//! Generalized type relating mechanism. //! //! A type relation `R` relates a pair of values `(A, B)`. `A and B` are usually //! types or regions but can be other things. Examples of type relations are //! subtyping, type equality, etc. use crate::mir::interpret::{get_slice_bytes, ConstValue}; use crate::traits; use crate::ty::error::{ExpectedFound, TypeError}; use crate::ty::subst::{GenericArg, GenericArgKind, SubstsRef}; use crate::ty::{self, Ty, TyCtxt, TypeFoldable}; use rustc_hir as ast; use rustc_hir::def_id::DefId; use rustc_target::spec::abi; use std::iter; use std::rc::Rc; pub type RelateResult<'tcx, T> = Result>; #[derive(Clone, Debug)] pub enum Cause { ExistentialRegionBound, // relating an existential region bound } pub trait TypeRelation<'tcx>: Sized { fn tcx(&self) -> TyCtxt<'tcx>; fn param_env(&self) -> ty::ParamEnv<'tcx>; /// Returns a static string we can use for printouts. fn tag(&self) -> &'static str; /// Returns `true` if the value `a` is the "expected" type in the /// relation. Just affects error messages. fn a_is_expected(&self) -> bool; fn with_cause(&mut self, _cause: Cause, f: F) -> R where F: FnOnce(&mut Self) -> R, { f(self) } /// Generic relation routine suitable for most anything. fn relate>(&mut self, a: &T, b: &T) -> RelateResult<'tcx, T> { Relate::relate(self, a, b) } /// Relate the two substitutions for the given item. The default /// is to look up the variance for the item and proceed /// accordingly. fn relate_item_substs( &mut self, item_def_id: DefId, a_subst: SubstsRef<'tcx>, b_subst: SubstsRef<'tcx>, ) -> RelateResult<'tcx, SubstsRef<'tcx>> { debug!( "relate_item_substs(item_def_id={:?}, a_subst={:?}, b_subst={:?})", item_def_id, a_subst, b_subst ); let opt_variances = self.tcx().variances_of(item_def_id); relate_substs(self, Some(opt_variances), a_subst, b_subst) } /// Switch variance for the purpose of relating `a` and `b`. fn relate_with_variance>( &mut self, variance: ty::Variance, a: &T, b: &T, ) -> RelateResult<'tcx, T>; // Overrideable relations. You shouldn't typically call these // directly, instead call `relate()`, which in turn calls // these. This is both more uniform but also allows us to add // additional hooks for other types in the future if needed // without making older code, which called `relate`, obsolete. fn tys(&mut self, a: Ty<'tcx>, b: Ty<'tcx>) -> RelateResult<'tcx, Ty<'tcx>>; fn regions( &mut self, a: ty::Region<'tcx>, b: ty::Region<'tcx>, ) -> RelateResult<'tcx, ty::Region<'tcx>>; fn consts( &mut self, a: &'tcx ty::Const<'tcx>, b: &'tcx ty::Const<'tcx>, ) -> RelateResult<'tcx, &'tcx ty::Const<'tcx>>; fn binders( &mut self, a: &ty::Binder, b: &ty::Binder, ) -> RelateResult<'tcx, ty::Binder> where T: Relate<'tcx>; } pub trait Relate<'tcx>: TypeFoldable<'tcx> { fn relate>( relation: &mut R, a: &Self, b: &Self, ) -> RelateResult<'tcx, Self>; } /////////////////////////////////////////////////////////////////////////// // Relate impls impl<'tcx> Relate<'tcx> for ty::TypeAndMut<'tcx> { fn relate>( relation: &mut R, a: &ty::TypeAndMut<'tcx>, b: &ty::TypeAndMut<'tcx>, ) -> RelateResult<'tcx, ty::TypeAndMut<'tcx>> { debug!