition site nor enforced at use site. TypeAliasBounds => [TYPE_ALIAS_BOUNDS] ); impl TypeAliasBounds { fn is_type_variable_assoc(qpath: &hir::QPath<'_>) -> bool { match *qpath { hir::QPath::TypeRelative(ref ty, _) => { // If this is a type variable, we found a `T::Assoc`. match ty.kind { hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) => { matches!(path.res, Res::Def(DefKind::TyParam, _)) } _ => false, } } hir::QPath::Resolved(..) | hir::QPath::LangItem(..) => false, } } fn suggest_changing_assoc_types(ty: &hir::Ty<'_>, err: &mut DiagnosticBuilder<'_>) { // Access to associates types should use `::Assoc`, which does not need a // bound. Let's see if this type does that. // We use a HIR visitor to walk the type. use rustc_hir::intravisit::{self, Visitor}; struct WalkAssocTypes<'a, 'db> { err: &'a mut DiagnosticBuilder<'db>, } impl<'a, 'db, 'v> Visitor<'v> for WalkAssocTypes<'a, 'db> { type Map = intravisit::ErasedMap<'v>; fn nested_visit_map(&mut self) -> intravisit::NestedVisitorMap { intravisit::NestedVisitorMap::None } fn visit_qpath(&mut self, qpath: &'v hir::QPath<'v>, id: hir::HirId, span: Span) { if TypeAliasBounds::is_type_variable_assoc(qpath) { self.err.span_help( span, "use fully disambiguated paths (i.e., `::Assoc`) to refer to \ associated types in type aliases", ); } intravisit::walk_qpath(self, qpath, id, span) } } // Let's go for a walk! let mut visitor = WalkAssocTypes { err }; visitor.visit_ty(ty); } } impl<'tcx> LateLintPass<'tcx> for TypeAliasBounds { fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) { let (ty, type_alias_generics) = match item.kind { hir::ItemKind::TyAlias(ref ty, ref generics) => (&*ty, generics), _ => return, }; if let hir::TyKind::OpaqueDef(..) = ty.kind { // Bounds are respected for `type X = impl Trait` return; } let mut suggested_changing_assoc_types = false; // There must not be a where clause if !type_alias_generics.where_clause.predicates.is_empty() { cx.lint( TYPE_ALIAS_BOUNDS, |lint| { let mut err = lint.build("where clauses are not enforced in type aliases"); let spans: Vec<_> = type_alias_generics .where_clause .predicates .iter() .map(|pred| pred.span()) .collect(); err.set_span(spans); err.span_suggestion( type_alias_generics.where_clause.span_for_predicates_or_empty_place(), "the clause will not be checked when the type alias is used, and should be removed", String::new(), Applicability::MachineApplicable, ); if !suggested_changing_assoc_types { TypeAliasBounds::suggest_changing_assoc_types(ty, &mut err); suggested_changing_assoc_types = true; } err.emit(); }, ); } // The parameters must not have bounds for param in type_alias_generics.params.iter() { let spans: Vec<_> = param.bounds.iter().map(|b| b.span()).collect(); let suggestion = spans .iter() .map(|sp| { let start = param.span.between(*sp); // Include the `:` in `T: Bound`. (start.to(*sp), String::new()) }) .collect(); if !spans.is_empty() { cx.struct_span_lint(TYPE_ALIAS_BOUNDS, spans, |lint| { let mut err = lint.build("bounds on generic parameters are not enforced in type aliases"); let msg = "the bound will not be checked when the type alias is used, \ and should be removed"; err.multipart_suggestion(&msg, suggestion, Applicability::MachineApplicable); if !suggested_changing_assoc_types { TypeAliasBounds::suggest_changing_assoc_types(ty, &mut err); suggested_changing_assoc_types = true; } err.emit(); }); } } } } declare_lint_pass!( /// Lint constants that are erroneous. /// Without this lint, we might not get any diagnostic if the constant is /// unused within this crate, even though downstream crates can't use it /// without producing an error. UnusedBrokenConst => [] ); impl<'tcx> LateLintPass<'tcx> for UnusedBrokenConst { fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) { match it.kind { hir::ItemKind::Const(_, body_id) => { let def_id = cx.tcx.hir().body_owner_def_id(body_id).to_def_id(); // trigger the query once for all constants since that will already report the errors // FIXME: Use ensure here let _ = cx.tcx.const_eval_poly(def_id); } hir::ItemKind::Static(_, _, body_id) => { let def_id = cx.tcx.hir().body_owner_def_id(body_id).to_def_id(); // FIXME: Use ensure here let _ = cx.tcx.eval_static_initializer(def_id); } _ => {} } } } declare_lint! { /// The `trivial_bounds` lint detects trait bounds that don't depend on /// any type parameters. /// /// ### Example /// /// ```rust /// #![feature(trivial_bounds)] /// pub struct A where i32: Copy; /// ``` /// /// {{produces}} /// /// ### Explanation /// /// Usually you would not write a trait bound that you know is always /// true, or never true. However, when using macros, the macro may not /// know whether or not the constraint would hold or not at the time when /// generating the code. Currently, the compiler does not alert you if the /// constraint is always true, and generates an error if it is never true. /// The `trivial_bounds` feature changes this to be a warning in both /// cases, giving macros more freedom and flexibility to generate code, /// while still providing a signal when writing non-macro code that /// something is amiss. /// /// See [RFC 2056] for more details. This feature is currently only /// available on the nightly channel, see [tracking issue #48214]. /// /// [RFC 2056]: https://github.com/rust-lang/rfcs/blob/master/text/2056-allow-trivial-where-clause-constraints.md /// [tracking issue #48214]: https://github.com/rust-lang/rust/issues/48214 TRIVIAL_BOUNDS, Warn, "these bounds don't depend on an type parameters" } declare_lint_pass!