// Copyright 2015 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. /// Formatting of chained expressions, i.e. expressions which are chained by /// dots: struct and enum field access, method calls, and try shorthand (?). /// /// Instead of walking these subexpressions one-by-one, as is our usual strategy /// for expression formatting, we collect maximal sequences of these expressions /// and handle them simultaneously. /// /// Whenever possible, the entire chain is put on a single line. If that fails, /// we put each subexpression on a separate, much like the (default) function /// argument function argument strategy. /// /// Depends on config options: `chain_indent` is the indent to use for /// blocks in the parent/root/base of the chain (and the rest of the chain's /// alignment). /// E.g., `let foo = { aaaa; bbb; ccc }.bar.baz();`, we would layout for the /// following values of `chain_indent`: /// Visual: /// ``` /// let foo = { /// aaaa; /// bbb; /// ccc /// } /// .bar /// .baz(); /// ``` /// Inherit: /// ``` /// let foo = { /// aaaa; /// bbb; /// ccc /// } /// .bar /// .baz(); /// ``` /// Tabbed: /// ``` /// let foo = { /// aaaa; /// bbb; /// ccc /// } /// .bar /// .baz(); /// ``` /// /// If the first item in the chain is a block expression, we align the dots with /// the braces. /// Visual: /// ``` /// let a = foo.bar /// .baz() /// .qux /// ``` /// Inherit: /// ``` /// let a = foo.bar /// .baz() /// .qux /// ``` /// Tabbed: /// ``` /// let a = foo.bar /// .baz() /// .qux /// ``` use Shape; use rewrite::{Rewrite, RewriteContext}; use utils::{wrap_str, first_line_width, last_line_width}; use expr::rewrite_call; use config::IndentStyle; use macros::convert_try_mac; use std::iter; use syntax::{ast, ptr}; use syntax::codemap::{mk_sp, Span}; pub fn rewrite_chain(expr: &ast::Expr, context: &RewriteContext, shape: Shape) -> Option { debug!("rewrite_chain {:?}", shape); let total_span = expr.span; let (parent, subexpr_list) = make_subexpr_list(expr, context); // Bail out if the chain is just try sugar, i.e., an expression followed by // any number of `?`s. if chain_only_try(&subexpr_list) { return rewrite_try(&parent, subexpr_list.len(), context, shape); } // Parent is the first item in the chain, e.g., `foo` in `foo.bar.baz()`. let mut parent_shape = shape; if is_block_expr(&parent, "\n") { parent_shape = chain_indent(context, shape); } let parent_rewrite = try_opt!(parent.rewrite(context, parent_shape)); // Decide how to layout the rest of the chain. `extend` is true if we can // put the first non-parent item on the same line as the parent. let (nested_shape, extend) = if !parent_rewrite.contains('\n') && is_continuable(&parent) { let nested_shape = if let ast::ExprKind::Try(..) = subexpr_list.last().unwrap().node { parent_shape.block_indent(context.config.tab_spaces) } else { chain_indent(context, shape.add_offset(parent_rewrite.len())) }; (nested_shape, context.config.chain_indent == IndentStyle::Visual || parent_rewrite.len() <= context.config.tab_spaces) } else if is_block_expr(&parent, &parent_rewrite) { // The parent is a block, so align the rest of the chain with the closing // brace. (parent_shape, false) } else if parent_rewrite.contains('\n') { (chain_indent(context, parent_shape.block_indent(context.config.tab_spaces)), false) } else { (shape.block_indent(context.config.tab_spaces), false) }; let max_width = try_opt!((shape.width + shape.indent.width() + shape.offset) .checked_sub(nested_shape.indent.width() + nested_shape.offset)); let other_child_shape = Shape { width: max_width, ..nested_shape }; let first_child_shape = if extend { let mut shape = try_opt!(parent_shape.shrink_left(last_line_width(&parent_rewrite))); match context.config.chain_indent { IndentStyle::Visual => other_child_shape, IndentStyle::Block => { shape.offset = shape .offset .checked_sub(context.config.tab_spaces) .unwrap_or(0); shape.indent.block_indent += context.config.tab_spaces; shape } } } else { other_child_shape }; debug!