use crate::base::*; use crate::config::StripUnconfigured; use crate::hygiene::{ExpnData, ExpnId, ExpnKind, SyntaxContext}; use crate::mbe::macro_rules::annotate_err_with_kind; use crate::placeholders::{placeholder, PlaceholderExpander}; use crate::proc_macro::collect_derives; use rustc_data_structures::sync::Lrc; use rustc_errors::{Applicability, FatalError, PResult}; use rustc_feature::Features; use rustc_parse::configure; use rustc_parse::parser::Parser; use rustc_parse::validate_attr; use rustc_parse::DirectoryOwnership; use rustc_span::source_map::respan; use rustc_span::symbol::{sym, Symbol}; use rustc_span::{FileName, Span, DUMMY_SP}; use syntax::ast::{self, AttrItem, Block, Ident, LitKind, NodeId, PatKind, Path}; use syntax::ast::{ItemKind, MacArgs, MacStmtStyle, StmtKind}; use syntax::attr::{self, is_builtin_attr, HasAttrs}; use syntax::mut_visit::*; use syntax::print::pprust; use syntax::ptr::P; use syntax::sess::{feature_err, ParseSess}; use syntax::token; use syntax::tokenstream::{TokenStream, TokenTree}; use syntax::util::map_in_place::MapInPlace; use syntax::visit::{self, Visitor}; use smallvec::{smallvec, SmallVec}; use std::io::ErrorKind; use std::ops::DerefMut; use std::path::PathBuf; use std::rc::Rc; use std::{iter, mem, slice}; macro_rules! ast_fragments { ( $($Kind:ident($AstTy:ty) { $kind_name:expr; $(one fn $mut_visit_ast:ident; fn $visit_ast:ident;)? $(many fn $flat_map_ast_elt:ident; fn $visit_ast_elt:ident;)? fn $make_ast:ident; })* ) => { /// A fragment of AST that can be produced by a single macro expansion. /// Can also serve as an input and intermediate result for macro expansion operations. pub enum AstFragment { OptExpr(Option>), $($Kind($AstTy),)* } /// "Discriminant" of an AST fragment. #[derive(Copy, Clone, PartialEq, Eq)] pub enum AstFragmentKind { OptExpr, $($Kind,)* } impl AstFragmentKind { pub fn name(self) -> &'static str { match self { AstFragmentKind::OptExpr => "expression", $(AstFragmentKind::$Kind => $kind_name,)* } } fn make_from<'a>(self, result: Box) -> Option { match self { AstFragmentKind::OptExpr => result.make_expr().map(Some).map(AstFragment::OptExpr), $(AstFragmentKind::$Kind => result.$make_ast().map(AstFragment::$Kind),)* } } } impl AstFragment { pub fn add_placeholders(&mut self, placeholders: &[NodeId]) { if placeholders.is_empty() { return; } match self { $($(AstFragment::$Kind(ast) => ast.extend(placeholders.iter().flat_map(|id| { // We are repeating through arguments with `many`, to do that we have to // mention some macro variable from those arguments even if it's not used. macro _repeating($flat_map_ast_elt) {} placeholder(AstFragmentKind::$Kind, *id, None).$make_ast() })),)?)* _ => panic!("unexpected AST fragment kind") } } pub fn make_opt_expr(self) -> Option> { match self { AstFragment::OptExpr(expr) => expr, _ => panic!("AstFragment::make_* called on the wrong kind of fragment"), } } $(pub fn $make_ast(self) -> $AstTy { match self { AstFragment::$Kind(ast) => ast, _ => panic!("AstFragment::make_* called on the wrong kind of fragment"), } })* pub fn mut_visit_with(&mut self, vis: &mut F) { match self { AstFragment::OptExpr(opt_expr) => { visit_clobber(opt_expr, |opt_expr| { if let Some(expr) = opt_expr { vis.filter_map_expr(expr) } else { None } }); } $($(AstFragment::$Kind(ast) => vis.$mut_visit_ast(ast),)?)* $($(AstFragment::$Kind(ast) => ast.flat_map_in_place(|ast| vis.$flat_map_ast_elt(ast)),)?)* } } pub fn visit_with<'a, V: Visitor<'a>>(&'a self, visitor: &mut V) { match *self { AstFragment::OptExpr(Some(ref expr)) => visitor.visit_expr(expr), AstFragment::OptExpr(None) => {} $($(AstFragment::$Kind(ref ast) => visitor.$visit_ast(ast),)?)* $($(AstFragment::$Kind(ref ast) => for ast_elt in &ast[..] { visitor.$visit_ast_elt(ast_elt); })?)* } } } impl<'a> MacResult for crate::mbe::macro_rules::ParserAnyMacro<'a> { $(fn $make_ast(self: Box>) -> Option<$AstTy> { Some(self.make(AstFragmentKind::$Kind).$make_ast()) })* } } } ast_fragments! { Expr(P) { "expression"; one fn visit_expr; fn visit_expr; fn make_expr; } Pat(P) { "pattern"; one fn visit_pat; fn visit_pat; fn make_pat; } Ty(P) { "type"; one fn visit_ty; fn visit_ty; fn make_ty; } Stmts(SmallVec<[ast::Stmt; 1]>) { "statement"; many fn flat_map_stmt; fn visit_stmt; fn make_stmts; } Items(SmallVec<[P; 1]>) { "item"; many fn flat_map_item; fn visit_item; fn make_items; } TraitItems(SmallVec<[ast::AssocItem; 1]>) { "trait item"; many fn flat_map_trait_item; fn visit_trait_item; fn make_trait_items; } ImplItems(SmallVec<[ast::AssocItem; 1]>) { "impl item"; many fn flat_map_impl_item; fn visit_impl_item; fn make_impl_items; } ForeignItems(SmallVec<[ast::ForeignItem; 1]>) { "foreign item"; many fn flat_map_foreign_item; fn visit_foreign_item; fn make_foreign_items; } Arms(SmallVec<[ast::Arm; 1]>) { "match arm"; many fn flat_map_arm; fn visit_arm; fn make_arms; } Fields(SmallVec<[ast::Field; 1]>) { "field expression"; many fn flat_map_field; fn visit_field; fn make_fields; } FieldPats(SmallVec<[ast::FieldPat; 1]>) { "field pattern"; many fn flat_map_field_pattern; fn visit_field_pattern; fn make_field_patterns; } GenericParams(SmallVec<[ast::GenericParam; 1]>) { "generic parameter"; many fn flat_map_generic_param; fn visit_generic_param; fn make_generic_params; } Params(SmallVec<[ast::Param; 1]>) { "function parameter"; many fn flat_map_param; fn visit_param; fn make_params; } StructFields(SmallVec<[ast::StructField; 1]>) { "field"; many fn flat_map_struct_field; fn visit_struct_field; fn make_struct_fields; } Variants(SmallVec<[ast::Variant; 1]>) { "variant"; many fn flat_map_variant; fn visit_variant; fn make_variants; } } impl AstFragmentKind { fn dummy(self, span: Span) -> AstFragment { self.make_from(DummyResult::any(span)).expect("couldn't create a dummy AST fragment") } fn