( /// Lint for trait and lifetime bounds that don't depend on type parameters /// which either do nothing, or stop the item from being used. TrivialConstraints => [TRIVIAL_BOUNDS] ); impl<'tcx> LateLintPass<'tcx> for TrivialConstraints { fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'tcx>) { use rustc_middle::ty::fold::TypeFoldable; use rustc_middle::ty::PredicateKind::*; if cx.tcx.features().trivial_bounds { let predicates = cx.tcx.predicates_of(item.def_id); for &(predicate, span) in predicates.predicates { let predicate_kind_name = match predicate.kind().skip_binder() { Trait(..) => "Trait", TypeOutlives(..) | RegionOutlives(..) => "Lifetime", // Ignore projections, as they can only be global // if the trait bound is global Projection(..) | // Ignore bounds that a user can't type WellFormed(..) | ObjectSafe(..) | ClosureKind(..) | Subtype(..) | ConstEvaluatable(..) | ConstEquate(..) | TypeWellFormedFromEnv(..) => continue, }; if predicate.is_global() { cx.struct_span_lint(TRIVIAL_BOUNDS, span, |lint| { lint.build(&format!( "{} bound {} does not depend on any type \ or lifetime parameters", predicate_kind_name, predicate )) .emit() }); } } } } } declare_lint_pass!( /// Does nothing as a lint pass, but registers some `Lint`s /// which are used by other parts of the compiler. SoftLints => [ WHILE_TRUE, BOX_POINTERS, NON_SHORTHAND_FIELD_PATTERNS, UNSAFE_CODE, MISSING_DOCS, MISSING_COPY_IMPLEMENTATIONS, MISSING_DEBUG_IMPLEMENTATIONS, ANONYMOUS_PARAMETERS, UNUSED_DOC_COMMENTS, NO_MANGLE_CONST_ITEMS, NO_MANGLE_GENERIC_ITEMS, MUTABLE_TRANSMUTES, UNSTABLE_FEATURES, UNREACHABLE_PUB, TYPE_ALIAS_BOUNDS, TRIVIAL_BOUNDS ] ); declare_lint! { /// The `ellipsis_inclusive_range_patterns` lint detects the [`...` range /// pattern], which is deprecated. /// /// [`...` range pattern]: https://doc.rust-lang.org/reference/patterns.html#range-patterns /// /// ### Example /// /// ```rust /// let x = 123; /// match x { /// 0...100 => {} /// _ => {} /// } /// ``` /// /// {{produces}} /// /// ### Explanation /// /// The `...` range pattern syntax was changed to `..=` to avoid potential /// confusion with the [`..` range expression]. Use the new form instead. /// /// [`..` range expression]: https://doc.rust-lang.org/reference/expressions/range-expr.html pub ELLIPSIS_INCLUSIVE_RANGE_PATTERNS, Warn, "`...` range patterns are deprecated" } #[derive(Default)] pub struct EllipsisInclusiveRangePatterns { /// If `Some(_)`, suppress all subsequent pattern /// warnings for better diagnostics. node_id: Option, } impl_lint_pass!(EllipsisInclusiveRangePatterns => [ELLIPSIS_INCLUSIVE_RANGE_PATTERNS]); impl EarlyLintPass for EllipsisInclusiveRangePatterns { fn check_pat(&mut self, cx: &EarlyContext<'_>, pat: &ast::Pat) { if self.node_id.is_some() { // Don't recursively warn about patterns inside range endpoints. return; } use self::ast::{PatKind, RangeSyntax::DotDotDot}; /// If `pat` is a `...` pattern, return the start and end of the range, as well as the span /// corresponding to the ellipsis. fn matches_ellipsis_pat(pat: &ast::Pat) -> Option<(Option<&Expr>, &Expr, Span)> { match &pat.kind { PatKind::Range( a, Some(b), Spanned { span, node: RangeEnd::Included(DotDotDot) }, ) => Some((a.as_deref(), b, *span)), _ => None, } } let (parenthesise, endpoints) = match &pat.kind { PatKind::Ref(subpat, _) => (true, matches_ellipsis_pat(&subpat)), _ => (false, matches_ellipsis_pat(pat)), }; if let Some((start, end, join)) = endpoints { let msg = "`...` range patterns are deprecated"; let suggestion = "use `..=` for an inclusive range"; if parenthesise { self.node_id = Some(pat.id); cx.struct_span_lint(ELLIPSIS_INCLUSIVE_RANGE_PATTERNS, pat.span, |lint| { let end = expr_to_string(&end); let replace = match start { Some(start) => format!("&({}..={})", expr_to_string(&start), end), None => format!("&(..={})", end), }; lint.build(msg) .span_suggestion( pat.span, suggestion, replace, Applicability::MachineApplicable, ) .emit(); }); } else { cx.struct_span_lint(ELLIPSIS_INCLUSIVE_RANGE_PATTERNS, join, |lint| { lint.build(msg) .span_suggestion_short( join, suggestion, "..=".to_owned(), Applicability::MachineApplicable, ) .emit(); }); }; } } fn check_pat_post(&mut self, _cx: &EarlyContext<'_>, pat: &ast::Pat) { if let Some(node_id) = self.node_id { if pat.id == node_id { self.node_id = None } } } } declare_lint! { /// The `unnameable_test_items` lint detects [`#[test]`][test] functions /// that are not able to be run by the test harness because they are in a /// position where they are not nameable. /// /// [test]: https://doc.rust-lang.org/reference/attributes/testing.html#the-test-attribute /// /// ### Example /// /// ```rust,test /// fn main() { /// #[test] /// fn foo() { /// // This test will not fail because it does not run. /// assert_eq!(1, 2); /// } /// } /// ``` /// /// {{produces}} /// /// ### Explanation /// /// In order for the test harness to run a test, the test function must be /// located in a position where it can be accessed from the crate root. /// This generally means it must be defined in a module, and not anywhere /// else such as inside another function. The compiler previously allowed /// this without an error, so a lint was added as an alert that a test is /// not being used. Whether or not this should be allowed has not yet been /// decided, see [RFC 2471] and [issue #36629]. /// /// [RFC 2471]: https://github.com/rust-lang/rfcs/pull/2471#issuecomment-397414443 /// [issue #36629]: https://github.com/rust-lang/rust/issues/36629 UNNAMEABLE_TEST_ITEMS, Warn, "detects an item that cannot be named being marked as `#[test_case]`", report_in_external_macro } pub struct UnnameableTestItems { boundary: Option, // Id of the item under which things are not nameable items_nameable: bool, } impl_lint_pass!