// Copyright 2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. /*! Random number generation. The key functions are `random()` and `Rng::gen()`. These are polymorphic and so can be used to generate any type that implements `Rand`. Type inference means that often a simple call to `rand::random()` or `rng.gen()` will suffice, but sometimes an annotation is required, e.g. `rand::random::()`. See the `distributions` submodule for sampling random numbers from distributions like normal and exponential. # Task-local RNG There is built-in support for a RNG associated with each task stored in task-local storage. This RNG can be accessed via `task_rng`, or used implicitly via `random`. This RNG is normally randomly seeded from an operating-system source of randomness, e.g. `/dev/urandom` on Unix systems, and will automatically reseed itself from this source after generating 32 KiB of random data. It can be explicitly seeded on a per-task basis with `seed_task_rng`; this only affects the task-local generator in the task in which it is called. It can be seeded globally using the `RUST_SEED` environment variable, which should be an integer. Setting `RUST_SEED` will seed every task-local RNG with the same seed. Using either of these will disable the automatic reseeding. # Examples ```rust use std::rand; use std::rand::Rng; fn main() { let mut rng = rand::rng(); if rng.gen() { // bool println!("int: {}, uint: {}", rng.gen::(), rng.gen::()) } } ``` ```rust use std::rand; fn main () { let tuple_ptr = rand::random::<~(f64, char)>(); println!(tuple_ptr) } ``` */ use cast; use container::Container; use iter::{Iterator, range}; use local_data; use prelude::*; use str; use u64; use vec; use os::getenv; pub use self::isaac::{IsaacRng, Isaac64Rng}; pub use self::os::OSRng; pub mod distributions; pub mod isaac; pub mod os; pub mod reader; pub mod reseeding; mod rand_impls; /// A type that can be randomly generated using an Rng pub trait Rand { /// Generates a random instance of this type using the specified source of /// randomness fn rand(rng: &mut R) -> Self; } /// A value with a particular weight compared to other values pub struct Weighted { /// The numerical weight of this item weight: uint, /// The actual item which is being weighted item: T, } /// A random number generator pub trait Rng { /// Return the next random u32. This rarely needs to be called /// directly, prefer `r.gen()` to `r.next_u32()`. /// /// By default this is implemented in terms of `next_u64`. An /// implementation of this trait must provide at least one of /// these two methods. fn next_u32(&mut self) -> u32 { self.next_u64() as u32 } /// Return the next random u64. This rarely needs to be called /// directly, prefer `r.gen()` to `r.next_u64()`. /// /// By default this is implemented in terms of `next_u32`. An /// implementation of this trait must provide at least one of /// these two methods. fn next_u64(&mut self) -> u64 { (self.next_u32() as u64 << 32) | (self.next_u32() as u64) } /// Fill `dest` with random data. /// /// This has a default implementation in terms of `next_u64` and /// `next_u32`, but should be overriden by implementations that /// offer a more efficient solution than just calling those /// methods repeatedly. /// /// This method does *not* have a requirement to bear any fixed /// relationship to the other methods, for example, it does *not* /// have to result in the same output as progressively filling /// `dest` with `self.gen::()`, and any such behaviour should /// not be relied upon. /// /// This method should guarantee that `dest` is entirely filled /// with new data, and may fail if this is impossible /// (e.g. reading past the end of a file that is being used as the /// source of randomness). /// /// # Example /// /// ```rust /// use std::rand::{task_rng, Rng}; /// /// fn main() { /// let mut v = [0u8, .. 