expect_from_annotatables>( self, items: I, ) -> AstFragment { let mut items = items.into_iter(); match self { AstFragmentKind::Arms => { AstFragment::Arms(items.map(Annotatable::expect_arm).collect()) } AstFragmentKind::Fields => { AstFragment::Fields(items.map(Annotatable::expect_field).collect()) } AstFragmentKind::FieldPats => { AstFragment::FieldPats(items.map(Annotatable::expect_field_pattern).collect()) } AstFragmentKind::GenericParams => { AstFragment::GenericParams(items.map(Annotatable::expect_generic_param).collect()) } AstFragmentKind::Params => { AstFragment::Params(items.map(Annotatable::expect_param).collect()) } AstFragmentKind::StructFields => { AstFragment::StructFields(items.map(Annotatable::expect_struct_field).collect()) } AstFragmentKind::Variants => { AstFragment::Variants(items.map(Annotatable::expect_variant).collect()) } AstFragmentKind::Items => { AstFragment::Items(items.map(Annotatable::expect_item).collect()) } AstFragmentKind::ImplItems => { AstFragment::ImplItems(items.map(Annotatable::expect_impl_item).collect()) } AstFragmentKind::TraitItems => { AstFragment::TraitItems(items.map(Annotatable::expect_trait_item).collect()) } AstFragmentKind::ForeignItems => { AstFragment::ForeignItems(items.map(Annotatable::expect_foreign_item).collect()) } AstFragmentKind::Stmts => { AstFragment::Stmts(items.map(Annotatable::expect_stmt).collect()) } AstFragmentKind::Expr => AstFragment::Expr( items.next().expect("expected exactly one expression").expect_expr(), ), AstFragmentKind::OptExpr => { AstFragment::OptExpr(items.next().map(Annotatable::expect_expr)) } AstFragmentKind::Pat | AstFragmentKind::Ty => { panic!("patterns and types aren't annotatable") } } } } pub struct Invocation { pub kind: InvocationKind, pub fragment_kind: AstFragmentKind, pub expansion_data: ExpansionData, } pub enum InvocationKind { Bang { mac: ast::Mac, span: Span, }, Attr { attr: ast::Attribute, item: Annotatable, // Required for resolving derive helper attributes. derives: Vec, // We temporarily report errors for attribute macros placed after derives after_derive: bool, }, Derive { path: Path, item: Annotatable, }, /// "Invocation" that contains all derives from an item, /// broken into multiple `Derive` invocations when expanded. /// FIXME: Find a way to remove it. DeriveContainer { derives: Vec, item: Annotatable, }, } impl InvocationKind { fn placeholder_visibility(&self) -> Option { // HACK: For unnamed fields placeholders should have the same visibility as the actual // fields because for tuple structs/variants resolve determines visibilities of their // constructor using these field visibilities before attributes on them are are expanded. // The assumption is that the attribute expansion cannot change field visibilities, // and it holds because only inert attributes are supported in this position. match self { InvocationKind::Attr { item: Annotatable::StructField(field), .. } | InvocationKind::Derive { item: Annotatable::StructField(field), .. } | InvocationKind::DeriveContainer { item: Annotatable::StructField(field), .. } if field.ident.is_none() => { Some(field.vis.clone()) } _ => None, } } } impl Invocation { pub fn span(&self) -> Span { match &self.kind { InvocationKind::Bang { span, .. } => *span, InvocationKind::Attr { attr, .. } => attr.span, InvocationKind::Derive { path, .. } => path.span, InvocationKind::DeriveContainer { item, .. } => item.span(), } } } pub struct MacroExpander<'a, 'b> { pub cx: &'a mut ExtCtxt<'b>, monotonic: bool, // cf. `cx.monotonic_expander()` } impl<'a, 'b> MacroExpander<'a, 'b> { pub fn new(cx: &'a mut ExtCtxt<'b>, monotonic: bool) -> Self { MacroExpander { cx, monotonic } } pub fn expand_crate(&mut self, mut krate: ast::Crate) -> ast::Crate { let mut module = ModuleData { mod_path: vec![Ident::from_str(&self.cx.ecfg.crate_name)], directory: match self.cx.source_map().span_to_unmapped_path(krate.span) { FileName::Real(path) => path, other => PathBuf::from(other.to_string()), }, }; module.directory.pop(); self.cx.root_path = module.directory.clone(); self.cx.current_expansion.module = Rc::new(module); let orig_mod_span = krate.module.inner; let krate_item = AstFragment::Items(smallvec![P(ast::Item { attrs: krate.attrs, span: krate.span, kind: ast::ItemKind::Mod(krate.module), ident: Ident::invalid(), id: ast::DUMMY_NODE_ID, vis: respan(krate.span.shrink_to_lo(), ast::VisibilityKind::Public), tokens: None, })]); match self.fully_expand_fragment(krate_item).make_items().pop().map(P::into_inner) { Some(ast::Item { attrs, kind: ast::ItemKind::Mod(module), .. }) => { krate.attrs = attrs; krate.module = module; } None => { // Resolution failed so we return an empty expansion krate.attrs = vec![]; krate.module = ast::Mod { inner: orig_mod_span, items: vec![], inline: true }; } _ => unreachable!(), }; self.cx.trace_macros_diag(); krate } // Recursively expand all macro invocations in this AST fragment. pub fn fully_expand_fragment(&mut self, input_fragment: AstFragment) -> AstFragment { let orig_expansion_data = self.cx.current_expansion.clone(); self.cx.current_expansion.depth = 0; // Collect all macro invocations and replace them with placeholders. let (mut fragment_with_placeholders, mut invocations) = self.collect_invocations(input_fragment, &[]); // Optimization: if we resolve all imports now, // we'll be able to immediately resolve most of imported macros. self.resolve_imports(); // Resolve paths in all invocations and produce output expanded fragments for them, but // do not insert them into our input AST fragment yet, only store in `expanded_fragments`. // The output fragments also go through expansion recursively until no invocations are left. // Unresolved macros produce dummy outputs as a recovery measure. invocations.reverse(); let mut expanded_fragments = Vec::new(); let mut undetermined_invocations = Vec::new(); let (mut progress, mut force) = (false, !self.monotonic); loop { let invoc = if let Some(invoc) = invocations.pop() { invoc } else { self.resolve_imports(); if undetermined_invocations.is_empty() { break; } invocations = mem::take(&mut undetermined_invocations); force = !mem::replace(&mut progress, false); continue; }; let eager_expansion_root = if self.monotonic { invoc.expansion_data.id } else { orig_expansion_data.id }; let res = match self.cx.resolver.resolve_macro_invocation( &invoc, eager_expansion_root, force, ) { Ok(res) => res, Err(Indeterminate) => { undetermined_invocations.push(invoc); continue; } }; progress = true; let ExpansionData { depth, id: expn_id, .. } = invoc.expansion_data; self.cx.current_expansion = invoc.expansion_data.clone(); // FIXME(jseyfried): Refactor out the following logic let (expanded_fragment, new_invocations) = match res { InvocationRes::Single(ext) => { let fragment = self.expand_invoc(invoc, &ext.kind); self.collect_invocations(fragment, &[]) } InvocationRes::DeriveContainer(_exts) => { // FIXME: Consider using the derive resolutions (`_exts`) immediately, // instead of enqueuing the derives to be resolved again later. let (derives, item) = match invoc.kind { InvocationKind::DeriveContainer { derives, item } => (derives, item), _ => unreachable!(), }; if !item.derive_allowed() { let attr = attr::find_by_name(item.attrs(), sym::derive) .expect("`derive` attribute should exist"); let span = attr.span; let mut err = self.cx.struct_span_err( span, "`derive` may only be applied to structs, enums and unions", ); if let ast::AttrStyle::Inner = attr.style { let trait_list = derives .iter() .map(|t| pprust::path_to_string(t)) .collect::>(); let suggestion = format!("#[derive({})]", trait_list.join(", ")); err.span_suggestion( span, "try an outer attribute", suggestion, // We don't 𝑘𝑛𝑜𝑤 that the following item is an ADT Applicability::MaybeIncorrect, ); } err.emit(); } let mut item = self.fully_configure(item); item.visit_attrs(|attrs| attrs.retain(|a| !a.has_name(sym::derive))); let mut derive_placeholders = Vec::with_capacity(derives.len()); invocations.reserve(derives.len()); for path in derives { let expn_id = ExpnId::fresh(None); derive_placeholders.push(NodeId::placeholder_from_expn_id(expn_id)); invocations.push(Invocation { kind: InvocationKind::Derive { path, item: item.clone() }, fragment_kind: invoc.fragment_kind, expansion_data: ExpansionData { id: expn_id, ..invoc.expansion_data.clone() }, }); } let fragment = invoc.fragment_kind.expect_from_annotatables(::std::iter::once(item)); self.collect_invocations(fragment, &derive_placeholders) } }; if expanded_fragments.len() < depth { expanded_fragments.push(Vec::new()); } expanded_fragments[depth - 1].push((expn_id, expanded_fragment)); if !self.cx.ecfg.single_step { invocations.extend(new_invocations.into_iter().rev()); } } self.cx.current_expansion = orig_expansion_data; // Finally incorporate all the expanded macros into the input AST fragment. let mut placeholder_expander = PlaceholderExpander::new(self.cx, self.monotonic); while let Some(expanded_fragments) = expanded_fragments.pop() { for (expn_id, expanded_fragment) in expanded_fragments.into_iter().rev() { placeholder_expander .add(NodeId::placeholder_from_expn_id(expn_id), expanded_fragment); } } fragment_with_placeholders.mut_visit_with(&mut placeholder_expander); fragment_with_placeholders } fn resolve_imports(&mut self) { if self.monotonic { self.cx.resolver.resolve_imports(); } } /// Collects all macro invocations reachable at this time in this AST fragment, and replace /// them with "placeholders" - dummy macro invocations with specially crafted `NodeId`s. /// Then call into resolver that builds a skeleton ("reduced graph") of the fragment and /// prepares data for resolving paths of macro invocations. fn collect_invocations( &mut self, mut fragment: AstFragment, extra_placeholders: &[NodeId], ) -> (AstFragment, Vec) { // Resolve `$crate`s in the fragment for pretty-printing. self.cx.resolver.resolve_dollar_crates(); let invocations = { let mut collector = InvocationCollector { cfg: StripUnconfigured { sess: self.cx.parse_sess, features: self.cx.ecfg.features, }, cx: self.cx, invocations: Vec::new(), monotonic: self.monotonic, }; fragment.mut_visit_with(&mut collector); fragment.add_placeholders(extra_placeholders); collector.invocations }; if self.monotonic { self.cx .resolver .visit_ast_fragment_with_placeholders(self.cx.current_expansion.id, &fragment); } (fragment, invocations) } fn fully_configure(&mut self, item: Annotatable) -> Annotatable { let mut cfg = StripUnconfigured { sess: self.cx.parse_sess, features: self.cx.ecfg.features }; // Since the item itself has already been configured by the InvocationCollector, // we know that fold result vector will contain exactly one element match item { Annotatable::Item(item) => Annotatable::Item(cfg.flat_map_item(item).pop().unwrap()), Annotatable::TraitItem(item) => Annotatable::TraitItem( item.map(|item| cfg.flat_map_trait_item(item).pop().unwrap()), ), Annotatable::ImplItem(item) => { Annotatable::ImplItem(item.map(|item| cfg.flat_map_impl_item(item).pop().unwrap())) } Annotatable::ForeignItem(item) => Annotatable::ForeignItem( item.map(|item| cfg.flat_map_foreign_item(item).pop().unwrap()), ), Annotatable::Stmt(stmt) => { Annotatable::Stmt(stmt.map(|stmt| cfg.flat_map_stmt(stmt).pop().unwrap())) } Annotatable::Expr(mut expr) => Annotatable::Expr({ cfg.visit_expr(&mut expr); expr }), Annotatable::Arm(arm) => Annotatable::Arm(cfg.flat_map_arm(arm).pop().unwrap()), Annotatable::Field(field) => { Annotatable::Field(cfg.flat_map_field(field).pop().unwrap()) } Annotatable::FieldPat(fp) => { Annotatable::FieldPat(cfg.flat_map_field_pattern(fp).pop().unwrap()) } Annotatable::GenericParam(param) => { Annotatable::GenericParam(cfg.flat_map_generic_param(param).pop().unwrap()) } Annotatable::Param(param) => { Annotatable::Param(cfg.flat_map_param(param).pop().unwrap()) } Annotatable::StructField(sf) => { Annotatable::StructField(cfg.flat_map_struct_field(sf).pop().unwrap()) } Annotatable::Variant(v) => Annotatable::Variant(cfg.flat_map_variant(v).pop().unwrap()), } } fn expand_invoc(&mut self, invoc: Invocation, ext: &SyntaxExtensionKind) -> AstFragment { if self.cx.current_expansion.depth > self.cx.ecfg.recursion_limit { let expn_data = self.cx.current_expansion.id.expn_data(); let suggested_limit = self.cx.ecfg.recursion_limit * 2; let mut err = self.cx.struct_span_err( expn_data.call_site, &format!