(UnnameableTestItems => [UNNAMEABLE_TEST_ITEMS]); impl UnnameableTestItems { pub fn new() -> Self { Self { boundary: None, items_nameable: true } } } impl<'tcx> LateLintPass<'tcx> for UnnameableTestItems { fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) { if self.items_nameable { if let hir::ItemKind::Mod(..) = it.kind { } else { self.items_nameable = false; self.boundary = Some(it.def_id); } return; } if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::rustc_test_marker) { cx.struct_span_lint(UNNAMEABLE_TEST_ITEMS, attr.span, |lint| { lint.build("cannot test inner items").emit() }); } } fn check_item_post(&mut self, _cx: &LateContext<'_>, it: &hir::Item<'_>) { if !self.items_nameable && self.boundary == Some(it.def_id) { self.items_nameable = true; } } } declare_lint! { /// The `keyword_idents` lint detects edition keywords being used as an /// identifier. /// /// ### Example /// /// ```rust,edition2015,compile_fail /// #![deny(keyword_idents)] /// // edition 2015 /// fn dyn() {} /// ``` /// /// {{produces}} /// /// ### Explanation /// /// Rust [editions] allow the language to evolve without breaking /// backwards compatibility. This lint catches code that uses new keywords /// that are added to the language that are used as identifiers (such as a /// variable name, function name, etc.). If you switch the compiler to a /// new edition without updating the code, then it will fail to compile if /// you are using a new keyword as an identifier. /// /// You can manually change the identifiers to a non-keyword, or use a /// [raw identifier], for example `r#dyn`, to transition to a new edition. /// /// This lint solves the problem automatically. It is "allow" by default /// because the code is perfectly valid in older editions. The [`cargo /// fix`] tool with the `--edition` flag will switch this lint to "warn" /// and automatically apply the suggested fix from the compiler (which is /// to use a raw identifier). This provides a completely automated way to /// update old code for a new edition. /// /// [editions]: https://doc.rust-lang.org/edition-guide/ /// [raw identifier]: https://doc.rust-lang.org/reference/identifiers.html /// [`cargo fix`]: https://doc.rust-lang.org/cargo/commands/cargo-fix.html pub KEYWORD_IDENTS, Allow, "detects edition keywords being used as an identifier", @future_incompatible = FutureIncompatibleInfo { reference: "issue #49716 ", edition: Some(Edition::Edition2018), }; } declare_lint_pass!( /// Check for uses of edition keywords used as an identifier. KeywordIdents => [KEYWORD_IDENTS] ); struct UnderMacro(bool); impl KeywordIdents { fn check_tokens(&mut self, cx: &EarlyContext<'_>, tokens: TokenStream) { for tt in tokens.into_trees() { match tt { // Only report non-raw idents. TokenTree::Token(token) => { if let Some((ident, false)) = token.ident() { self.check_ident_token(cx, UnderMacro(true), ident); } } TokenTree::Delimited(_, _, tts) => self.check_tokens(cx, tts), } } } fn check_ident_token( &mut self, cx: &EarlyContext<'_>, UnderMacro(under_macro): UnderMacro, ident: Ident, ) { let next_edition = match cx.sess.edition() { Edition::Edition2015 => { match ident.name { kw::Async | kw::Await | kw::Try => Edition::Edition2018, // rust-lang/rust#56327: Conservatively do not // attempt to report occurrences of `dyn` within // macro definitions or invocations, because `dyn` // can legitimately occur as a contextual keyword // in 2015 code denoting its 2018 meaning, and we // do not want rustfix to inject bugs into working // code by rewriting such occurrences. // // But if we see `dyn` outside of a macro, we know // its precise role in the parsed AST and thus are // assured this is truly an attempt to use it as // an identifier. kw::Dyn if !under_macro => Edition::Edition2018, _ => return, } } // There are no new keywords yet for the 2018 edition and beyond. _ => return, }; // Don't lint `r#foo`. if cx.sess.parse_sess.raw_identifier_spans.borrow().contains(&ident.span) { return; } cx.struct_span_lint(KEYWORD_IDENTS, ident.span, |lint| { lint.build(&format!("`{}` is a keyword in the {} edition", ident, next_edition)) .span_suggestion( ident.span, "you can use a raw identifier to stay compatible", format!("r#{}", ident), Applicability::MachineApplicable, ) .emit() }); } } impl EarlyLintPass for KeywordIdents { fn check_mac_def(&mut self, cx: &EarlyContext<'_>, mac_def: &ast::MacroDef, _id: ast::NodeId) { self.check_tokens(cx, mac_def.body.inner_tokens()); } fn check_mac(&mut self, cx: &EarlyContext<'_>, mac: &ast::MacCall) { self.check_tokens(cx, mac.args.inner_tokens()); } fn check_ident(&mut self, cx: &EarlyContext<'_>, ident: Ident) { self.check_ident_token(cx, UnderMacro(false), ident); } } declare_lint_pass!(ExplicitOutlivesRequirements => [EXPLICIT_OUTLIVES_REQUIREMENTS]); impl ExplicitOutlivesRequirements { fn lifetimes_outliving_lifetime<'tcx>( inferred_outlives: &'tcx [(ty::Predicate<'tcx>, Span)], index: u32, ) -> Vec> { inferred_outlives .iter() .filter_map(|(pred, _)| match pred.kind().skip_binder() { ty::PredicateKind::RegionOutlives(ty::OutlivesPredicate(a, b)) => match a { ty::ReEarlyBound(ebr) if ebr.index == index => Some(b), _ => None, }, _ => None, }) .collect() } fn lifetimes_outliving_type<'tcx>( inferred_outlives: &'tcx [(ty::Predicate<'tcx>, Span)], index: u32, ) -> Vec> { inferred_outlives .iter() .filter_map(|(pred, _)| match pred.kind().skip_binder() { ty::PredicateKind::TypeOutlives(ty::OutlivesPredicate(a, b)) => { a.is_param(index).then_some(b) } _ => None, }) .collect() } fn collect_outlived_lifetimes<'tcx>( &self, param: &'tcx hir::GenericParam<'tcx>, tcx: TyCtxt<'tcx>, inferred_outlives: &'tcx [(ty::Predicate<'tcx>, Span)], ty_generics: &'tcx ty::Generics, ) -> Vec> { let index = ty_generics.param_def_id_to_index[&tcx.hir().local_def_id(param.hir_id).to_def_id()]; match param.kind { hir::GenericParamKind::Lifetime { .. } => { Self::lifetimes_outliving_lifetime(inferred_outlives, index) } hir::GenericParamKind::Type { .. } => { Self::lifetimes_outliving_type(inferred_outlives, index) } hir::GenericParamKind::Const { .. } => Vec::new(), } } fn collect_outlives_bound_spans<'tcx>( &self, tcx: TyCtxt<'tcx>, bounds: &hir::GenericBounds<'_>, inferred_outlives: &[ty::Region<'tcx>], infer_static: bool, ) -> Vec<(usize, Span)> { use rustc_middle::middle::resolve_lifetime::Region; bounds .iter() .enumerate() .filter_map(|(i, bound)| { if let hir::GenericBound::Outlives(lifetime) = bound { let is_inferred = match tcx.named_region(lifetime.hir_id) { Some(Region::Static) if infer_static => { inferred_outlives.iter().any(|r| matches!