13579]; /// task_rng().fill_bytes(v); /// println!("{:?}", v); /// } /// ``` fn fill_bytes(&mut self, mut dest: &mut [u8]) { // this relies on the lengths being transferred correctly when // transmuting between vectors like this. let as_u64: &mut &mut [u64] = unsafe { cast::transmute(&mut dest) }; for dest in as_u64.mut_iter() { *dest = self.next_u64(); } // the above will have filled up the vector as much as // possible in multiples of 8 bytes. let mut remaining = dest.len() % 8; // space for a u32 if remaining >= 4 { let as_u32: &mut &mut [u32] = unsafe { cast::transmute(&mut dest) }; as_u32[as_u32.len() - 1] = self.next_u32(); remaining -= 4; } // exactly filled if remaining == 0 { return } // now we know we've either got 1, 2 or 3 spots to go, // i.e. exactly one u32 is enough. let rand = self.next_u32(); let remaining_index = dest.len() - remaining; match dest.mut_slice_from(remaining_index) { [ref mut a] => { *a = rand as u8; } [ref mut a, ref mut b] => { *a = rand as u8; *b = (rand >> 8) as u8; } [ref mut a, ref mut b, ref mut c] => { *a = rand as u8; *b = (rand >> 8) as u8; *c = (rand >> 16) as u8; } _ => fail2!("Rng.fill_bytes: the impossible occurred: remaining != 1, 2 or 3") } } /// Return a random value of a Rand type. /// /// # Example /// /// ```rust /// use std::rand; /// use std::rand::Rng; /// /// fn main() { /// let mut rng = rand::task_rng(); /// let x: uint = rng.gen(); /// println!("{}", x); /// println!("{:?}", rng.gen::<(f64, bool)>()); /// } /// ``` #[inline(always)] fn gen(&mut self) -> T { Rand::rand(self) } /// Return a random vector of the specified length. /// /// # Example /// /// ```rust /// use std::rand; /// use std::rand::Rng; /// /// fn main() { /// let mut rng = rand::task_rng(); /// let x: ~[uint] = rng.gen_vec(10); /// println!("{:?}", x); /// println!("{:?}", rng.gen_vec::<(f64, bool)>(5)); /// } /// ``` fn gen_vec(&mut self, len: uint) -> ~[T] { vec::from_fn(len, |_| self.gen()) } /// Generate a random primitive integer in the range [`low`, /// `high`). Fails if `low >= high`. /// /// This gives a uniform distribution (assuming this RNG is itself /// uniform), even for edge cases like `gen_integer_range(0u8, /// 170)`, which a naive modulo operation would return numbers /// less than 85 with double the probability to those greater than /// 85. /// /// # Example /// /// ```rust /// use std::rand; /// use std::rand::Rng; /// /// fn main() { /// let mut rng = rand::task_rng(); /// let n: uint = rng.gen_integer_range(0u, 10); /// println!("{}", n); /// let m: int = rng.gen_integer_range(-40, 400); /// println!("{}", m); /// } /// ``` fn gen_integer_range(&mut self, low: T, high: T) -> T { assert!(low < high, "RNG.gen_integer_range called with low >= high"); let range = (high - low).to_u64().unwrap(); let accept_zone = u64::max_value - u64::max_value % range; loop { let rand = self.gen::(); if rand < accept_zone { return low + NumCast::from(rand % range).unwrap(); } } } /// Return a bool with a 1 in n chance of true /// /// # Example /// /// ```rust /// use std::rand; /// use std::rand::Rng; /// /// fn main() { /// let mut rng = rand::rng(); /// println!