("{}.mts({:?}, {:?})", relation.tag(), a, b); if a.mutbl != b.mutbl { Err(TypeError::Mutability) } else { let mutbl = a.mutbl; let variance = match mutbl { ast::Mutability::Not => ty::Covariant, ast::Mutability::Mut => ty::Invariant, }; let ty = relation.relate_with_variance(variance, &a.ty, &b.ty)?; Ok(ty::TypeAndMut { ty, mutbl }) } } } pub fn relate_substs>( relation: &mut R, variances: Option<&[ty::Variance]>, a_subst: SubstsRef<'tcx>, b_subst: SubstsRef<'tcx>, ) -> RelateResult<'tcx, SubstsRef<'tcx>> { let tcx = relation.tcx(); let params = a_subst.iter().zip(b_subst).enumerate().map(|(i, (a, b))| { let variance = variances.map_or(ty::Invariant, |v| v[i]); relation.relate_with_variance(variance, a, b) }); Ok(tcx.mk_substs(params)?) } impl<'tcx> Relate<'tcx> for ty::FnSig<'tcx> { fn relate>( relation: &mut R, a: &ty::FnSig<'tcx>, b: &ty::FnSig<'tcx>, ) -> RelateResult<'tcx, ty::FnSig<'tcx>> { let tcx = relation.tcx(); if a.c_variadic != b.c_variadic { return Err(TypeError::VariadicMismatch(expected_found( relation, &a.c_variadic, &b.c_variadic, ))); } let unsafety = relation.relate(&a.unsafety, &b.unsafety)?; let abi = relation.relate(&a.abi, &b.abi)?; if a.inputs().len() != b.inputs().len() { return Err(TypeError::ArgCount); } let inputs_and_output = a .inputs() .iter() .cloned() .zip(b.inputs().iter().cloned()) .map(|x| (x, false)) .chain(iter::once(((a.output(), b.output()), true))) .map(|((a, b), is_output)| { if is_output { relation.relate(&a, &b) } else { relation.relate_with_variance(ty::Contravariant, &a, &b) } }); Ok(ty::FnSig { inputs_and_output: tcx.mk_type_list(inputs_and_output)?, c_variadic: a.c_variadic, unsafety, abi, }) } } impl<'tcx> Relate<'tcx> for ast::Unsafety { fn relate>( relation: &mut R, a: &ast::Unsafety, b: &ast::Unsafety, ) -> RelateResult<'tcx, ast::Unsafety> { if a != b { Err(TypeError::UnsafetyMismatch(expected_found(relation, a, b))) } else { Ok(*a) } } } impl<'tcx> Relate<'tcx> for abi::Abi { fn relate>( relation: &mut R, a: &abi::Abi, b: &abi::Abi, ) -> RelateResult<'tcx, abi::Abi> { if a == b { Ok(*a) } else { Err(TypeError::AbiMismatch(expected_found(relation, a, b))) } } } impl<'tcx> Relate<'tcx> for ty::ProjectionTy<'tcx> { fn relate>( relation: &mut R, a: &ty::ProjectionTy<'tcx>, b: &ty::ProjectionTy<'tcx>, ) -> RelateResult<'tcx, ty::ProjectionTy<'tcx>> { if a.item_def_id != b.item_def_id { Err(TypeError::ProjectionMismatched(expected_found( relation, &a.item_def_id, &b.item_def_id, ))) } else { let substs = relation.relate(&a.substs, &b.substs)?; Ok(ty::ProjectionTy { item_def_id: a.item_def_id, substs: &substs }) } } } impl<'tcx> Relate<'tcx> for ty::ExistentialProjection<'tcx> { fn relate>( relation: &mut R, a: &ty::ExistentialProjection<'tcx>, b: &ty::ExistentialProjection<'tcx>, ) -> RelateResult<'tcx, ty::ExistentialProjection<'tcx>> { if a.item_def_id != b.item_def_id { Err(TypeError::ProjectionMismatched(expected_found( relation, &a.item_def_id, &b.item_def_id, ))) } else { let ty = relation.relate(&a.ty, &b.ty)?; let substs = relation.relate(&a.substs, &b.substs)?; Ok(ty::ExistentialProjection { item_def_id: a.item_def_id, substs, ty }) } } } impl<'tcx> Relate<'tcx> for Vec> { fn relate>( relation: &mut R, a: &Vec>, b: &Vec>, ) -> RelateResult<'tcx, Vec>> { // To be compatible, `a` and `b` must be for precisely the // same set of traits and item names. We always require that // projection bounds lists are sorted by trait-def-id and item-name, // so we can just iterate through the lists pairwise, so long as they are the // same length. if a.len() != b.len() { Err(TypeError::ProjectionBoundsLength(expected_found(relation, &a.len(), &b.len()))) } else { a.iter().zip(b).map(|(a, b)| relation.relate(a, b)).collect() } } } impl<'tcx> Relate<'tcx> for ty::TraitRef<'tcx> { fn relate>( relation: &mut R, a: &ty::TraitRef<'tcx>, b: &ty::TraitRef<'tcx>, ) -> RelateResult<'tcx, ty::TraitRef<'tcx>> { // Different traits cannot be related. if a.def_id != b.def_id { Err(TypeError::Traits(expected_found(relation, &a.def_id, &b.def_id))) } else { let substs = relate_substs(relation, None, a.substs, b.substs)?; Ok(ty::TraitRef { def_id: a.def_id, substs: substs }) } } } impl<'tcx> Relate<'tcx> for ty::ExistentialTraitRef<'tcx> { fn relate>( relation: &mut R, a: &ty::ExistentialTraitRef<'tcx>, b: &ty::ExistentialTraitRef<'tcx>, ) -> RelateResult<'tcx, ty::ExistentialTraitRef<'tcx>> { // Different traits cannot be related. if a.def_id != b.def_id { Err(TypeError::Traits(expected_found(relation, &a.def_id, &b.def_id))) } else { let substs = relate_substs(relation, None, a.substs, b.substs)?; Ok(ty::ExistentialTraitRef { def_id: a.def_id, substs: substs }) } } } #[derive(Debug, Clone, TypeFoldable)] struct GeneratorWitness<'tcx>(&'tcx ty::List>); impl<'tcx> Relate<'tcx> for GeneratorWitness<'tcx> { fn relate>( relation: &mut R, a: &GeneratorWitness<'tcx>, b: &GeneratorWitness<'tcx>, ) -> RelateResult<'tcx, GeneratorWitness<'tcx>> { assert_eq!(a.0.len(), b.0.len()); let tcx = relation.tcx(); let types = tcx.mk_type_list(a.0.iter().zip(b.0).map(|(a, b)| relation.relate(a, b)))?; Ok(GeneratorWitness(types)) } } impl<'tcx> Relate<'tcx> for Ty<'tcx> { fn relate>( relation: &mut R, a: &Ty<'tcx>, b: &Ty<'tcx>, ) -> RelateResult<'tcx, Ty<'tcx>> { relation.tys(a, b) } } /// The main "type relation" routine. Note that this does not handle /// inference artifacts, so you should filter those out before calling /// it. pub fn super_relate_tys>( relation: &mut R, a: Ty<'tcx>, b: Ty<'tcx>, ) -> RelateResult<'tcx, Ty<'tcx>> { let tcx = relation.tcx(); debug!("super_relate_tys: a={:?} b={:?}", a, b); match (&a.kind, &b.kind) { (&ty::Infer(_), _) | (_, &ty::Infer(_)) => { // The caller should handle these cases! bug!("var types encountered in super_relate_tys") } (ty::Bound(..), _) | (_, ty::Bound(..)) => { bug!