(r, ty::ReStatic)) } Some(Region::EarlyBound(index, ..)) => inferred_outlives.iter().any(|r| { if let ty::ReEarlyBound(ebr) = r { ebr.index == index } else { false } }), _ => false, }; is_inferred.then_some((i, bound.span())) } else { None } }) .collect() } fn consolidate_outlives_bound_spans( &self, lo: Span, bounds: &hir::GenericBounds<'_>, bound_spans: Vec<(usize, Span)>, ) -> Vec { if bounds.is_empty() { return Vec::new(); } if bound_spans.len() == bounds.len() { let (_, last_bound_span) = bound_spans[bound_spans.len() - 1]; // If all bounds are inferable, we want to delete the colon, so // start from just after the parameter (span passed as argument) vec![lo.to(last_bound_span)] } else { let mut merged = Vec::new(); let mut last_merged_i = None; let mut from_start = true; for (i, bound_span) in bound_spans { match last_merged_i { // If the first bound is inferable, our span should also eat the leading `+`. None if i == 0 => { merged.push(bound_span.to(bounds[1].span().shrink_to_lo())); last_merged_i = Some(0); } // If consecutive bounds are inferable, merge their spans Some(h) if i == h + 1 => { if let Some(tail) = merged.last_mut() { // Also eat the trailing `+` if the first // more-than-one bound is inferable let to_span = if from_start && i < bounds.len() { bounds[i + 1].span().shrink_to_lo() } else { bound_span }; *tail = tail.to(to_span); last_merged_i = Some(i); } else { bug!("another bound-span visited earlier"); } } _ => { // When we find a non-inferable bound, subsequent inferable bounds // won't be consecutive from the start (and we'll eat the leading // `+` rather than the trailing one) from_start = false; merged.push(bounds[i - 1].span().shrink_to_hi().to(bound_span)); last_merged_i = Some(i); } } } merged } } } impl<'tcx> LateLintPass<'tcx> for ExplicitOutlivesRequirements { fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'_>) { use rustc_middle::middle::resolve_lifetime::Region; let infer_static = cx.tcx.features().infer_static_outlives_requirements; let def_id = item.def_id; if let hir::ItemKind::Struct(_, ref hir_generics) | hir::ItemKind::Enum(_, ref hir_generics) | hir::ItemKind::Union(_, ref hir_generics) = item.kind { let inferred_outlives = cx.tcx.inferred_outlives_of(def_id); if inferred_outlives.is_empty() { return; } let ty_generics = cx.tcx.generics_of(def_id); let mut bound_count = 0; let mut lint_spans = Vec::new(); for param in hir_generics.params { let has_lifetime_bounds = param .bounds .iter() .any(|bound| matches!(bound, hir::GenericBound::Outlives(_))); if !has_lifetime_bounds { continue; } let relevant_lifetimes = self.collect_outlived_lifetimes(param, cx.tcx, inferred_outlives, ty_generics); if relevant_lifetimes.is_empty() { continue; } let bound_spans = self.collect_outlives_bound_spans( cx.tcx, ¶m.bounds, &relevant_lifetimes, infer_static, ); bound_count += bound_spans.len(); lint_spans.extend(self.consolidate_outlives_bound_spans( param.span.shrink_to_hi(), ¶m.bounds, bound_spans, )); } let mut where_lint_spans = Vec::new(); let mut dropped_predicate_count = 0; let num_predicates = hir_generics.where_clause.predicates.len(); for (i, where_predicate) in hir_generics.where_clause.predicates.iter().enumerate() { let (relevant_lifetimes, bounds, span) = match where_predicate { hir::WherePredicate::RegionPredicate(predicate) => { if let Some(Region::EarlyBound(index, ..)) = cx.tcx.named_region(predicate.lifetime.hir_id) { ( Self::lifetimes_outliving_lifetime(inferred_outlives, index), &predicate.bounds, predicate.span, ) } else { continue; } } hir::WherePredicate::BoundPredicate(predicate) => { // FIXME we can also infer bounds on associated types, // and should check for them here. match predicate.bounded_ty.kind { hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) => { if let Res::Def(DefKind::TyParam, def_id) = path.res { let index = ty_generics.param_def_id_to_index[&def_id]; ( Self::lifetimes_outliving_type(inferred_outlives, index), &predicate.bounds, predicate.span, ) } else { continue; } } _ => { continue; } } } _ => continue, }; if relevant_lifetimes.is_empty() { continue; } let bound_spans = self.collect_outlives_bound_spans( cx.tcx, bounds, &relevant_lifetimes, infer_static, ); bound_count += bound_spans.len(); let drop_predicate = bound_spans.len() == bounds.len(); if drop_predicate { dropped_predicate_count += 1; } // If all the bounds on a predicate were inferable and there are // further predicates, we want to eat the trailing comma. if drop_predicate && i + 1 < num_predicates { let next_predicate_span = hir_generics.where_clause.predicates[i + 1].span(); where_lint_spans.push(span.to(next_predicate_span.shrink_to_lo())); } else { where_lint_spans.extend(self.consolidate_outlives_bound_spans( span.shrink_to_lo(), bounds, bound_spans, )); } } // If all predicates are inferable, drop the entire clause // (including the `where`) if num_predicates > 0 && dropped_predicate_count == num_predicates { let where_span = hir_generics .where_clause .span() .expect("span of (nonempty) where clause should exist"); // Extend the where clause back to the closing `>` of the // generics, except for tuple struct, which have the `where` // after the fields of the struct. let full_where_span = if let hir::ItemKind::Struct(hir::VariantData::Tuple(..), _) = item.kind { where_span } else { hir_generics.span.shrink_to_hi().to(where_span) }; lint_spans.push(full_where_span); } else { lint_spans.extend(where_lint_spans); } if !lint_spans.is_empty() { cx.struct_span_lint(EXPLICIT_OUTLIVES_REQUIREMENTS, lint_spans.clone(), |lint| { lint.build("outlives requirements can be inferred") .multipart_suggestion( if bound_count == 1 { "remove this bound" } else { "remove these bounds" }, lint_spans .into_iter() .map(|span| (span, "".to_owned())) .collect::>(), Applicability::MachineApplicable, ) .emit(); }); } } } } declare_lint! { /// The `incomplete_features` lint detects unstable features enabled with /// the [`feature` attribute] that may function improperly in some or all /// cases. /// /// [`feature` attribute]: https://doc.rust-lang.org/nightly/unstable-book/ /// /// ### Example /// /// ```rust /// #![feature(generic_associated_types)] /// ``` /// /// {{produces}} /// /// ### Explanation /// /// Although it is encouraged for people to experiment with unstable /// features, some of them are known to be incomplete or faulty. This lint /// is a signal that the feature has not yet been finished, and you may /// experience problems with it. pub INCOMPLETE_FEATURES, Warn, "incomplete features that may function improperly in some or all cases" } declare_lint_pass!( /// Check for used feature gates in `INCOMPLETE_FEATURES` in `librustc_feature/active.rs`. IncompleteFeatures => [INCOMPLETE_FEATURES] ); impl EarlyLintPass for IncompleteFeatures { fn check_crate(&mut self, cx: &EarlyContext<'_>, _: &ast::Crate) { let features = cx.sess.features_untracked(); features .declared_lang_features .iter() .map(|(name, span, _)| (name, span)) .chain(features.declared_lib_features.iter().map(|(name, span)| (name, span))) .filter(|(name, _)| rustc_feature::INCOMPLETE_FEATURES.iter().any(|f| name == &f)) .for_each(|(&name, &span)| { cx.struct_span_lint(INCOMPLETE_FEATURES, span, |lint| { let mut builder = lint.build(&format!( "the feature `{}` is incomplete and may not be safe to use \ and/or cause compiler crashes", name, )); if let Some(n) = rustc_feature::find_feature_issue(name, GateIssue::Language) { builder.note(&format!( "see issue #{} \ for more information", n, n, )); } if HAS_MIN_FEATURES.contains(&name) { builder.help(&format!( "consider using `min_{}` instead, which is more stable and complete", name, )); } builder.emit(); }) }); } } const HAS_MIN_FEATURES: &[Symbol] = &[sym::specialization]; declare_lint! { /// The `invalid_value` lint detects creating a value that is not valid, /// such as a NULL reference. /// /// ### Example /// /// ```rust,no_run /// # #![allow(unused)] /// unsafe { /// let x: &'static i32 = std::mem::zeroed(); /// } /// ``` /// /// {{produces}} /// /// ### Explanation /// /// In some situations the compiler can detect that the code is creating /// an invalid value, which should be avoided. /// /// In particular, this lint will check for improper use of /// [`mem::zeroed`], [`mem::uninitialized`], [`mem::transmute`], and /// [`MaybeUninit::assume_init`] that can cause [undefined behavior]. The /// lint should provide extra information to indicate what the problem is /// and a possible solution. /// /// [`mem::zeroed`]: https://doc.rust-lang.org/std/mem/fn.zeroed.html /// [`mem::uninitialized`]: https://doc.rust-lang.org/std/mem/fn.uninitialized.html /// [`mem::transmute`]: https://doc.rust-lang.org/std/mem/fn.transmute.html /// [`MaybeUninit::assume_init`]: https://doc.rust-lang.org/std/mem/union.MaybeUninit.html#method.assume_init /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html pub INVALID_VALUE, Warn, "an invalid value is being created (such as a NULL reference)" } declare_lint_pass!(InvalidValue => [INVALID_VALUE]); impl<'tcx> LateLintPass<'tcx> for InvalidValue { fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &hir::Expr<'_>) { #[derive(Debug, Copy, Clone, PartialEq)] enum InitKind { Zeroed, Uninit, } /// Information about why a type cannot be initialized this way. /// Contains an error message and optionally a span to point at. type InitError = (String, Option); /// Test if this constant is all-0. fn is_zero(expr: &hir::Expr<'_>) -> bool { use hir::ExprKind::*; use rustc_ast::LitKind::*; match &expr.kind { Lit(lit) => { if let Int(i, _) = lit.node { i == 0 } else { false } } Tup(tup) => tup.iter().all(is_zero), _ => false, } } /// Determine if this expression is a "dangerous initialization". fn is_dangerous_init(cx: &LateContext<'_>, expr: &hir::Expr<'_>) -> Option { if let hir::ExprKind::Call(ref path_expr, ref args) = expr.kind { // Find calls to `mem::{uninitialized,zeroed}` methods. if let hir::ExprKind::Path(ref qpath) = path_expr.kind { let def_id = cx.qpath_res(qpath, path_expr.hir_id).opt_def_id()?; if cx.tcx.is_diagnostic_item(sym::mem_zeroed, def_id) { return Some(InitKind::Zeroed); } else if cx.tcx.is_diagnostic_item(sym::mem_uninitialized, def_id) { return Some(InitKind::Uninit); } else if cx.tcx.is_diagnostic_item(sym::transmute, def_id) && is_zero(&args[0]) { return Some(InitKind::Zeroed); } } } else if let hir::ExprKind::MethodCall(_, _, ref args, _) = expr.kind { // Find problematic calls to `MaybeUninit::assume_init`. let def_id = cx.typeck_results().type_dependent_def_id(expr.hir_id)?; if cx.tcx.is_diagnostic_item(sym::assume_init, def_id) { // This is a call to *some* method named `assume_init`. // See if the `self` parameter is one of the dangerous constructors. if let hir::ExprKind::Call(ref path_expr, _) = args[0].kind { if let hir::ExprKind::Path(ref qpath) = path_expr.kind { let def_id = cx.qpath_res(qpath, path_expr.hir_id).opt_def_id()?; if cx.tcx.is_diagnostic_item(sym::maybe_uninit_zeroed, def_id) { return Some(InitKind::Zeroed); } else if cx.tcx.is_diagnostic_item(sym::maybe_uninit_uninit, def_id) { return Some(InitKind::Uninit); } } } } } None } /// Test if this enum has several actually "existing" variants. /// Zero-sized uninhabited variants do not always have a tag assigned and thus do not "exist". fn is_multi_variant(adt: &ty::AdtDef) -> bool { // As an approximation, we only count dataless variants. Those are definitely inhabited. let existing_variants = adt.variants.iter().filter(|v| v.fields.is_empty()).count(); existing_variants > 1 } /// Return `Some` only if we are sure this type does *not* /// allow zero initialization. fn ty_find_init_error<'tcx>( tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, init: InitKind, ) -> Option { use rustc_middle::ty::TyKind::*; match ty.kind() { // Primitive types that don't like 0 as a value. Ref(..) => Some(("references must be non-null".to_string(), None)), Adt(..) if ty.is_box() => Some(("`Box` must be non-null".to_string(), None)), FnPtr(..) => Some(("function pointers must be non-null".to_string(), None)), Never => Some(("the `!` type has no valid value".to_string(), None)), RawPtr(tm) if matches!(tm.ty.kind(), Dynamic(..)) => // raw ptr to dyn Trait { Some(("the vtable of a wide raw pointer must be non-null".to_string(), None)) } // Primitive types with other constraints. Bool if init == InitKind::Uninit => { Some(("booleans must be either `true` or `false`".to_string(), None)) } Char if init == InitKind::Uninit => { Some(("characters must be a valid Unicode codepoint".to_string(), None)) } // Recurse and checks for some compound types. Adt(adt_def, substs) if !adt_def.is_union() => { // First check if this ADT has a layout attribute (like `NonNull` and friends). use std::ops::Bound; match tcx.layout_scalar_valid_range(adt_def.did) { // We exploit here that `layout_scalar_valid_range` will never // return `Bound::Excluded`. (And we have tests checking that we // handle the attribute correctly.) (Bound::Included(lo), _) if lo > 0 => { return Some((format!("`{}` must be non-null", ty), None)); } (Bound::Included(_), _) | (_, Bound::Included(_)) if init == InitKind::Uninit => { return Some(( format!( "`{}` must be initialized inside its custom valid range", ty, ), None, )); } _ => {} } // Now, recurse. match adt_def.variants.len() { 0 => Some(("enums with no variants have no valid value".to_string(), None)), 1 => { // Struct, or enum with exactly one variant. // Proceed recursively, check all fields. let variant = &adt_def.variants[VariantIdx::from_u32(0)]; variant.fields.iter().find_map(|field| { ty_find_init_error(tcx, field.ty(tcx, substs), init).map( |(mut msg, span)| { if span.is_none() { // Point to this field, should be helpful for figuring // out where the source of the error is. let span = tcx.def_span(field.did); write!( &mut msg, " (in this {} field)", adt_def.descr() ) .unwrap(); (msg, Some(span)) } else { // Just forward. (msg, span) } }, ) }) } // Multi-variant enum. _ => { if init == InitKind::Uninit && is_multi_variant(adt_def) { let span = tcx.def_span(adt_def.did); Some(( "enums have to be initialized to a variant".to_string(), Some(span), )) } else { // In principle, for zero-initialization we could figure out which variant corresponds // to tag 0, and check that... but for now we just accept all zero-initializations. None } } } } Tuple(..) => { // Proceed recursively, check all fields. ty.tuple_fields().find_map(|field| ty_find_init_error(tcx, field, init)) } // Conservative fallback. _ => None, } } if let Some(init) = is_dangerous_init(cx, expr) { // This conjures an instance of a type out of nothing, // using zeroed or uninitialized memory. // We are extremely conservative with what we warn about. let conjured_ty = cx.typeck_results().expr_ty(expr); if let Some((msg, span)) = with_no_trimmed_paths(|| ty_find_init_error(cx.tcx, conjured_ty, init)) { cx.struct_span_lint(INVALID_VALUE, expr.span, |lint| { let mut err = lint.build(&format!( "the type `{}` does not permit {}", conjured_ty, match init { InitKind::Zeroed => "zero-initialization", InitKind::Uninit => "being left uninitialized", }, )); err.span_label(expr.span, "this code causes undefined behavior when executed"); err.span_label( expr.span, "help: use `MaybeUninit` instead, \ and only call `assume_init` after initialization is done", ); if let Some(span) = span { err.span_note(span, &msg); } else { err.note(&msg); } err.emit(); }); } } } } declare_lint! { /// The `clashing_extern_declarations` lint detects when an `extern fn` /// has been declared with the same name but different types. /// /// ### Example /// /// ```rust /// mod m { /// extern "C" { /// fn foo(); /// } /// } /// /// extern "C" { /// fn foo(_: u32); /// } /// ``` /// /// {{produces}} /// /// ### Explanation /// /// Because two symbols of the same name cannot be resolved to two /// different functions at link time, and one function cannot possibly /// have two types, a clashing extern declaration is almost certainly a /// mistake. Check to make sure that the `extern` definitions are correct /// and equivalent, and possibly consider unifying them in one location. /// /// This lint does not run between crates because a project may have /// dependencies which both rely on the same extern function, but declare /// it in a different (but valid) way. For example, they