("{:b}", rng.gen_weighted_bool(3)); /// } /// ``` fn gen_weighted_bool(&mut self, n: uint) -> bool { n == 0 || self.gen_integer_range(0, n) == 0 } /// Return a random string of the specified length composed of /// A-Z,a-z,0-9. /// /// # Example /// /// ```rust /// use std::rand; /// use std::rand::Rng; /// /// fn main() { /// println(rand::task_rng().gen_ascii_str(10)); /// } /// ``` fn gen_ascii_str(&mut self, len: uint) -> ~str { static GEN_ASCII_STR_CHARSET: &'static [u8] = bytes!("ABCDEFGHIJKLMNOPQRSTUVWXYZ\ abcdefghijklmnopqrstuvwxyz\ 0123456789"); let mut s = str::with_capacity(len); for _ in range(0, len) { s.push_char(self.choose(GEN_ASCII_STR_CHARSET) as char) } s } /// Choose an item randomly, failing if `values` is empty. fn choose(&mut self, values: &[T]) -> T { self.choose_option(values).expect("Rng.choose: `values` is empty").clone() } /// Choose `Some(&item)` randomly, returning `None` if values is /// empty. /// /// # Example /// /// ```rust /// use std::rand; /// use std::rand::Rng; /// /// fn main() { /// println!("{:?}", rand::task_rng().choose_option([1,2,4,8,16,32])); /// println!("{:?}", rand::task_rng().choose_option([])); /// } /// ``` fn choose_option<'a, T>(&mut self, values: &'a [T]) -> Option<&'a T> { if values.is_empty() { None } else { Some(&values[self.gen_integer_range(0u, values.len())]) } } /// Choose an item respecting the relative weights, failing if the sum of /// the weights is 0 /// /// # Example /// /// ```rust /// use std::rand; /// use std::rand::Rng; /// /// fn main() { /// let mut rng = rand::rng(); /// let x = [rand::Weighted {weight: 4, item: 'a'}, /// rand::Weighted {weight: 2, item: 'b'}, /// rand::Weighted {weight: 2, item: 'c'}]; /// println!("{}", rng.choose_weighted(x)); /// } /// ``` fn choose_weighted(&mut self, v: &[Weighted]) -> T { self.choose_weighted_option(v).expect("Rng.choose_weighted: total weight is 0") } /// Choose Some(item) respecting the relative weights, returning none if /// the sum of the weights is 0 /// /// # Example /// /// ```rust /// use std::rand; /// use std::rand::Rng; /// /// fn main() { /// let mut rng = rand::rng(); /// let x = [rand::Weighted {weight: 4, item: 'a'}, /// rand::Weighted {weight: 2, item: 'b'}, /// rand::Weighted {weight: 2, item: 'c'}]; /// println!("{:?}", rng.choose_weighted_option(x)); /// } /// ``` fn choose_weighted_option(&mut self, v: &[Weighted]) -> Option { let mut total = 0u; for item in v.iter() { total += item.weight; } if total == 0u { return None; } let chosen = self.gen_integer_range(0u, total); let mut so_far = 0u; for item in v.iter() { so_far += item.weight; if so_far > chosen { return Some(item.item.clone()); } } unreachable!(); } /// Return a vec containing copies of the items, in order, where /// the weight of the item determines how many copies there are /// /// # Example /// /// ```rust /// use std::rand; /// use std::rand::Rng; /// /// fn main() { /// let mut rng = rand::rng(); /// let x = [rand::Weighted {weight: 4, item: 'a'}, /// rand::Weighted {weight: 2, item: 'b'}, /// rand::Weighted {weight: 2, item: 'c'}]; /// println!("{}", rng.weighted_vec(x)); /// } /// ``` fn weighted_vec(&mut self, v: &[Weighted]) -> ~[T] { let mut r = ~[]; for item in v.iter() { for _ in range(0u, item.weight) { r.push(item.item.clone()); } } r } /// Shuffle a vec /// /// # Example /// /// ```rust /// use std::rand; /// use std::rand::Rng; /// /// fn main() { /// println!("{:?