("bound types encountered in super_relate_tys") } (&ty::Error, _) | (_, &ty::Error) => Ok(tcx.types.err), (&ty::Never, _) | (&ty::Char, _) | (&ty::Bool, _) | (&ty::Int(_), _) | (&ty::Uint(_), _) | (&ty::Float(_), _) | (&ty::Str, _) if a == b => { Ok(a) } (&ty::Param(ref a_p), &ty::Param(ref b_p)) if a_p.index == b_p.index => Ok(a), (ty::Placeholder(p1), ty::Placeholder(p2)) if p1 == p2 => Ok(a), (&ty::Adt(a_def, a_substs), &ty::Adt(b_def, b_substs)) if a_def == b_def => { let substs = relation.relate_item_substs(a_def.did, a_substs, b_substs)?; Ok(tcx.mk_adt(a_def, substs)) } (&ty::Foreign(a_id), &ty::Foreign(b_id)) if a_id == b_id => Ok(tcx.mk_foreign(a_id)), (&ty::Dynamic(ref a_obj, ref a_region), &ty::Dynamic(ref b_obj, ref b_region)) => { let region_bound = relation.with_cause(Cause::ExistentialRegionBound, |relation| { relation.relate_with_variance(ty::Contravariant, a_region, b_region) })?; Ok(tcx.mk_dynamic(relation.relate(a_obj, b_obj)?, region_bound)) } (&ty::Generator(a_id, a_substs, movability), &ty::Generator(b_id, b_substs, _)) if a_id == b_id => { // All Generator types with the same id represent // the (anonymous) type of the same generator expression. So // all of their regions should be equated. let substs = relation.relate(&a_substs, &b_substs)?; Ok(tcx.mk_generator(a_id, substs, movability)) } (&ty::GeneratorWitness(a_types), &ty::GeneratorWitness(b_types)) => { // Wrap our types with a temporary GeneratorWitness struct // inside the binder so we can related them let a_types = a_types.map_bound(GeneratorWitness); let b_types = b_types.map_bound(GeneratorWitness); // Then remove the GeneratorWitness for the result let types = relation.relate(&a_types, &b_types)?.map_bound(|witness| witness.0); Ok(tcx.mk_generator_witness(types)) } (&ty::Closure(a_id, a_substs), &ty::Closure(b_id, b_substs)) if a_id == b_id => { // All Closure types with the same id represent // the (anonymous) type of the same closure expression. So // all of their regions should be equated. let substs = relation.relate(&a_substs, &b_substs)?; Ok(tcx.mk_closure(a_id, &substs)) } (&ty::RawPtr(ref a_mt), &ty::RawPtr(ref b_mt)) => { let mt = relation.relate(a_mt, b_mt)?; Ok(tcx.mk_ptr(mt)) } (&ty::Ref(a_r, a_ty, a_mutbl), &ty::Ref(b_r, b_ty, b_mutbl)) => { let r = relation.relate_with_variance(ty::Contravariant, &a_r, &b_r)?; let a_mt = ty::TypeAndMut { ty: a_ty, mutbl: a_mutbl }; let b_mt = ty::TypeAndMut { ty: b_ty, mutbl: b_mutbl }; let mt = relation.relate(&a_mt, &b_mt)?; Ok(tcx.mk_ref(r, mt)) } (&ty::Array(a_t, sz_a), &ty::Array(b_t, sz_b)) => { let t = relation.relate(&a_t, &b_t)?; match relation.relate(&sz_a, &sz_b) { Ok(sz) => Ok(tcx.mk_ty(ty::Array(t, sz))), Err(err) => { // Check whether the lengths are both concrete/known values, // but are unequal, for better diagnostics. let sz_a = sz_a.try_eval_usize(tcx, relation.param_env()); let sz_b = sz_b.try_eval_usize(tcx, relation.param_env()); match (sz_a, sz_b) { (Some(sz_a_val), Some(sz_b_val)) => Err(TypeError::FixedArraySize( expected_found(relation, &sz_a_val, &sz_b_val), )), _ => return Err(err), } } } } (&ty::Slice(a_t), &ty::Slice(b_t)) => { let t = relation.relate(&a_t, &b_t)?; Ok(tcx.mk_slice(t)) } (&ty::Tuple(as_), &ty::Tuple(bs)) => { if as_.len() == bs.len() { Ok(tcx.mk_tup( as_.iter() .zip(bs) .map(|(a, b)| relation.relate(&a.expect_ty(), &b.expect_ty())), )?) } else if !