("recursion limit reached while expanding `{}`", expn_data.kind.descr()), ); err.help(&format!( "consider adding a `#![recursion_limit=\"{}\"]` attribute to your crate", suggested_limit )); err.emit(); self.cx.trace_macros_diag(); FatalError.raise(); } let (fragment_kind, span) = (invoc.fragment_kind, invoc.span()); match invoc.kind { InvocationKind::Bang { mac, .. } => match ext { SyntaxExtensionKind::Bang(expander) => { self.gate_proc_macro_expansion_kind(span, fragment_kind); let tok_result = expander.expand(self.cx, span, mac.args.inner_tokens()); self.parse_ast_fragment(tok_result, fragment_kind, &mac.path, span) } SyntaxExtensionKind::LegacyBang(expander) => { let prev = self.cx.current_expansion.prior_type_ascription; self.cx.current_expansion.prior_type_ascription = mac.prior_type_ascription; let tok_result = expander.expand(self.cx, span, mac.args.inner_tokens()); let result = if let Some(result) = fragment_kind.make_from(tok_result) { result } else { let msg = format!( "non-{kind} macro in {kind} position: {path}", kind = fragment_kind.name(), path = pprust::path_to_string(&mac.path), ); self.cx.span_err(span, &msg); self.cx.trace_macros_diag(); fragment_kind.dummy(span) }; self.cx.current_expansion.prior_type_ascription = prev; result } _ => unreachable!(), }, InvocationKind::Attr { attr, mut item, .. } => match ext { SyntaxExtensionKind::Attr(expander) => { self.gate_proc_macro_input(&item); self.gate_proc_macro_attr_item(span, &item); let item_tok = TokenTree::token( token::Interpolated(Lrc::new(match item { Annotatable::Item(item) => token::NtItem(item), Annotatable::TraitItem(item) => token::NtTraitItem(item.into_inner()), Annotatable::ImplItem(item) => token::NtImplItem(item.into_inner()), Annotatable::ForeignItem(item) => { token::NtForeignItem(item.into_inner()) } Annotatable::Stmt(stmt) => token::NtStmt(stmt.into_inner()), Annotatable::Expr(expr) => token::NtExpr(expr), Annotatable::Arm(..) | Annotatable::Field(..) | Annotatable::FieldPat(..) | Annotatable::GenericParam(..) | Annotatable::Param(..) | Annotatable::StructField(..) | Annotatable::Variant(..) => panic!("unexpected annotatable"), })), DUMMY_SP, ) .into(); let item = attr.unwrap_normal_item(); if let MacArgs::Eq(..) = item.args { self.cx.span_err(span, "key-value macro attributes are not supported"); } let tok_result = expander.expand(self.cx, span, item.args.inner_tokens(), item_tok); self.parse_ast_fragment(tok_result, fragment_kind, &item.path, span) } SyntaxExtensionKind::LegacyAttr(expander) => { match validate_attr::parse_meta(self.cx.parse_sess, &attr) { Ok(meta) => { let item = expander.expand(self.cx, span, &meta, item); fragment_kind.expect_from_annotatables(item) } Err(mut err) => { err.emit(); fragment_kind.dummy(span) } } } SyntaxExtensionKind::NonMacroAttr { mark_used } => { attr::mark_known(&attr); if *mark_used { attr::mark_used(&attr); } item.visit_attrs(|attrs| attrs.push(attr)); fragment_kind.expect_from_annotatables(iter::once(item)) } _ => unreachable!(), }, InvocationKind::Derive { path, item } => match ext { SyntaxExtensionKind::Derive(expander) | SyntaxExtensionKind::LegacyDerive(expander) => { if !item.derive_allowed() { return fragment_kind.dummy(span); } if let SyntaxExtensionKind::Derive(..) = ext { self.gate_proc_macro_input(&item); } let meta = ast::MetaItem { kind: ast::MetaItemKind::Word, span, path }; let items = expander.expand(self.cx, span, &meta, item); fragment_kind.expect_from_annotatables(items) } _ => unreachable!(), }, InvocationKind::DeriveContainer { .. } => unreachable!(), } } fn gate_proc_macro_attr_item(&self, span: Span, item: &Annotatable) { let kind = match item { Annotatable::Item(_) | Annotatable::TraitItem(_) | Annotatable::ImplItem(_) | Annotatable::ForeignItem(_) => return, Annotatable::Stmt(_) => "statements", Annotatable::Expr(_) => "expressions", Annotatable::Arm(..) | Annotatable::Field(..) | Annotatable::FieldPat(..) | Annotatable::GenericParam(..) | Annotatable::Param(..) | Annotatable::StructField(..) | Annotatable::Variant(..) => panic!("unexpected annotatable"), }; if self.cx.ecfg.proc_macro_hygiene() { return; } feature_err( self.cx.parse_sess, sym::proc_macro_hygiene, span, &format!("custom attributes cannot be applied to {}", kind), ) .emit(); } fn gate_proc_macro_input(&self, annotatable: &Annotatable) { struct GateProcMacroInput<'a> { parse_sess: &'a ParseSess, } impl<'ast, 'a> Visitor<'ast> for GateProcMacroInput<'a> { fn visit_item(&mut self, item: &'ast ast::Item) { match &item.kind { ast::ItemKind::Mod(module) if !module.inline => { feature_err( self.parse_sess, sym::proc_macro_hygiene, item.span, "non-inline modules in proc macro input are unstable", ) .emit(); } _ => {} } visit::walk_item(self, item); } fn visit_mac(&mut self, _: &'ast ast::Mac) {} } if !self.cx.ecfg.proc_macro_hygiene() { annotatable.visit_with(&mut GateProcMacroInput { parse_sess: self.cx.parse_sess }); } } fn gate_proc_macro_expansion_kind(&self, span: Span, kind: AstFragmentKind) { let kind = match kind { AstFragmentKind::Expr | AstFragmentKind::OptExpr => "expressions", AstFragmentKind::Pat => "patterns", AstFragmentKind::Stmts => "statements", AstFragmentKind::Ty | AstFragmentKind::Items | AstFragmentKind::TraitItems | AstFragmentKind::ImplItems | AstFragmentKind::ForeignItems => return, AstFragmentKind::Arms | AstFragmentKind::Fields | AstFragmentKind::FieldPats | AstFragmentKind::GenericParams | AstFragmentKind::Params | AstFragmentKind::StructFields | AstFragmentKind::Variants => panic!