}", rand::task_rng().shuffle(~[1,2,3])); /// } /// ``` fn shuffle(&mut self, values: ~[T]) -> ~[T] { let mut v = values; self.shuffle_mut(v); v } /// Shuffle a mutable vector in place. /// /// # Example /// /// ```rust /// use std::rand; /// use std::rand::Rng; /// /// fn main() { /// let mut rng = rand::task_rng(); /// let mut y = [1,2,3]; /// rng.shuffle_mut(y); /// println!("{:?}", y); /// rng.shuffle_mut(y); /// println!("{:?}", y); /// } /// ``` fn shuffle_mut(&mut self, values: &mut [T]) { let mut i = values.len(); while i >= 2u { // invariant: elements with index >= i have been locked in place. i -= 1u; // lock element i in place. values.swap(i, self.gen_integer_range(0u, i + 1u)); } } /// Randomly sample up to `n` elements from an iterator. /// /// # Example /// /// ```rust /// use std::rand; /// use std::rand::Rng; /// /// fn main() { /// let mut rng = rand::task_rng(); /// let sample = rng.sample(range(1, 100), 5); /// println!("{:?}", sample); /// } /// ``` fn sample>(&mut self, iter: T, n: uint) -> ~[A] { let mut reservoir : ~[A] = vec::with_capacity(n); for (i, elem) in iter.enumerate() { if i < n { reservoir.push(elem); continue } let k = self.gen_integer_range(0, i + 1); if k < reservoir.len() { reservoir[k] = elem } } reservoir } } /// A random number generator that can be explicitly seeded to produce /// the same stream of randomness multiple times. pub trait SeedableRng: Rng { /// Reseed an RNG with the given seed. /// /// # Example /// /// ```rust /// use std::rand; /// use std::rand::Rng; /// /// fn main() { /// let mut rng: rand::StdRng = rand::SeedableRng::from_seed(&[1, 2, 3, 4]); /// println!("{}", rng.gen::()); /// rng.reseed([5, 6, 7, 8]); /// println!("{}", rng.gen::()); /// } /// ``` fn reseed(&mut self, Seed); /// Create a new RNG with the given seed. /// /// # Example /// /// ```rust /// use std::rand; /// use std::rand::Rng; /// /// fn main() { /// let mut rng: rand::StdRng = rand::SeedableRng::from_seed(&[1, 2, 3, 4]); /// println!("{}", rng.gen::()); /// } /// ``` fn from_seed(seed: Seed) -> Self; } /// Create a random number generator with a default algorithm and seed. /// /// It returns the cryptographically-safest `Rng` algorithm currently /// available in Rust. If you require a specifically seeded `Rng` for /// consistency over time you should pick one algorithm and create the /// `Rng` yourself. /// /// This is a very expensive operation as it has to read randomness /// from the operating system and use this in an expensive seeding /// operation. If one does not require high performance generation of /// random numbers, `task_rng` and/or `random` may be more /// appropriate. pub fn rng() -> StdRng { StdRng::new() } /// The standard RNG. This is designed to be efficient on the current /// platform. #[cfg(not(target_word_size="64"))] pub struct StdRng { priv rng: IsaacRng } /// The standard RNG. This is designed to be efficient on the current /// platform. #[cfg(target_word_size="64")] pub struct StdRng { priv rng: Isaac64Rng } impl StdRng { /// Create a randomly seeded instance of `StdRng`. This reads /// randomness from the OS to seed the PRNG. #[cfg(not(target_word_size="64"))] pub fn new() -> StdRng { StdRng { rng: IsaacRng::new() } } /// Create a randomly seeded instance of `StdRng`. This reads /// randomness from the OS to seed the PRNG. #[cfg(target_word_size="64")] pub fn new() -> StdRng { StdRng { rng: Isaac64Rng::new() } } } impl Rng for StdRng { #[inline] fn next_u32(&mut self) -> u32 { self.rng.next_u32() } #[inline] fn next_u64(&mut self) -> u64 { self.rng.next_u64() } } impl<'self> SeedableRng<&'self [uint]> for StdRng { fn reseed(&mut self, seed: &'self [uint]) { // the internal RNG can just be seeded from