("child_shapes {:?} {:?}", first_child_shape, other_child_shape); let child_shape_iter = Some(first_child_shape) .into_iter() .chain(::std::iter::repeat(other_child_shape).take(subexpr_list.len() - 1)); let iter = subexpr_list .iter() .rev() .zip(child_shape_iter); let mut rewrites = try_opt!(iter.map(|(e, shape)| rewrite_chain_subexpr(e, total_span, context, shape)) .collect::>>()); // Total of all items excluding the last. let almost_total = rewrites[..rewrites.len() - 1] .iter() .fold(0, |a, b| a + first_line_width(b)) + parent_rewrite.len(); let one_line_len = rewrites.iter().fold(0, |a, r| a + r.len() + 1) + parent_rewrite.len(); let veto_single_line = if one_line_len > context.config.chain_one_line_max - 1 && rewrites.len() > 1 { true } else if context.config.take_source_hints && subexpr_list.len() > 1 { // Look at the source code. Unless all chain elements start on the same // line, we won't consider putting them on a single line either. let last_span = context.snippet(mk_sp(subexpr_list[1].span.hi, total_span.hi)); let first_span = context.snippet(subexpr_list[1].span); let last_iter = last_span .chars() .take_while(|c| c.is_whitespace()); first_span .chars() .chain(last_iter) .any(|c| c == '\n') } else { false }; let mut fits_single_line = !veto_single_line && almost_total <= shape.width; if fits_single_line { let len = rewrites.len(); let (init, last) = rewrites.split_at_mut(len - 1); fits_single_line = init.iter().all(|s| !s.contains('\n')); if fits_single_line { fits_single_line = match expr.node { ref e @ ast::ExprKind::MethodCall(..) => { rewrite_method_call_with_overflow(e, &mut last[0], almost_total, total_span, context, shape) } _ => !last[0].contains('\n'), } } } let connector = if fits_single_line && !parent_rewrite.contains('\n') { // Yay, we can put everything on one line. String::new() } else { // Use new lines. format!("\n{}", nested_shape.indent.to_string(context.config)) }; let first_connector = if extend || subexpr_list.is_empty() { "" } else if let ast::ExprKind::Try(_) = subexpr_list[0].node { "" } else { &*connector }; wrap_str(format!("{}{}{}", parent_rewrite, first_connector, join_rewrites(&rewrites, &subexpr_list, &connector)), context.config.max_width, shape) } // True if the chain is only `?`s. fn chain_only_try(exprs: &[ast::Expr]) -> bool { exprs .iter() .all(|e| if let ast::ExprKind::Try(_) = e.node { true } else { false }) } pub fn rewrite_try(expr: &ast::Expr, try_count: usize, context: &RewriteContext, shape: Shape) -> Option { let sub_expr = try_opt!(expr.rewrite(context, try_opt!(shape.sub_width(try_count)))); Some(format!("{}{}", sub_expr, iter::repeat("?") .take(try_count) .collect::())) } fn join_rewrites(rewrites: &[String], subexps: &[ast::Expr], connector: &str) -> String { let mut rewrite_iter = rewrites.iter(); let mut result = rewrite_iter.next().unwrap().clone(); let mut subexpr_iter = subexps.iter().rev(); subexpr_iter.next(); for (rewrite, expr) in rewrite_iter.zip(subexpr_iter) { match expr.node { ast::ExprKind::Try(_) => (), _ => result.push_str(connector), }; result.push_str(&rewrite[..]); } result } // States whether an expression's last line exclusively consists of closing // parens, braces, and brackets in its idiomatic formatting. fn is_block_expr(expr: &ast::Expr, repr: &str) -> bool { match expr.node { ast::ExprKind::Struct(..) | ast::ExprKind::While(..) | ast::ExprKind::WhileLet(..) | ast::ExprKind::If(..) | ast::ExprKind::IfLet(..) | ast::ExprKind::Block(..) | ast::ExprKind::Loop(..) | ast::ExprKind::ForLoop(..) | ast::ExprKind::Match(..) => repr.contains('\n'), ast::ExprKind::Paren(ref expr) | ast::ExprKind::Binary(_, _, ref