may both declare /// an opaque type for one or more of the arguments (which would end up /// distinct types), or use types that are valid conversions in the /// language the `extern fn` is defined in. In these cases, the compiler /// can't say that the clashing declaration is incorrect. pub CLASHING_EXTERN_DECLARATIONS, Warn, "detects when an extern fn has been declared with the same name but different types" } pub struct ClashingExternDeclarations { /// Map of function symbol name to the first-seen hir id for that symbol name.. If seen_decls /// contains an entry for key K, it means a symbol with name K has been seen by this lint and /// the symbol should be reported as a clashing declaration. // FIXME: Technically, we could just store a &'tcx str here without issue; however, the // `impl_lint_pass` macro doesn't currently support lints parametric over a lifetime. seen_decls: FxHashMap, } /// Differentiate between whether the name for an extern decl came from the link_name attribute or /// just from declaration itself. This is important because we don't want to report clashes on /// symbol name if they don't actually clash because one or the other links against a symbol with a /// different name. enum SymbolName { /// The name of the symbol + the span of the annotation which introduced the link name. Link(Symbol, Span), /// No link name, so just the name of the symbol. Normal(Symbol), } impl SymbolName { fn get_name(&self) -> Symbol { match self { SymbolName::Link(s, _) | SymbolName::Normal(s) => *s, } } } impl ClashingExternDeclarations { crate fn new() -> Self { ClashingExternDeclarations { seen_decls: FxHashMap::default() } } /// Insert a new foreign item into the seen set. If a symbol with the same name already exists /// for the item, return its HirId without updating the set. fn insert(&mut self, tcx: TyCtxt<'_>, fi: &hir::ForeignItem<'_>) -> Option { let did = fi.def_id.to_def_id(); let instance = Instance::new(did, ty::List::identity_for_item(tcx, did)); let name = Symbol::intern(tcx.symbol_name(instance).name); if let Some(&hir_id) = self.seen_decls.get(&name) { // Avoid updating the map with the new entry when we do find a collision. We want to // make sure we're always pointing to the first definition as the previous declaration. // This lets us avoid emitting "knock-on" diagnostics. Some(hir_id) } else { self.seen_decls.insert(name, fi.hir_id()) } } /// Get the name of the symbol that's linked against for a given extern declaration. That is, /// the name specified in a #[link_name = ...] attribute if one was specified, else, just the /// symbol's name. fn name_of_extern_decl(tcx: TyCtxt<'_>, fi: &hir::ForeignItem<'_>) -> SymbolName { if let Some((overridden_link_name, overridden_link_name_span)) = tcx.codegen_fn_attrs(fi.def_id).link_name.map(|overridden_link_name| { // FIXME: Instead of searching through the attributes again to get span // information, we could have codegen_fn_attrs also give span information back for // where the attribute was defined. However, until this is found to be a // bottleneck, this does just fine. ( overridden_link_name, tcx.get_attrs(fi.def_id.to_def_id()) .iter() .find(|at| tcx.sess.check_name(at, sym::link_name)) .unwrap() .span, ) }) { SymbolName::Link(overridden_link_name, overridden_link_name_span) } else { SymbolName::Normal(fi.ident.name) } } /// Checks whether two types are structurally the same enough that the declarations shouldn't /// clash. We need this so we don't emit a lint when two modules both declare an extern struct, /// with the same members (as the declarations shouldn't clash). fn structurally_same_type<'tcx>( cx: &LateContext<'tcx>, a: Ty<'tcx>, b: Ty<'tcx>, ckind: CItemKind, ) -> bool { fn structurally_same_type_impl<'tcx>( seen_types: &mut FxHashSet<(Ty<'tcx>, Ty<'tcx>)>, cx: &LateContext<'tcx>, a: Ty<'tcx>, b: Ty<'tcx>, ckind: CItemKind, ) -> bool { debug!("structurally_same_type_impl(cx, a = {:?}, b = {:?})", a, b); let tcx = cx.tcx; // Given a transparent newtype, reach through and grab the inner // type unless the newtype makes the type non-null. let non_transparent_ty = |ty: Ty<'tcx>| -> Ty<'tcx> { let mut ty = ty; loop { if let ty::Adt(def, substs) = *ty.kind() { let is_transparent = def.subst(tcx, substs).repr.transparent(); let is_non_null = crate::types::nonnull_optimization_guaranteed(tcx, &def); debug!( "non_transparent_ty({:?}) -- type is transparent? {}, type is non-null? {}", ty, is_transparent, is_non_null ); if is_transparent && !is_non_null { debug_assert!(def.variants.len() == 1); let v = &def.variants[VariantIdx::new(0)]; ty = transparent_newtype_field(tcx, v) .expect( "single-variant transparent structure with zero-sized field", ) .ty(tcx, substs); continue; } } debug!("non_transparent_ty -> {:?}", ty); return ty; } }; let a = non_transparent_ty(a); let b = non_transparent_ty(b); if !seen_types.insert((a, b)) { // We've encountered a cycle. There's no point going any further -- the types are // structurally the same. return true; } let tcx = cx.tcx; if a == b || rustc_middle::ty::TyS::same_type(a, b) { // All nominally-same types are structurally same, too. true } else { // Do a full, depth-first comparison between the two. use rustc_middle::ty::TyKind::*; let a_kind = a.kind(); let b_kind = b.kind(); let compare_layouts = |a, b| -> Result> { debug!("compare_layouts({:?}, {:?})", a, b); let a_layout = &cx.layout_of(a)?.layout.abi; let b_layout = &cx.layout_of(b)?.layout.abi; debug!( "comparing layouts: {:?} == {:?} = {}", a_layout, b_layout, a_layout == b_layout ); Ok(a_layout == b_layout) }; #[allow(rustc::usage_of_ty_tykind)] let is_primitive_or_pointer = |kind: &ty::TyKind<'_>| { kind.is_primitive() || matches!