the above // randomness. self.rng.reseed(unsafe {cast::transmute(seed)}) } fn from_seed(seed: &'self [uint]) -> StdRng { StdRng { rng: SeedableRng::from_seed(unsafe {cast::transmute(seed)}) } } } /// Create a weak random number generator with a default algorithm and seed. /// /// It returns the fastest `Rng` algorithm currently available in Rust without /// consideration for cryptography or security. If you require a specifically /// seeded `Rng` for consistency over time you should pick one algorithm and /// create the `Rng` yourself. /// /// This will read randomness from the operating system to seed the /// generator. pub fn weak_rng() -> XorShiftRng { XorShiftRng::new() } /// An [Xorshift random number /// generator](http://en.wikipedia.org/wiki/Xorshift). /// /// The Xorshift algorithm is not suitable for cryptographic purposes /// but is very fast. If you do not know for sure that it fits your /// requirements, use a more secure one such as `IsaacRng`. pub struct XorShiftRng { priv x: u32, priv y: u32, priv z: u32, priv w: u32, } impl Rng for XorShiftRng { #[inline] fn next_u32(&mut self) -> u32 { let x = self.x; let t = x ^ (x << 11); self.x = self.y; self.y = self.z; self.z = self.w; let w = self.w; self.w = w ^ (w >> 19) ^ (t ^ (t >> 8)); self.w } } impl SeedableRng<[u32, .. 4]> for XorShiftRng { /// Reseed an XorShiftRng. This will fail if `seed` is entirely 0. fn reseed(&mut self, seed: [u32, .. 4]) { assert!(!seed.iter().all(|&x| x == 0), "XorShiftRng.reseed called with an all zero seed."); self.x = seed[0]; self.y = seed[1]; self.z = seed[2]; self.w = seed[3]; } /// Create a new XorShiftRng. This will fail if `seed` is entirely 0. fn from_seed(seed: [u32, .. 4]) -> XorShiftRng { assert!(!seed.iter().all(|&x| x == 0), "XorShiftRng::from_seed called with an all zero seed."); XorShiftRng { x: seed[0], y: seed[1], z: seed[2], w: seed[3] } } } impl XorShiftRng { /// Create an xor shift random number generator with a random seed. pub fn new() -> XorShiftRng { // generate seeds the same way as seed(), except we have a // specific size, so we can just use a fixed buffer. let mut s = [0u8, ..16]; loop { let mut r = OSRng::new(); r.fill_bytes(s); if !s.iter().all(|x| *x == 0) { break; } } let s: [u32, ..4] = unsafe { cast::transmute(s) }; SeedableRng::from_seed(s) } } /// Controls how the task-local RNG is reseeded. enum TaskRngReseeder { /// Reseed using the StdRng::new() function, i.e. reading new /// randomness. WithNew, /// Don't reseed at all, e.g. when it has been explicitly seeded /// by the user. DontReseed } impl Default for TaskRngReseeder { fn default() -> TaskRngReseeder { WithNew } } impl reseeding::Reseeder for TaskRngReseeder { fn reseed(&mut self, rng: &mut StdRng) { match *self { WithNew => *rng = StdRng::new(), DontReseed => {} } } } static TASK_RNG_RESEED_THRESHOLD: uint = 32_768; /// The task-local RNG. pub type TaskRng = reseeding::ReseedingRng; // used to make space in TLS for a random number generator local_data_key!(TASK_RNG_KEY: @mut TaskRng) /// Retrieve the lazily-initialized task-local random number /// generator, seeded by the system. Intended to be used in method /// chaining style, e.g. `task_rng().gen::()`. /// /// The RNG provided will reseed itself from the operating system /// after generating a certain amount of randomness, unless it was /// explicitly seeded either by `seed_task_rng` or by setting the /// `RUST_SEED` environmental variable to some integer. /// /// The internal RNG used is platform and architecture dependent, so /// may yield differing sequences on different computers, even when /// explicitly seeded with `seed_task_rng`. If absolute consistency is /// required, explicitly select an RNG, e.g. `IsaacRng` or /// `Isaac64Rng`. pub fn task_rng() -> @mut TaskRng { let r = local_data::get(TASK_RNG_KEY, |k| k.map(|&k| *k)); match r { None => { // check the environment let (sub_rng, reseeder) = match getenv("RUST_SEED") { None => (StdRng::new(), WithNew), Some(s) => match from_str::(s) { None => fail2!