("unexpected AST fragment kind"), }; if self.cx.ecfg.proc_macro_hygiene() { return; } feature_err( self.cx.parse_sess, sym::proc_macro_hygiene, span, &format!("procedural macros cannot be expanded to {}", kind), ) .emit(); } fn parse_ast_fragment( &mut self, toks: TokenStream, kind: AstFragmentKind, path: &Path, span: Span, ) -> AstFragment { let mut parser = self.cx.new_parser_from_tts(toks); match parse_ast_fragment(&mut parser, kind, false) { Ok(fragment) => { ensure_complete_parse(&mut parser, path, kind.name(), span); fragment } Err(mut err) => { err.set_span(span); annotate_err_with_kind(&mut err, kind, span); err.emit(); self.cx.trace_macros_diag(); kind.dummy(span) } } } } pub fn parse_ast_fragment<'a>( this: &mut Parser<'a>, kind: AstFragmentKind, macro_legacy_warnings: bool, ) -> PResult<'a, AstFragment> { Ok(match kind { AstFragmentKind::Items => { let mut items = SmallVec::new(); while let Some(item) = this.parse_item()? { items.push(item); } AstFragment::Items(items) } AstFragmentKind::TraitItems => { let mut items = SmallVec::new(); while this.token != token::Eof { items.push(this.parse_trait_item(&mut false)?); } AstFragment::TraitItems(items) } AstFragmentKind::ImplItems => { let mut items = SmallVec::new(); while this.token != token::Eof { items.push(this.parse_impl_item(&mut false)?); } AstFragment::ImplItems(items) } AstFragmentKind::ForeignItems => { let mut items = SmallVec::new(); while this.token != token::Eof { items.push(this.parse_foreign_item(DUMMY_SP)?); } AstFragment::ForeignItems(items) } AstFragmentKind::Stmts => { let mut stmts = SmallVec::new(); while this.token != token::Eof && // won't make progress on a `}` this.token != token::CloseDelim(token::Brace) { if let Some(stmt) = this.parse_full_stmt(macro_legacy_warnings)? { stmts.push(stmt); } } AstFragment::Stmts(stmts) } AstFragmentKind::Expr => AstFragment::Expr(this.parse_expr()?), AstFragmentKind::OptExpr => { if this.token != token::Eof { AstFragment::OptExpr(Some(this.parse_expr()?)) } else { AstFragment::OptExpr(None) } } AstFragmentKind::Ty => AstFragment::Ty(this.parse_ty()?), AstFragmentKind::Pat => AstFragment::Pat(this.parse_pat(None)?), AstFragmentKind::Arms | AstFragmentKind::Fields | AstFragmentKind::FieldPats | AstFragmentKind::GenericParams | AstFragmentKind::Params | AstFragmentKind::StructFields | AstFragmentKind::Variants => panic!("unexpected AST fragment kind"), }) } pub fn ensure_complete_parse<'a>( this: &mut Parser<'a>, macro_path: &Path, kind_name: &str, span: Span, ) { if this.token != token::Eof { let token = pprust::token_to_string(&this.token); let msg = format!("macro expansion ignores token `{}` and any following", token); // Avoid emitting backtrace info twice. let def_site_span = this.token.span.with_ctxt(SyntaxContext::root()); let mut err = this.struct_span_err(def_site_span, &msg); err.span_label(span, "caused by the macro expansion here"); let msg = format!( "the usage of `{}!` is likely invalid in {} context", pprust::path_to_string(macro_path), kind_name, ); err.note(&msg); let semi_span = this.sess.source_map().next_point(span); let semi_full_span = semi_span.to(this.sess.source_map().next_point(semi_span)); match this.sess.source_map().span_to_snippet(semi_full_span) { Ok(ref snippet) if &snippet[..] != ";" && kind_name == "expression" => { err.span_suggestion( semi_span, "you might be missing a semicolon here", ";".to_owned(), Applicability::MaybeIncorrect, ); } _ => {} } err.emit(); } } struct InvocationCollector<'a, 'b> { cx: &'a mut ExtCtxt<'b>, cfg: StripUnconfigured<'a>, invocations: Vec, monotonic: bool, } impl<'a, 'b> InvocationCollector<'a, 'b> { fn collect(&mut self, fragment_kind: AstFragmentKind, kind: InvocationKind) -> AstFragment { // Expansion data for all the collected invocations is set upon their resolution, // with exception of the derive container case which is not resolved and can get // its expansion data immediately. let expn_data = match &kind { InvocationKind::DeriveContainer { item, .. } => Some(ExpnData { parent: self.cx.current_expansion.id, ..ExpnData::default( ExpnKind::Macro(MacroKind::Attr, sym::derive), item.span(), self.cx.parse_sess.edition, ) }), _ => None, }; let expn_id = ExpnId::fresh(expn_data); let vis = kind.placeholder_visibility(); self.invocations.push(Invocation { kind, fragment_kind, expansion_data: ExpansionData { id: expn_id, depth: self.cx.current_expansion.depth + 1, ..self.cx.current_expansion.clone() }, }); placeholder(fragment_kind, NodeId::placeholder_from_expn_id(expn_id), vis) } fn collect_bang(&mut self, mac: ast::Mac, span: Span, kind: AstFragmentKind) -> AstFragment { self.collect(kind, InvocationKind::Bang { mac, span }) } fn collect_attr( &mut self, attr: Option, derives: Vec, item: Annotatable, kind: AstFragmentKind, after_derive: bool, ) -> AstFragment { self.collect( kind, match attr { Some(attr) => InvocationKind::Attr { attr, item, derives, after_derive }, None => InvocationKind::DeriveContainer { derives, item }, }, ) } fn find_attr_invoc( &self, attrs: &mut Vec, after_derive: &mut bool, ) -> Option { let attr = attrs .iter() .position(|a| { if a.has_name(sym::derive) { *after_derive = true; } !attr::is_known(a) && !is_builtin_attr(a) }) .map(|i| attrs.remove(i)); if let Some(attr) = &attr { if !self.cx.ecfg.custom_inner_attributes() && attr.style == ast::AttrStyle::Inner && !attr.has_name(sym::test) { feature_err( &self.cx.parse_sess, sym::custom_inner_attributes, attr.span, "non-builtin inner attributes are unstable", ) .emit(); } } attr } /// If `item` is an attr invocation, remove and return the macro attribute and derive traits. fn classify_item( &mut self, item: &mut T, ) -> (Option, Vec, /* after_derive */ bool) where T: HasAttrs, { let (mut attr, mut traits, mut after_derive) = (None, Vec::new(), false); item.visit_attrs(|mut attrs| { attr = self.find_attr_invoc(&mut attrs, &mut after_derive); traits = collect_derives(&mut self.cx, &mut attrs); }); (attr, traits, after_derive) } /// Alternative to `classify_item()` that ignores `#[derive]` so invocations fallthrough /// to the unused-attributes lint (making it an error on statements and expressions /// is a breaking change) fn classify_nonitem( &mut self, nonitem: &mut T, ) -> (Option, /* after_derive */ bool) { let (mut attr, mut after_derive) = (None, false); nonitem.visit_attrs(|mut attrs| { attr = self.find_attr_invoc(&mut attrs, &mut after_derive); }); (attr, after_derive) } fn configure(&mut self, node: T) -> Option { self.cfg.configure(node) } // Detect use of feature-gated or invalid attributes on macro invocations // since they will not be detected after macro expansion. fn check_attributes(&mut self, attrs: &[ast::Attribute]) { let features = self.cx.ecfg.features.unwrap(); for attr in attrs.iter() { rustc_ast_passes::feature_gate::check_attribute(attr, self.cx.parse_sess, features); validate_attr::check_meta(self.cx.parse_sess, attr); // macros are expanded before any lint passes so this warning has to be hardcoded if attr.has_name(sym::derive) { self.cx .struct_span_warn(attr.span, "`#[derive]` does nothing on macro invocations") .note("this may become a hard error in a future release") .emit(); } } } } impl<'a, 'b> MutVisitor for InvocationCollector<'a, 'b> { fn visit_expr(&mut self, expr: &mut P) { self.cfg.configure_expr(expr); visit_clobber(expr.deref_mut(), |mut expr| { self.cfg.configure_expr_kind(&mut expr.kind); // ignore derives so they remain unused let (attr, after_derive) = self.classify_nonitem(&mut expr); if attr.is_some() { // Collect the invoc regardless of whether or not attributes are permitted here // expansion will eat the attribute so it won't error later. attr.as_ref().map(|a| self.cfg.maybe_emit_expr_attr_err(a)); // AstFragmentKind::Expr requires the macro to emit an expression. return self .collect_attr( attr, vec![], Annotatable::Expr(P(expr)), AstFragmentKind::Expr, after_derive, ) .make_expr() .into_inner(); } if let ast::ExprKind::Mac(mac) = expr.kind { self.check_attributes(&expr.attrs); self.collect_bang(mac, expr.span, AstFragmentKind::Expr).make_expr().into_inner() } else { noop_visit_expr(&mut expr, self); expr } }); } fn flat_map_arm(&mut self, arm: ast::Arm) -> SmallVec<[ast::Arm; 1]> { let mut arm = configure!(self, arm); let (attr, traits, after_derive) = self.classify_item(&mut arm); if attr.is_some() || !traits.is_empty() { return self .collect_attr( attr, traits, Annotatable::Arm(arm), AstFragmentKind::Arms, after_derive, ) .make_arms(); } noop_flat_map_arm(arm, self) } fn flat_map_field(&mut self, field: ast::Field) -> SmallVec<[ast::Field; 1]> { let mut field = configure!(self, field); let (attr, traits, after_derive) = self.classify_item(&mut field); if attr.is_some() || !traits.is_empty() { return self .collect_attr( attr, traits, Annotatable::Field(field), AstFragmentKind::Fields, after_derive, ) .make_fields(); } noop_flat_map_field(field, self) } fn flat_map_field_pattern(&mut self, fp: ast::FieldPat) -> SmallVec<[ast::FieldPat; 1]> { let mut fp = configure!(self, fp); let (attr, traits, after_derive) = self.classify_item(&mut fp); if attr.is_some() || !traits.is_empty() { return self .collect_attr( attr, traits, Annotatable::FieldPat(fp), AstFragmentKind::FieldPats, after_derive, ) .make_field_patterns(); } noop_flat_map_field_pattern(fp, self) } fn flat_map_param(&mut self, p: ast::Param) -> SmallVec<[ast::Param; 1]> { let mut p = configure!(self, p); let (attr, traits, after_derive) = self.classify_item(&mut p); if attr.is_some() || !traits.is_empty() { return self .collect_attr( attr, traits, Annotatable::Param(p), AstFragmentKind::Params, after_derive, ) .make_params(); } noop_flat_map_param(p, self) } fn flat_map_struct_field(&mut self, sf: ast::StructField) -> SmallVec<[ast::StructField; 1]> { let mut sf = configure!(self, sf); let (attr, traits, after_derive) = self.classify_item(&mut sf); if attr.is_some() || !traits.is_empty() { return self .collect_attr( attr, traits, Annotatable::StructField(sf), AstFragmentKind::StructFields, after_derive, ) .make_struct_fields(); } noop_flat_map_struct_field(sf, self) } fn flat_map_variant(&mut self, variant: ast::Variant) -> SmallVec<[ast::Variant; 1]> { let mut variant = configure!(self, variant); let (attr, traits, after_derive) = self.classify_item(&mut variant); if attr.is_some() || !traits.is_empty() { return self .collect_attr( attr, traits, Annotatable::Variant(variant), AstFragmentKind::Variants, after_derive, ) .make_variants(); } noop_flat_map_variant(variant, self) } fn filter_map_expr(&mut self, expr: P) -> Option> { let expr = configure!(self, expr); expr.filter_map(|mut expr| { self.cfg.configure_expr_kind(&mut expr.kind); // Ignore derives so they remain unused. let (attr, after_derive) = self.classify_nonitem(&mut expr); if attr.is_some() { attr.as_ref().map(|a| self.cfg.maybe_emit_expr_attr_err(a)); return self .collect_attr( attr, vec![], Annotatable::Expr(P(expr)), AstFragmentKind::OptExpr, after_derive, ) .make_opt_expr() .map(|expr| expr.into_inner()); } if let ast::ExprKind::Mac(mac) = expr.kind { self.check_attributes(&expr.attrs); self.collect_bang(mac, expr.span, AstFragmentKind::OptExpr) .make_opt_expr() .map(|expr| expr.into_inner()) } else { Some({ noop_visit_expr(&mut expr, self); expr }) } }) } fn visit_pat(&mut self, pat: &mut P) { self.cfg.configure_pat(pat); match pat.kind { PatKind::Mac(_) => {} _ => return noop_visit_pat(pat, self), } visit_clobber(pat, |mut pat| match mem::replace(&mut pat.kind, PatKind::Wild) { PatKind::Mac(mac) => self.collect_bang(mac, pat.span, AstFragmentKind::Pat).make_pat(), _ => unreachable!