(as_.is_empty() || bs.is_empty()) { Err(TypeError::TupleSize(expected_found(relation, &as_.len(), &bs.len()))) } else { Err(TypeError::Sorts(expected_found(relation, &a, &b))) } } (&ty::FnDef(a_def_id, a_substs), &ty::FnDef(b_def_id, b_substs)) if a_def_id == b_def_id => { let substs = relation.relate_item_substs(a_def_id, a_substs, b_substs)?; Ok(tcx.mk_fn_def(a_def_id, substs)) } (&ty::FnPtr(a_fty), &ty::FnPtr(b_fty)) => { let fty = relation.relate(&a_fty, &b_fty)?; Ok(tcx.mk_fn_ptr(fty)) } (ty::UnnormalizedProjection(a_data), ty::UnnormalizedProjection(b_data)) => { let projection_ty = relation.relate(a_data, b_data)?; Ok(tcx.mk_ty(ty::UnnormalizedProjection(projection_ty))) } // these two are already handled downstream in case of lazy normalization (ty::Projection(a_data), ty::Projection(b_data)) => { let projection_ty = relation.relate(a_data, b_data)?; Ok(tcx.mk_projection(projection_ty.item_def_id, projection_ty.substs)) } (&ty::Opaque(a_def_id, a_substs), &ty::Opaque(b_def_id, b_substs)) if a_def_id == b_def_id => { let substs = relate_substs(relation, None, a_substs, b_substs)?; Ok(tcx.mk_opaque(a_def_id, substs)) } _ => Err(TypeError::Sorts(expected_found(relation, &a, &b))), } } /// The main "const relation" routine. Note that this does not handle /// inference artifacts, so you should filter those out before calling /// it. pub fn super_relate_consts>( relation: &mut R, a: &'tcx ty::Const<'tcx>, b: &'tcx ty::Const<'tcx>, ) -> RelateResult<'tcx, &'tcx ty::Const<'tcx>> { let tcx = relation.tcx(); let eagerly_eval = |x: &'tcx ty::Const<'tcx>| { if !x.val.has_local_value() { return x.eval(tcx, relation.param_env()).val; } x.val }; // Currently, the values that can be unified are primitive types, // and those that derive both `PartialEq` and `Eq`, corresponding // to `structural_match` types. let new_const_val = match (eagerly_eval(a), eagerly_eval(b)) { (ty::ConstKind::Infer(_), _) | (_, ty::ConstKind::Infer(_)) => { // The caller should handle these cases! bug!("var types encountered in super_relate_consts: {:?} {:?}", a, b) } (ty::ConstKind::Param(a_p), ty::ConstKind::Param(b_p)) if a_p.index == b_p.index => { return Ok(a); } (ty::ConstKind::Placeholder(p1), ty::ConstKind::Placeholder(p2)) if p1 == p2 => { return Ok(a); } (ty::ConstKind::Value(a_val), ty::ConstKind::Value(b_val)) => { let new_val = match (a_val, b_val) { (ConstValue::Scalar(a_val), ConstValue::Scalar(b_val)) if a.ty == b.ty => { if a_val == b_val { Ok(ConstValue::Scalar(a_val)) } else if let ty::FnPtr(_) = a.ty.kind { let alloc_map = tcx.alloc_map.lock(); let a_instance = alloc_map.unwrap_fn(a_val.assert_ptr().alloc_id); let b_instance = alloc_map.unwrap_fn(b_val.assert_ptr().alloc_id); if a_instance == b_instance { Ok(ConstValue::Scalar(a_val)) } else { Err(TypeError::ConstMismatch(expected_found(relation, &a, &b))) } } else { Err(TypeError::ConstMismatch(expected_found(relation, &a, &b))) } } (a_val @ ConstValue::Slice { .. }, b_val @ ConstValue::Slice { .. }) => { let a_bytes = get_slice_bytes(&tcx, a_val); let b_bytes = get_slice_bytes(&tcx, b_val); if a_bytes == b_bytes { Ok(a_val) } else { Err(TypeError::ConstMismatch(expected_found(relation, &a, &b))) } } // FIXME(const_generics): handle `ConstValue::ByRef`. _ => Err(TypeError::ConstMismatch(expected_found(relation, &a, &b))), }; new_val.map(ty::ConstKind::Value) } // FIXME(const_generics): this is wrong, as it is a projection ( ty::ConstKind::Unevaluated(a_def_id, a_substs, a_promoted), ty::ConstKind::Unevaluated(b_def_id, b_substs, b_promoted), ) if a_def_id == b_def_id && a_promoted == b_promoted => { let substs = relation.relate_with_variance(ty::Variance::Invariant, &a_substs, &b_substs)?; Ok(ty::ConstKind::Unevaluated(a_def_id, &substs, a_promoted)) } _ => Err(TypeError::ConstMismatch(expected_found(relation, &a, &b))), }; new_const_val.map(|val| tcx.mk_const(ty::Const { val, ty: a.ty })) } impl<'tcx> Relate<'tcx> for &'tcx ty::List> { fn relate>( relation: &mut R, a: &Self, b: &Self, ) -> RelateResult<'tcx, Self> { if a.len() != b.len() { return Err(TypeError::ExistentialMismatch(expected_found(relation, a, b))); } let tcx = relation.tcx(); let v = a.iter().zip(b.iter()).map(|(ep_a, ep_b)| { use crate::ty::ExistentialPredicate::*; match (*ep_a, *ep_b) { (Trait(ref a), Trait(ref b)) => Ok(Trait(relation.relate(a, b)?)), (Projection(ref a), Projection(ref b)) => Ok(Projection(relation.relate(a, b)?)), (AutoTrait(ref a), AutoTrait(ref b)) if a == b => Ok(AutoTrait(*a)), _ => Err(TypeError::ExistentialMismatch(expected_found(relation, a, b))), } }); Ok(tcx.mk_existential_predicates(v)?) } } impl<'tcx> Relate<'tcx> for ty::ClosureSubsts<'tcx> { fn relate>( relation: &mut R, a: &ty::ClosureSubsts<'tcx>, b: &ty::ClosureSubsts<'tcx>, ) -> RelateResult<'tcx, ty::ClosureSubsts<'tcx>> { let substs = relate_substs(relation, None, a.substs, b.substs)?; Ok(ty::ClosureSubsts { substs }) } } impl<'tcx> Relate<'tcx> for ty::GeneratorSubsts<'tcx> { fn relate>( relation: &mut R, a: &ty::GeneratorSubsts<'tcx>, b: &ty::GeneratorSubsts<'tcx>, ) -> RelateResult<'tcx, ty::GeneratorSubsts<'tcx>> { let substs = relate_substs(relation, None, a.substs, b.substs)?; Ok(ty::GeneratorSubsts { substs }) } } impl<'tcx> Relate<'tcx> for SubstsRef<'tcx> { fn relate>( relation: &mut R, a: &SubstsRef<'tcx>, b: &SubstsRef<'tcx>, ) -> RelateResult<'tcx, SubstsRef<'tcx>> { relate_substs(relation, None, a, b) } } impl<'tcx> Relate<'tcx> for ty::Region<'tcx> { fn relate>( relation: &mut R, a: &ty::Region<'tcx>, b: &ty::Region<'tcx>, ) -> RelateResult<'tcx, ty::Region<'tcx>> { relation.regions(*a, *b) } } impl<'tcx> Relate<'tcx> for &'tcx ty::Const<'tcx> { fn relate>( relation: &mut R, a: &&'tcx ty::Const<'tcx>, b: &&'tcx ty::Const<'tcx>, ) -> RelateResult<'tcx, &'tcx ty::Const<'tcx>> { relation.consts(*a, *b) } } impl<'tcx, T: Relate<'tcx>> Relate<'tcx> for ty::Binder { fn relate>( relation: &mut R, a: &ty::Binder, b: &ty::Binder, ) -> RelateResult<'tcx, ty::Binder> { relation.binders(a, b) } } impl<'tcx, T: Relate<'tcx>> Relate<'tcx> for Rc { fn relate>( relation: &mut R, a: &Rc, b: &Rc, ) -> RelateResult<'tcx, Rc> { let a: &T = a; let b: &T = b; Ok(Rc::new(relation.relate(a, b)?)) } } impl<'tcx, T: Relate<'tcx>> Relate<'tcx> for Box { fn relate>( relation: &mut R, a: &Box, b: &Box, ) -> RelateResult<'tcx, Box> { let a: &T = a; let b: &T = b; Ok(Box::new(relation.relate(a, b)?)) } } impl<'tcx> Relate<'tcx> for GenericArg<'tcx> { fn relate>( relation: &mut R, a: &GenericArg<'tcx>, b: &GenericArg<'tcx>, ) -> RelateResult<'tcx, GenericArg<'tcx>> { match (a.unpack(), b.unpack()) { (GenericArgKind::Lifetime(a_lt), GenericArgKind::Lifetime(b_lt)) => { Ok(relation.relate(&a_lt, &b_lt)?.into()) } (GenericArgKind::Type(a_ty), GenericArgKind::Type(b_ty)) => { Ok(relation.relate(&a_ty, &b_ty)?.into()) } (GenericArgKind::Const(a_ct), GenericArgKind::Const(b_ct)) => { Ok(relation.relate(&a_ct, &b_ct)?.into()) } (GenericArgKind::Lifetime(unpacked), x) => { bug!("impossible case reached: can't relate: {:?} with {:?}", unpacked, x) } (GenericArgKind::Type(unpacked), x) => { bug!("impossible case reached: can't relate: {:?} with {:?}", unpacked, x) } (GenericArgKind::Const(unpacked), x) => { bug!("impossible case reached: can't relate: {:?} with {:?}", unpacked, x) } } } } impl<'tcx> Relate<'tcx> for ty::TraitPredicate<'tcx> { fn relate>( relation: &mut R, a: &ty::TraitPredicate<'tcx>, b: &ty::TraitPredicate<'tcx>, ) -> RelateResult<'tcx, ty::TraitPredicate<'tcx>> { Ok(ty::TraitPredicate { trait_ref: relation.relate(&a.trait_ref, &b.trait_ref)? }) } } impl<'tcx> Relate<'tcx> for ty::ProjectionPredicate<'tcx> { fn relate>( relation: &mut R, a: &ty::ProjectionPredicate<'tcx>, b: &ty::ProjectionPredicate<'tcx>, ) -> RelateResult<'tcx, ty::ProjectionPredicate<'tcx>> { Ok(ty::ProjectionPredicate { projection_ty: relation.relate(&a.projection_ty, &b.projection_ty)?, ty: relation.relate(&a.ty, &b.ty)?, }) } } impl<'tcx> Relate<'tcx> for traits::WhereClause<'tcx> { fn relate>( relation: &mut R, a: &traits::WhereClause<'tcx>, b: &traits::WhereClause<'tcx>, ) -> RelateResult<'tcx, traits::WhereClause<'tcx>> { use crate::traits::WhereClause::*; match (a, b) { (Implemented(a_pred), Implemented(b_pred)) => { Ok(Implemented(relation.relate(a_pred, b_pred)?)) } (ProjectionEq(a_pred), ProjectionEq(b_pred)) => { Ok(ProjectionEq(relation.relate(a_pred, b_pred)?)) } (RegionOutlives(a_pred), RegionOutlives(b_pred)) => { Ok(RegionOutlives(ty::OutlivesPredicate( relation.relate(&a_pred.0, &b_pred.0)?, relation.relate(&a_pred.1, &b_pred.1)?, ))) } (TypeOutlives(a_pred), TypeOutlives(b_pred)) => { Ok(TypeOutlives(ty::OutlivesPredicate( relation.relate(&a_pred.0, &b_pred.0)?, relation.relate(&a_pred.1, &b_pred.1)?, ))) } _ => Err(TypeError::Mismatch), } } } impl<'tcx> Relate<'tcx> for traits::WellFormed<'tcx> { fn relate>( relation: &mut R, a: &traits::WellFormed<'tcx>, b: &traits::WellFormed<'tcx>, ) -> RelateResult<'tcx, traits::WellFormed<'tcx>> { use