expr) | ast::ExprKind::Index(_, ref expr) | ast::ExprKind::Unary(_, ref expr) => is_block_expr(expr, repr), _ => false, } } // Returns the root of the chain and a Vec of the prefixes of the rest of the chain. // E.g., for input `a.b.c` we return (`a`, [`a.b.c`, `a.b`]) fn make_subexpr_list(expr: &ast::Expr, context: &RewriteContext) -> (ast::Expr, Vec) { let mut subexpr_list = vec![expr.clone()]; while let Some(subexpr) = pop_expr_chain(subexpr_list.last().unwrap(), context) { subexpr_list.push(subexpr.clone()); } let parent = subexpr_list.pop().unwrap(); (parent, subexpr_list) } fn chain_indent(context: &RewriteContext, shape: Shape) -> Shape { match context.config.chain_indent { IndentStyle::Visual => shape.visual_indent(0), IndentStyle::Block => shape.block_indent(context.config.tab_spaces), } } fn rewrite_method_call_with_overflow(expr_kind: &ast::ExprKind, last: &mut String, almost_total: usize, total_span: Span, context: &RewriteContext, shape: Shape) -> bool { if let &ast::ExprKind::MethodCall(ref method_name, ref types, ref expressions) = expr_kind { let shape = match shape.shrink_left(almost_total) { Some(b) => b, None => return false, }; let mut last_rewrite = rewrite_method_call(method_name.node, types, expressions, total_span, context, shape); if let Some(ref mut s) = last_rewrite { ::std::mem::swap(s, last); true } else { false } } else { unreachable!(); } } // Returns the expression's subexpression, if it exists. When the subexpr // is a try! macro, we'll convert it to shorthand when the option is set. fn pop_expr_chain(expr: &ast::Expr, context: &RewriteContext) -> Option { match expr.node { ast::ExprKind::MethodCall(_, _, ref expressions) => { Some(convert_try(&expressions[0], context)) } ast::ExprKind::TupField(ref subexpr, _) | ast::ExprKind::Field(ref subexpr, _) | ast::ExprKind::Try(ref subexpr) => Some(convert_try(subexpr, context)), _ => None, } } fn convert_try(expr: &ast::Expr, context: &RewriteContext) -> ast::Expr { match expr.node { ast::ExprKind::Mac(ref mac) if context.config.use_try_shorthand => { if let Some(subexpr) = convert_try_mac(mac, context) { subexpr } else { expr.clone() } } _ => expr.clone(), } } // Rewrite the last element in the chain `expr`. E.g., given `a.b.c` we rewrite // `.c`. fn rewrite_chain_subexpr(expr: &ast::Expr, span: Span, context: &RewriteContext, shape: Shape) -> Option { match expr.node { ast::ExprKind::MethodCall(ref method_name, ref types, ref expressions) => { rewrite_method_call(method_name.node, types, expressions, span, context, shape) } ast::ExprKind::Field(_, ref field) => { let s = format!(".{}", field.node); if s.len() <= shape.width { Some(s) } else { None } } ast::ExprKind::TupField(_, ref field) => { let s = format!(".{}", field.node); if s.len() <= shape.width { Some(s) } else { None } } ast::ExprKind::Try(_) => { if shape.width >= 1 { Some("?".into()) } else { None } } _ => unreachable!(), } } // Determines if we can continue formatting a given expression on the same line. fn is_continuable(expr: &ast::Expr) -> bool { match expr.node { ast::ExprKind::Path(..) => true, _ => false, } } fn rewrite_method_call(method_name: ast::Ident, types: &[ptr::P], args: &[ptr::P], span: Span, context: &RewriteContext, shape: Shape) -> Option { let (lo, type_str) = if types.is_empty() { (args[0].span.hi, String::new()) } else { let type_list: Vec<_> = try_opt!(types .iter() .map(|ty| ty.rewrite(context, shape)) .collect()); let type_str = if context.config.spaces_within_angle_brackets && type_list.len() > 0 { format!("::< {} >", type_list.join(", ")) } else { format!("::<{}>", type_list.join(", ")) }; (types.last().unwrap().span.hi, type_str) }; let callee_str = format!(".{}{}", method_name, type_str); let span = mk_sp(lo, span.hi); rewrite_call(context, &callee_str, &args[1..], span, shape) }