// Copyright 2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use core::libc::c_ulonglong; use core::option::{Option, Some, None}; use core::vec; use lib::llvm::{ValueRef, TypeRef, True, False}; use middle::trans::_match; use middle::trans::build::*; use middle::trans::common::*; use middle::trans::machine; use middle::trans::type_of; use middle::ty; use syntax::ast; use util::ppaux::ty_to_str; // XXX: should this be done with boxed traits instead of ML-style? pub enum Repr { Unit(int), CEnum(int, int), /* discriminant range */ Univariant(Struct, Destructor), General(~[Struct]) } enum Destructor { DtorPresent, DtorAbsent, NoDtor } struct Struct { size: u64, align: u64, fields: ~[ty::t] } pub fn represent_node(bcx: block, node: ast::node_id) -> Repr { represent_type(bcx.ccx(), node_id_type(bcx, node)) } pub fn represent_type(cx: @CrateContext, t: ty::t) -> Repr { debug!("Representing: %s", ty_to_str(cx.tcx, t)); // XXX: cache this match ty::get(t).sty { ty::ty_tup(ref elems) => { Univariant(mk_struct(cx, *elems), NoDtor) } ty::ty_rec(ref fields) => { // XXX: Are these in the right order? Univariant(mk_struct(cx, fields.map(|f| f.mt.ty)), DtorAbsent) } ty::ty_struct(def_id, ref substs) => { let fields = ty::lookup_struct_fields(cx.tcx, def_id); let dt = ty::ty_dtor(cx.tcx, def_id).is_present(); Univariant(mk_struct(cx, fields.map(|field| { ty::lookup_field_type(cx.tcx, def_id, field.id, substs) })), if dt { DtorPresent } else { DtorAbsent }) } ty::ty_enum(def_id, ref substs) => { struct Case { discr: int, tys: ~[ty::t] }; let cases = do ty::enum_variants(cx.tcx, def_id).map |vi| { let arg_tys = do vi.args.map |&raw_ty| { ty::subst(cx.tcx, substs, raw_ty) }; Case { discr: vi.disr_val, tys: arg_tys } }; if cases.len() == 0 { // Uninhabitable; represent as unit Univariant(mk_struct(cx, ~[]), NoDtor) } else if cases.len() == 1 && cases[0].tys.len() == 0 { Unit(cases[0].discr) } else if cases.len() == 1 { // struct, tuple, newtype, etc. assert cases[0].discr == 0; Univariant(mk_struct(cx, cases[0].tys), NoDtor) } else if cases.all(|c| c.tys.len() == 0) { let discrs = cases.map(|c| c.discr); CEnum(discrs.min(), discrs.max()) } else { if !cases.alli(|i,c| c.discr == (i as int)) { cx.sess.bug(fmt!("non-C-like enum %s with specified \ discriminants", ty::item_path_str(cx.tcx, def_id))) } General(cases.map(|c| mk_struct(cx, c.tys))) } } _ => cx.sess.bug(~"adt::represent_type called on non-ADT type") } } fn mk_struct(cx: @CrateContext, tys: &[ty::t]) -> Struct { let lltys = tys.map(|&ty| type_of::sizing_type_of(cx, ty)); let llty_rec = T_struct(lltys); Struct { size: machine::llsize_of_alloc(cx, llty_rec) /*bad*/as u64, align: machine::llalign_of_min(cx, llty_rec) /*bad*/as u64, fields: vec::from_slice(tys) } } pub fn sizing_fields_of(cx: @CrateContext, r: &Repr) -> ~[TypeRef] { generic_fields_of(cx, r, true) } pub fn fields_of(cx: @CrateContext, r: &Repr) -> ~[TypeRef] { generic_fields_of(cx, r, false) } fn generic_fields_of(cx: @CrateContext, r: &Repr, sizing: bool) -> ~[TypeRef] { match *r { Unit(*) => ~[], CEnum(*) => ~[T_enum_discrim(cx)], Univariant(ref st, dt) => { let f = if sizing { st.fields.map(|&ty| type_of::sizing_type_of(cx, ty)) } else { st.fields.map(|&ty| type_of::type_of(cx, ty)) }; match dt { NoDtor => f, DtorAbsent => ~[T_struct(f)], DtorPresent => ~[T_struct(f), T_i8()] } } General(ref sts) => { ~[T_enum_discrim(cx), T_array(T_i8(), sts.map(|st| st.size).max() /*bad*/as uint)] } } } fn load_discr(bcx: block, scrutinee: ValueRef, min: int, max: int) -> ValueRef { let ptr = GEPi(bcx, scrutinee, [0, 0]); if max + 1 == min { // i.e., if the range is everything. The lo==hi case would be // rejected by the LLVM verifier (it would mean either an // empty set, which is impossible, or the entire range of the // type, which is pointless). Load(bcx, ptr) } else { // llvm::ConstantRange can deal with ranges that wrap around, // so an overflow on (max + 1) is fine. LoadRangeAssert(bcx, ptr, min as c_ulonglong, (max + 1) as c_ulonglong, /* signed: */ True) } } pub fn trans_switch(bcx: block, r: &Repr, scrutinee: ValueRef) -> (_match::branch_kind, Option) { match *r { CEnum(*) | General(*) => { (_match::switch, Some(trans_cast_to_int(bcx, r, scrutinee))) } Unit(*) | Univariant(*) => { (_match::single, None) } } } pub fn trans_cast_to_int(bcx: block, r: &Repr, scrutinee: ValueRef) -> ValueRef { match *r { Unit(the_disc) => C_int(bcx.ccx(), the_disc), CEnum(min, max) => load_discr(bcx, scrutinee, min, max), Univariant(*) => bcx.ccx().sess.bug(~"type has no explicit \ discriminant"), General(ref cases) => load_discr(bcx, scrutinee, 0, (cases.len() - 1) as int) } } pub fn trans_case(bcx: block, r: &Repr, discr: int) -> _match::opt_result { match *r { CEnum(*) => { _match::single_result(rslt(bcx, C_int(bcx.ccx(), discr))) } Unit(*) | Univariant(*)=> { bcx.ccx().sess.bug(~"no cases for univariants or structs") } General(*) => { _match::single_result(rslt(bcx, C_int(bcx.ccx(), discr))) } } } pub fn trans_set_discr(bcx: block, r: &Repr, val: ValueRef, discr: int) { match *r { Unit(the_discr) => { assert discr == the_discr; } CEnum(min, max) => { assert min <= discr && discr <= max; Store(bcx, C_int(bcx.ccx(), discr), GEPi(bcx, val, [0, 0])) } Univariant(_, DtorPresent) => { assert discr == 0; Store(bcx, C_u8(1), GEPi(bcx, val, [0, 1])) } Univariant(*) => { assert discr == 0; } General(*) => { Store(bcx, C_int(bcx.ccx(), discr), GEPi(bcx, val, [0, 0])) } } } pub fn num_args(r: &Repr, discr: int) -> uint { match *r { Unit(*) | CEnum(*) => 0, Univariant(ref st, _dt) => { assert discr == 0; st.fields.len() } General(ref cases) => cases[discr as uint].fields.len() } } pub fn trans_GEP(bcx: block, r: &Repr, val: ValueRef, discr: int, ix: uint) -> ValueRef { // Note: if this ever needs to generate conditionals (e.g., if we // decide to do some kind of cdr-coding-like non-unique repr // someday), it'll need to return a possibly-new bcx as well. match *r { Unit(*) | CEnum(*) => { bcx.ccx().sess.bug(~"element access in C-like enum") } Univariant(ref st, dt) => { assert discr == 0; let val = match dt { NoDtor => val, DtorPresent | DtorAbsent => GEPi(bcx, val, [0, 0]) }; struct_GEP(bcx, st, val, ix, false) } General(ref cases) => { struct_GEP(bcx, &cases[discr as uint], GEPi(bcx, val, [0, 1]), ix, true) } } } fn struct_GEP(bcx: block, st: &Struct, val: ValueRef, ix: uint, needs_cast: bool) -> ValueRef { let ccx = bcx.ccx(); let val = if needs_cast { let real_llty = T_struct(st.fields.map( |&ty| type_of::type_of(ccx, ty))); PointerCast(bcx, val, T_ptr(real_llty)) } else { val }; GEPi(bcx, val, [0, ix]) } pub fn trans_drop_flag_ptr(bcx: block, r: &Repr, val: ValueRef) -> ValueRef { match *r { Univariant(_, DtorPresent) => GEPi(bcx, val, [0, 1]), _ => bcx.ccx().sess.bug(~"tried to get drop flag of non-droppable \ type") } } pub fn trans_const(ccx: @CrateContext, r: &Repr, discr: int, vals: &[ValueRef]) -> ValueRef { match *r { Unit(*) => { C_struct(~[]) } CEnum(min, max) => { assert vals.len() == 0; assert min <= discr && discr <= max; C_int(ccx, discr) } Univariant(ref st, dt) => { assert discr == 0; let s = C_struct(build_const_struct(ccx, st, vals)); match dt { NoDtor => s, // The actual destructor flag doesn't need to be present. // But add an extra struct layer for compatibility. DtorPresent | DtorAbsent => C_struct(~[s]) } } General(ref cases) => { let case = &cases[discr as uint]; let max_sz = cases.map(|s| s.size).max(); let body = build_const_struct(ccx, case, vals); C_struct([C_int(ccx, discr), C_packed_struct([C_struct(body)]), padding(max_sz - case.size)]) } } } fn padding(size: u64) -> ValueRef { C_undef(T_array(T_i8(), size /*bad*/as uint)) } fn build_const_struct(ccx: @CrateContext, st: &Struct, vals: &[ValueRef]) -> ~[ValueRef] { assert vals.len() == st.fields.len(); let mut offset = 0; let mut cfields = ~[]; for st.fields.eachi |i, &ty| { let llty = type_of::sizing_type_of(ccx, ty); let type_align = machine::llalign_of_min(ccx, llty) /*bad*/as u64; let val_align = machine::llalign_of_min(ccx, val_ty(vals[i])) /*bad*/as u64; let target_offset = roundup(offset, type_align); offset = roundup(offset, val_align); if (offset != target_offset) { cfields.push(padding(target_offset - offset)); offset = target_offset; } assert !is_undef(vals[i]); // If that assert fails, could change it to wrap in a struct? cfields.push(vals[i]); } return cfields; } #[always_inline] fn roundup(x: u64, a: u64) -> u64 { ((x + (a - 1)) / a) * a } pub fn const_get_discrim(ccx: @CrateContext, r: &Repr, val: ValueRef) -> int { match *r { Unit(discr) => discr, CEnum(*) => const_to_int(val) as int, Univariant(*) => 0, General(*) => const_to_int(const_get_elt(ccx, val, [0])) as int, } } pub fn const_get_element(ccx: @CrateContext, r: &Repr, val: ValueRef, _discr: int, ix: uint) -> ValueRef { // Not to be confused with common::const_get_elt. match *r { Unit(*) | CEnum(*) => ccx.sess.bug(~"element access in C-like enum \ const"), Univariant(_, NoDtor) => const_struct_field(ccx, val, ix), Univariant(*) => const_struct_field(ccx, const_get_elt(ccx, val, [0]), ix), General(*) => const_struct_field(ccx, const_get_elt(ccx, val, [1, 0]), ix) } } fn const_struct_field(ccx: @CrateContext, val: ValueRef, ix: uint) -> ValueRef { // Get the ix-th non-undef element of the struct. let mut real_ix = 0; // actual position in the struct let mut ix = ix; // logical index relative to real_ix let mut field; loop { loop { field = const_get_elt(ccx, val, [real_ix]); if !is_undef(field) { break; } real_ix = real_ix + 1; } if ix == 0 { return field; } ix = ix - 1; real_ix = real_ix + 1; } } /// Is it safe to bitcast a value to the one field of its one variant? pub fn is_newtypeish(r: &Repr) -> bool { match *r { Univariant(ref st, DtorAbsent) | Univariant(ref st, NoDtor) => st.fields.len() == 1, _ => false } }