(), }); } fn flat_map_stmt(&mut self, stmt: ast::Stmt) -> SmallVec<[ast::Stmt; 1]> { let mut stmt = configure!(self, stmt); // we'll expand attributes on expressions separately if !stmt.is_expr() { let (attr, derives, after_derive) = if stmt.is_item() { self.classify_item(&mut stmt) } else { // ignore derives on non-item statements so it falls through // to the unused-attributes lint let (attr, after_derive) = self.classify_nonitem(&mut stmt); (attr, vec![], after_derive) }; if attr.is_some() || !derives.is_empty() { return self .collect_attr( attr, derives, Annotatable::Stmt(P(stmt)), AstFragmentKind::Stmts, after_derive, ) .make_stmts(); } } if let StmtKind::Mac(mac) = stmt.kind { let (mac, style, attrs) = mac.into_inner(); self.check_attributes(&attrs); let mut placeholder = self.collect_bang(mac, stmt.span, AstFragmentKind::Stmts).make_stmts(); // If this is a macro invocation with a semicolon, then apply that // semicolon to the final statement produced by expansion. if style == MacStmtStyle::Semicolon { if let Some(stmt) = placeholder.pop() { placeholder.push(stmt.add_trailing_semicolon()); } } return placeholder; } // The placeholder expander gives ids to statements, so we avoid folding the id here. let ast::Stmt { id, kind, span } = stmt; noop_flat_map_stmt_kind(kind, self) .into_iter() .map(|kind| ast::Stmt { id, kind, span }) .collect() } fn visit_block(&mut self, block: &mut P) { let old_directory_ownership = self.cx.current_expansion.directory_ownership; self.cx.current_expansion.directory_ownership = DirectoryOwnership::UnownedViaBlock; noop_visit_block(block, self); self.cx.current_expansion.directory_ownership = old_directory_ownership; } fn flat_map_item(&mut self, item: P) -> SmallVec<[P; 1]> { let mut item = configure!(self, item); let (attr, traits, after_derive) = self.classify_item(&mut item); if attr.is_some() || !traits.is_empty() { return self .collect_attr( attr, traits, Annotatable::Item(item), AstFragmentKind::Items, after_derive, ) .make_items(); } match item.kind { ast::ItemKind::Mac(..) => { self.check_attributes(&item.attrs); item.and_then(|item| match item.kind { ItemKind::Mac(mac) => self .collect( AstFragmentKind::Items, InvocationKind::Bang { mac, span: item.span }, ) .make_items(), _ => unreachable!(), }) } ast::ItemKind::Mod(ast::Mod { inner, .. }) => { if item.ident == Ident::invalid() { return noop_flat_map_item(item, self); } let orig_directory_ownership = self.cx.current_expansion.directory_ownership; let mut module = (*self.cx.current_expansion.module).clone(); module.mod_path.push(item.ident); // Detect if this is an inline module (`mod m { ... }` as opposed to `mod m;`). // In the non-inline case, `inner` is never the dummy span (cf. `parse_item_mod`). // Thus, if `inner` is the dummy span, we know the module is inline. let inline_module = item.span.contains(inner) || inner.is_dummy(); if inline_module { if let Some(path) = attr::first_attr_value_str_by_name(&item.attrs, sym::path) { self.cx.current_expansion.directory_ownership = DirectoryOwnership::Owned { relative: None }; module.directory.push(&*path.as_str()); } else { module.directory.push(&*item.ident.as_str()); } } else { let path = self.cx.parse_sess.source_map().span_to_unmapped_path(inner); let mut path = match path { FileName::Real(path) => path, other => PathBuf::from(other.to_string()), }; let directory_ownership = match path.file_name().unwrap().to_str() { Some("mod.rs") => DirectoryOwnership::Owned { relative: None }, Some(_) => DirectoryOwnership::Owned { relative: Some(item.ident) }, None => DirectoryOwnership::UnownedViaMod, }; path.pop(); module.directory = path; self.cx.current_expansion.directory_ownership = directory_ownership; } let orig_module = mem::replace(&mut self.cx.current_expansion.module, Rc::new(module)); let result = noop_flat_map_item(item, self); self.cx.current_expansion.module = orig_module; self.cx.current_expansion.directory_ownership = orig_directory_ownership; result } _ => noop_flat_map_item(item, self), } } fn flat_map_trait_item(&mut self, item: ast::AssocItem) -> SmallVec<[ast::AssocItem; 1]> { let mut item = configure!(self, item); let (attr, traits, after_derive) = self.classify_item(&mut item); if attr.is_some() || !traits.is_empty() { return self .collect_attr( attr, traits, Annotatable::TraitItem(P(item)), AstFragmentKind::TraitItems, after_derive, ) .make_trait_items(); } match item.kind { ast::AssocItemKind::Macro(mac) => { let ast::AssocItem { attrs, span, .. } = item; self.check_attributes(&attrs); self.collect_bang(mac, span, AstFragmentKind::TraitItems).make_trait_items() } _ => noop_flat_map_assoc_item(item, self), } } fn flat_map_impl_item(&mut self, item: ast::AssocItem) -> SmallVec<[ast::AssocItem; 1]> { let mut item = configure!(self, item); let (attr, traits, after_derive) = self.classify_item(&mut item); if attr.is_some() || !traits.is_empty() { return self .collect_attr( attr, traits, Annotatable::ImplItem(P(item)), AstFragmentKind::ImplItems, after_derive, ) .make_impl_items(); } match item.kind { ast::AssocItemKind::Macro(mac) => { let ast::AssocItem { attrs, span, .. } = item; self.check_attributes(&attrs); self.collect_bang(mac, span, AstFragmentKind::ImplItems).make_impl_items() } _ => noop_flat_map_assoc_item(item, self), } } fn visit_ty(&mut self, ty: &mut P) { match ty.kind { ast::TyKind::Mac(_) => {} _ => return noop_visit_ty(ty, self), }; visit_clobber(ty, |mut ty| match mem::replace(&mut ty.kind, ast::TyKind::Err) { ast::TyKind::Mac(mac) => self.collect_bang(mac, ty.span, AstFragmentKind::Ty).make_ty(), _ => unreachable!