("`RUST_SEED` is `{}`, should be a positive integer.", s), // explicitly seeded, so don't overwrite the seed later. Some(seed) => (SeedableRng::from_seed(&[seed]), DontReseed), } }; let rng = @mut reseeding::ReseedingRng::new(sub_rng, TASK_RNG_RESEED_THRESHOLD, reseeder); local_data::set(TASK_RNG_KEY, rng); rng } Some(rng) => rng } } /// Explicitly seed (or reseed) the task-local random number /// generator. This stops the RNG from automatically reseeding itself. /// /// # Example /// /// ```rust /// use std::rand; /// /// fn main() { /// rand::seed_task_rng(&[10u]); /// println!("Same every time: {}", rand::random::()); /// /// rand::seed_task_rng(&[1u, 2, 3, 4, 5, 6, 7, 8]); /// println!("Same every time: {}", rand::random::()); /// } /// ``` pub fn seed_task_rng(seed: &[uint]) { let t_r = task_rng(); (*t_r).reseed(seed); t_r.reseeder = DontReseed; } // Allow direct chaining with `task_rng` impl Rng for @mut R { #[inline] fn next_u32(&mut self) -> u32 { (**self).next_u32() } #[inline] fn next_u64(&mut self) -> u64 { (**self).next_u64() } } /// Generate a random value using the task-local random number /// generator. /// /// # Example /// /// ```rust /// use std::rand::random; /// /// fn main() { /// if random() { /// let x = random(); /// println!("{}", 2u * x); /// } else { /// println!("{}", random::()); /// } /// } /// ``` #[inline] pub fn random() -> T { task_rng().gen() } #[cfg(test)] mod test { use iter::{Iterator, range}; use option::{Option, Some}; use super::*; #[test] fn test_fill_bytes_default() { let mut r = weak_rng(); let mut v = [0u8, .. 100]; r.fill_bytes(v); } #[test] fn test_gen_integer_range() { let mut r = rng(); for _ in range(0, 1000) { let a = r.gen_integer_range(-3i, 42); assert!(a >= -3 && a < 42); assert_eq!(r.gen_integer_range(0, 1), 0); assert_eq!(r.gen_integer_range(-12, -11), -12); } for _ in range(0, 1000) { let a = r.gen_integer_range(10, 42); assert!(a >= 10 && a < 42); assert_eq!(r.gen_integer_range(0, 1), 0); assert_eq!(r.gen_integer_range(3_000_000u, 3_000_001), 3_000_000); } } #[test] #[should_fail] fn test_gen_integer_range_fail_int() { let mut r = rng(); r.gen_integer_range(5i, -2); } #[test] #[should_fail] fn test_gen_integer_range_fail_uint() { let mut r = rng(); r.gen_integer_range(5u, 2u); } #[test] fn test_gen_f64() { let mut r = rng(); let a = r.gen::(); let b = r.gen::(); debug2!("{:?}", (a, b)); } #[test] fn test_gen_weighted_bool() { let mut r = rng(); assert_eq!(r.gen_weighted_bool(0u), true); assert_eq!(r.gen_weighted_bool(1u), true); } #[test] fn test_gen_ascii_str() { let mut r = rng(); debug2!("{}", r.gen_ascii_str(10u)); debug2!("{}", r.gen_ascii_str(10u)); debug2!("{}", r.gen_ascii_str(10u)); assert_eq!(r.gen_ascii_str(0u).len(), 0u); assert_eq!(r.gen_ascii_str(10u).len(), 10u); assert_eq!(r.gen_ascii_str(16u).len(), 16u); } #[test] fn test_gen_vec() { let mut r = rng(); assert_eq!(r.gen_vec::(0u).len(), 0u); assert_eq!(r.gen_vec::(10u).len(), 10u); assert_eq!(r.gen_vec::(16u).len(), 16u); } #[test] fn test_choose() { let mut r = rng(); assert_eq!