(kind, RawPtr(..) | Ref(..)) }; ensure_sufficient_stack(|| { match (a_kind, b_kind) { (Adt(a_def, a_substs), Adt(b_def, b_substs)) => { let a = a.subst(cx.tcx, a_substs); let b = b.subst(cx.tcx, b_substs); debug!("Comparing {:?} and {:?}", a, b); // We can immediately rule out these types as structurally same if // their layouts differ. match compare_layouts(a, b) { Ok(false) => return false, _ => (), // otherwise, continue onto the full, fields comparison } // Grab a flattened representation of all fields. let a_fields = a_def.variants.iter().flat_map(|v| v.fields.iter()); let b_fields = b_def.variants.iter().flat_map(|v| v.fields.iter()); // Perform a structural comparison for each field. a_fields.eq_by( b_fields, |&ty::FieldDef { did: a_did, .. }, &ty::FieldDef { did: b_did, .. }| { structurally_same_type_impl( seen_types, cx, tcx.type_of(a_did), tcx.type_of(b_did), ckind, ) }, ) } (Array(a_ty, a_const), Array(b_ty, b_const)) => { // For arrays, we also check the constness of the type. a_const.val == b_const.val && structurally_same_type_impl(seen_types, cx, a_ty, b_ty, ckind) } (Slice(a_ty), Slice(b_ty)) => { structurally_same_type_impl(seen_types, cx, a_ty, b_ty, ckind) } (RawPtr(a_tymut), RawPtr(b_tymut)) => { a_tymut.mutbl == b_tymut.mutbl && structurally_same_type_impl( seen_types, cx, &a_tymut.ty, &b_tymut.ty, ckind, ) } (Ref(_a_region, a_ty, a_mut), Ref(_b_region, b_ty, b_mut)) => { // For structural sameness, we don't need the region to be same. a_mut == b_mut && structurally_same_type_impl(seen_types, cx, a_ty, b_ty, ckind) } (FnDef(..), FnDef(..)) => { let a_poly_sig = a.fn_sig(tcx); let b_poly_sig = b.fn_sig(tcx); // As we don't compare regions, skip_binder is fine. let a_sig = a_poly_sig.skip_binder(); let b_sig = b_poly_sig.skip_binder(); (a_sig.abi, a_sig.unsafety, a_sig.c_variadic) == (b_sig.abi, b_sig.unsafety, b_sig.c_variadic) && a_sig.inputs().iter().eq_by(b_sig.inputs().iter(), |a, b| { structurally_same_type_impl(seen_types, cx, a, b, ckind) }) && structurally_same_type_impl( seen_types, cx, a_sig.output(), b_sig.output(), ckind, ) } (Tuple(a_substs), Tuple(b_substs)) => { a_substs.types().eq_by(b_substs.types(), |a_ty, b_ty| { structurally_same_type_impl(seen_types, cx, a_ty, b_ty, ckind) }) } // For these, it's not quite as easy to define structural-sameness quite so easily. // For the purposes of this lint, take the conservative approach and mark them as // not structurally same. (Dynamic(..), Dynamic(..)) | (Error(..), Error(..)) | (Closure(..), Closure(..)) | (Generator(..), Generator(..)) | (GeneratorWitness(..), GeneratorWitness(..)) | (Projection(..), Projection(..)) | (Opaque(..), Opaque(..)) => false, // These definitely should have been caught above. (Bool, Bool) | (Char, Char) | (Never, Never) | (Str, Str) => unreachable!(), // An Adt and a primitive or pointer type. This can be FFI-safe if non-null // enum layout optimisation is being applied. (Adt(..), other_kind) | (other_kind, Adt(..)) if is_primitive_or_pointer(other_kind) => { let (primitive, adt) = if is_primitive_or_pointer(a.kind()) { (a, b) } else { (b, a) }; if let Some(ty) = crate::types::repr_nullable_ptr(cx, adt, ckind) { ty == primitive } else { compare_layouts(a, b).unwrap_or(false) } } // Otherwise, just compare the layouts. This may fail to lint for some // incompatible types, but at the very least, will stop reads into // uninitialised memory. _ => compare_layouts(a, b).unwrap_or(false), } }) } } let mut seen_types = FxHashSet::default(); structurally_same_type_impl(&mut seen_types, cx, a, b, ckind) } } impl_lint_pass!(ClashingExternDeclarations => [CLASHING_EXTERN_DECLARATIONS]); impl<'tcx> LateLintPass<'tcx> for ClashingExternDeclarations { fn check_foreign_item(&mut self, cx: &LateContext<'tcx>, this_fi: &hir::ForeignItem<'_>) { trace!("ClashingExternDeclarations: check_foreign_item: {:?}", this_fi); if let ForeignItemKind::Fn(..) = this_fi.kind { let tcx = cx.tcx; if let Some(existing_hid) = self.insert(tcx, this_fi) { let existing_decl_ty = tcx.type_of(tcx.hir().local_def_id(existing_hid)); let this_decl_ty = tcx.type_of(this_fi.def_id); debug!( "ClashingExternDeclarations: Comparing existing {:?}: {:?} to this {:?}: {:?}", existing_hid, existing_decl_ty, this_fi.def_id, this_decl_ty ); // Check that the declarations match. if !Self::structurally_same_type( cx, existing_decl_ty, this_decl_ty, CItemKind::Declaration, ) { let orig_fi = tcx.hir().expect_foreign_item(existing_hid); let orig = Self::name_of_extern_decl(tcx, orig_fi); // We want to ensure that we use spans for both decls that include where the // name was defined, whether that was from the link_name attribute or not. let get_relevant_span = |fi: &hir::ForeignItem<'_>| match Self::name_of_extern_decl(tcx, fi) { SymbolName::Normal(_) => fi.span, SymbolName::Link(_, annot_span) => fi.span.to(annot_span), }; // Finally, emit the diagnostic. tcx.struct_span_lint_hir( CLASHING_EXTERN_DECLARATIONS, this_fi.hir_id(), get_relevant_span(this_fi), |lint| { let mut expected_str = DiagnosticStyledString::new(); expected_str.push(existing_decl_ty.fn_sig(tcx).to_string(), false); let mut found_str = DiagnosticStyledString::new(); found_str.push(this_decl_ty.fn_sig(tcx).to_string(), true); lint.build(&format!( "`{}` redeclare{} with a different signature", this_fi.ident.name, if orig.get_name() == this_fi.ident.name { "d".to_string() } else { format!("s `{}`", orig.get_name()) } )) .span_label( get_relevant_span(orig_fi), &format!("`{}` previously declared here", orig.get_name()), ) .span_label( get_relevant_span(this_fi), "this signature doesn't match the previous declaration", ) .note_expected_found(&"", expected_str, &"", found_str) .emit() }, ); } } } } }