(), }); } fn visit_foreign_mod(&mut self, foreign_mod: &mut ast::ForeignMod) { self.cfg.configure_foreign_mod(foreign_mod); noop_visit_foreign_mod(foreign_mod, self); } fn flat_map_foreign_item( &mut self, mut foreign_item: ast::ForeignItem, ) -> SmallVec<[ast::ForeignItem; 1]> { let (attr, traits, after_derive) = self.classify_item(&mut foreign_item); if attr.is_some() || !traits.is_empty() { return self .collect_attr( attr, traits, Annotatable::ForeignItem(P(foreign_item)), AstFragmentKind::ForeignItems, after_derive, ) .make_foreign_items(); } if let ast::ForeignItemKind::Macro(mac) = foreign_item.kind { self.check_attributes(&foreign_item.attrs); return self .collect_bang(mac, foreign_item.span, AstFragmentKind::ForeignItems) .make_foreign_items(); } noop_flat_map_foreign_item(foreign_item, self) } fn visit_item_kind(&mut self, item: &mut ast::ItemKind) { match item { ast::ItemKind::MacroDef(..) => {} _ => { self.cfg.configure_item_kind(item); noop_visit_item_kind(item, self); } } } fn flat_map_generic_param( &mut self, param: ast::GenericParam, ) -> SmallVec<[ast::GenericParam; 1]> { let mut param = configure!(self, param); let (attr, traits, after_derive) = self.classify_item(&mut param); if attr.is_some() || !traits.is_empty() { return self .collect_attr( attr, traits, Annotatable::GenericParam(param), AstFragmentKind::GenericParams, after_derive, ) .make_generic_params(); } noop_flat_map_generic_param(param, self) } fn visit_attribute(&mut self, at: &mut ast::Attribute) { // turn `#[doc(include="filename")]` attributes into `#[doc(include(file="filename", // contents="file contents")]` attributes if !at.check_name(sym::doc) { return noop_visit_attribute(at, self); } if let Some(list) = at.meta_item_list() { if !list.iter().any(|it| it.check_name(sym::include)) { return noop_visit_attribute(at, self); } let mut items = vec![]; for mut it in list { if !it.check_name(sym::include) { items.push({ noop_visit_meta_list_item(&mut it, self); it }); continue; } if let Some(file) = it.value_str() { let err_count = self.cx.parse_sess.span_diagnostic.err_count(); self.check_attributes(slice::from_ref(at)); if self.cx.parse_sess.span_diagnostic.err_count() > err_count { // avoid loading the file if they haven't enabled the feature return noop_visit_attribute(at, self); } let filename = match self.cx.resolve_path(&*file.as_str(), it.span()) { Ok(filename) => filename, Err(mut err) => { err.emit(); continue; } }; match self.cx.source_map().load_file(&filename) { Ok(source_file) => { let src = source_file .src .as_ref() .expect("freshly loaded file should have a source"); let src_interned = Symbol::intern(src.as_str()); let include_info = vec![ ast::NestedMetaItem::MetaItem(attr::mk_name_value_item_str( Ident::with_dummy_span(sym::file), file, DUMMY_SP, )), ast::NestedMetaItem::MetaItem(attr::mk_name_value_item_str( Ident::with_dummy_span(sym::contents), src_interned, DUMMY_SP, )), ]; let include_ident = Ident::with_dummy_span(sym::include); let item = attr::mk_list_item(include_ident, include_info); items.push(ast::NestedMetaItem::MetaItem(item)); } Err(e) => { let lit = it.meta_item().and_then(|item| item.name_value_literal()).unwrap(); if e.kind() == ErrorKind::InvalidData { self.cx .struct_span_err( lit.span, &format!("{} wasn't a utf-8 file", filename.display()), ) .span_label(lit.span, "contains invalid utf-8") .emit(); } else { let mut err = self.cx.struct_span_err( lit.span, &format!("couldn't read {}: {}", filename.display(), e), ); err.span_label(lit.span, "couldn't read file"); err.emit(); } } } } else { let mut err = self.cx.struct_span_err( it.span(), &format!("expected path to external documentation"), ); // Check if the user erroneously used `doc(include(...))` syntax. let literal = it.meta_item_list().and_then(|list| { if list.len() == 1 { list[0].literal().map(|literal| &literal.kind) } else { None } }); let (path, applicability) = match &literal { Some(LitKind::Str(path, ..)) => { (path.to_string(), Applicability::MachineApplicable) } _ => (String::from(""), Applicability::HasPlaceholders), }; err.span_suggestion( it.span(), "provide a file path with `=`", format!("include = \"{}\"", path), applicability, ); err.emit(); } } let meta = attr::mk_list_item(Ident::with_dummy_span(sym::doc), items); *at = attr::Attribute { kind: ast::AttrKind::Normal(AttrItem { path: meta.path, args: meta.kind.mac_args(meta.span), }), span: at.span, id: at.id, style: at.style, }; } else { noop_visit_attribute(at, self) } } fn visit_id(&mut self, id: &mut ast::NodeId) { if self.monotonic { debug_assert_eq!(*id, ast::DUMMY_NODE_ID); *id = self.cx.resolver.next_node_id() } } fn visit_fn_decl(&mut self, mut fn_decl: &mut P) { self.cfg.configure_fn_decl(&mut fn_decl); noop_visit_fn_decl(fn_decl, self); } } pub struct ExpansionConfig<'feat> { pub crate_name: String, pub features: Option<&'feat Features>, pub recursion_limit: usize, pub trace_mac: bool, pub should_test: bool, // If false, strip `#[test]` nodes pub single_step: bool, pub keep_macs: bool, } impl<'feat> ExpansionConfig<'feat> { pub fn default(crate_name: String) -> ExpansionConfig<'static> { ExpansionConfig { crate_name, features: None, recursion_limit: 1024, trace_mac: false, should_test: false, single_step: false, keep_macs: false, } } fn proc_macro_hygiene(&self) -> bool { self.features.map_or(false, |features| features.proc_macro_hygiene) } fn custom_inner_attributes(&self) -> bool { self.features.map_or(false, |features| features.custom_inner_attributes) } }