(r.choose([1, 1, 1]), 1); } #[test] fn test_choose_option() { let mut r = rng(); let v: &[int] = &[]; assert!(r.choose_option(v).is_none()); let i = 1; let v = [1,1,1]; assert_eq!(r.choose_option(v), Some(&i)); } #[test] fn test_choose_weighted() { let mut r = rng(); assert!(r.choose_weighted([ Weighted { weight: 1u, item: 42 }, ]) == 42); assert!(r.choose_weighted([ Weighted { weight: 0u, item: 42 }, Weighted { weight: 1u, item: 43 }, ]) == 43); } #[test] fn test_choose_weighted_option() { let mut r = rng(); assert!(r.choose_weighted_option([ Weighted { weight: 1u, item: 42 }, ]) == Some(42)); assert!(r.choose_weighted_option([ Weighted { weight: 0u, item: 42 }, Weighted { weight: 1u, item: 43 }, ]) == Some(43)); let v: Option = r.choose_weighted_option([]); assert!(v.is_none()); } #[test] fn test_weighted_vec() { let mut r = rng(); let empty: ~[int] = ~[]; assert_eq!(r.weighted_vec([]), empty); assert!(r.weighted_vec([ Weighted { weight: 0u, item: 3u }, Weighted { weight: 1u, item: 2u }, Weighted { weight: 2u, item: 1u }, ]) == ~[2u, 1u, 1u]); } #[test] fn test_shuffle() { let mut r = rng(); let empty: ~[int] = ~[]; assert_eq!(r.shuffle(~[]), empty); assert_eq!(r.shuffle(~[1, 1, 1]), ~[1, 1, 1]); } #[test] fn test_task_rng() { let mut r = task_rng(); r.gen::(); assert_eq!(r.shuffle(~[1, 1, 1]), ~[1, 1, 1]); assert_eq!(r.gen_integer_range(0u, 1u), 0u); } #[test] fn test_random() { // not sure how to test this aside from just getting some values let _n : uint = random(); let _f : f32 = random(); let _o : Option> = random(); let _many : ((), (~uint, @int, ~Option<~(@u32, ~(@bool,))>), (u8, i8, u16, i16, u32, i32, u64, i64), (f32, (f64, (f64,)))) = random(); } #[test] fn test_sample() { let MIN_VAL = 1; let MAX_VAL = 100; let mut r = rng(); let vals = range(MIN_VAL, MAX_VAL).to_owned_vec(); let small_sample = r.sample(vals.iter(), 5); let large_sample = r.sample(vals.iter(), vals.len() + 5); assert_eq!(small_sample.len(), 5); assert_eq!(large_sample.len(), vals.len()); assert!(small_sample.iter().all(|e| { **e >= MIN_VAL && **e <= MAX_VAL })); } #[test] fn test_std_rng_seeded() { let s = OSRng::new().gen_vec::(256); let mut ra: StdRng = SeedableRng::from_seed(s.as_slice()); let mut rb: StdRng = SeedableRng::from_seed(s.as_slice()); assert_eq!(ra.gen_ascii_str(100u), rb.gen_ascii_str(100u)); } #[test] fn test_std_rng_reseed() { let s = OSRng::new().gen_vec::(256); let mut r: StdRng = SeedableRng::from_seed(s.as_slice()); let string1 = r.gen_ascii_str(100); r.reseed(s); let string2 = r.gen_ascii_str(100); assert_eq!(string1, string2); } #[test] fn test_seed_task_rng() { seed_task_rng([1]); let first = random::(); seed_task_rng([1]); let second = random::(); assert_eq!(first, second); } } #[cfg(test)] mod bench { use extra::test::BenchHarness; use rand::*; use sys::size_of; #[bench] fn rand_xorshift(bh: &mut BenchHarness) { let mut rng = XorShiftRng::new(); do bh.iter { rng.gen::(); } bh.bytes = size_of::() as u64; } #[bench] fn rand_isaac(bh: &mut BenchHarness) { let mut rng = IsaacRng::new(); do bh.iter { rng.gen::(); } bh.bytes = size_of::() as u64; } #[bench] fn rand_isaac64(bh: &mut BenchHarness) { let mut rng = Isaac64Rng::new(); do bh.iter { rng.gen::(); } bh.bytes = size_of::() as u64; } #[bench] fn rand_std(bh: &mut BenchHarness) { let mut rng = StdRng::new(); do bh.iter { rng.gen::(); } bh.bytes = size_of::() as u64; } #[bench] fn rand_shuffle_100(bh: &mut BenchHarness) { let mut rng = XorShiftRng::new(); let x : &mut[uint] = [1,..100]; do bh.iter { rng.shuffle_mut(x); } } }