crate::traits::WellFormed::*; match (a, b) { (Trait(a_pred), Trait(b_pred)) => Ok(Trait(relation.relate(a_pred, b_pred)?)), (Ty(a_ty), Ty(b_ty)) => Ok(Ty(relation.relate(a_ty, b_ty)?)), _ => Err(TypeError::Mismatch), } } } impl<'tcx> Relate<'tcx> for traits::FromEnv<'tcx> { fn relate>( relation: &mut R, a: &traits::FromEnv<'tcx>, b: &traits::FromEnv<'tcx>, ) -> RelateResult<'tcx, traits::FromEnv<'tcx>> { use crate::traits::FromEnv::*; match (a, b) { (Trait(a_pred), Trait(b_pred)) => Ok(Trait(relation.relate(a_pred, b_pred)?)), (Ty(a_ty), Ty(b_ty)) => Ok(Ty(relation.relate(a_ty, b_ty)?)), _ => Err(TypeError::Mismatch), } } } impl<'tcx> Relate<'tcx> for traits::DomainGoal<'tcx> { fn relate>( relation: &mut R, a: &traits::DomainGoal<'tcx>, b: &traits::DomainGoal<'tcx>, ) -> RelateResult<'tcx, traits::DomainGoal<'tcx>> { use crate::traits::DomainGoal::*; match (a, b) { (Holds(a_wc), Holds(b_wc)) => Ok(Holds(relation.relate(a_wc, b_wc)?)), (WellFormed(a_wf), WellFormed(b_wf)) => Ok(WellFormed(relation.relate(a_wf, b_wf)?)), (FromEnv(a_fe), FromEnv(b_fe)) => Ok(FromEnv(relation.relate(a_fe, b_fe)?)), (Normalize(a_pred), Normalize(b_pred)) => { Ok(Normalize(relation.relate(a_pred, b_pred)?)) } _ => Err(TypeError::Mismatch), } } } impl<'tcx> Relate<'tcx> for traits::Goal<'tcx> { fn relate>( relation: &mut R, a: &traits::Goal<'tcx>, b: &traits::Goal<'tcx>, ) -> RelateResult<'tcx, traits::Goal<'tcx>> { use crate::traits::GoalKind::*; match (a, b) { (Implies(a_clauses, a_goal), Implies(b_clauses, b_goal)) => { let clauses = relation.relate(a_clauses, b_clauses)?; let goal = relation.relate(a_goal, b_goal)?; Ok(relation.tcx().mk_goal(Implies(clauses, goal))) } (And(a_left, a_right), And(b_left, b_right)) => { let left = relation.relate(a_left, b_left)?; let right = relation.relate(a_right, b_right)?; Ok(relation.tcx().mk_goal(And(left, right))) } (Not(a_goal), Not(b_goal)) => { let goal = relation.relate(a_goal, b_goal)?; Ok(relation.tcx().mk_goal(Not(goal))) } (DomainGoal(a_goal), DomainGoal(b_goal)) => { let goal = relation.relate(a_goal, b_goal)?; Ok(relation.tcx().mk_goal(DomainGoal(goal))) } (Quantified(a_qkind, a_goal), Quantified(b_qkind, b_goal)) if a_qkind == b_qkind => { let goal = relation.relate(a_goal, b_goal)?; Ok(relation.tcx().mk_goal(Quantified(*a_qkind, goal))) } (CannotProve, CannotProve) => Ok(*a), _ => Err(TypeError::Mismatch), } } } impl<'tcx> Relate<'tcx> for traits::Goals<'tcx> { fn relate>( relation: &mut R, a: &traits::Goals<'tcx>, b: &traits::Goals<'tcx>, ) -> RelateResult<'tcx, traits::Goals<'tcx>> { if a.len() != b.len() { return Err(TypeError::Mismatch); } let tcx = relation.tcx(); let goals = a.iter().zip(b.iter()).map(|(a, b)| relation.relate(a, b)); Ok(tcx.mk_goals(goals)?) } } impl<'tcx> Relate<'tcx> for traits::Clause<'tcx> { fn relate>( relation: &mut R, a: &traits::Clause<'tcx>, b: &traits::Clause<'tcx>, ) -> RelateResult<'tcx, traits::Clause<'tcx>> { use crate::traits::Clause::*; match (a, b) { (Implies(a_clause), Implies(b_clause)) => { let clause = relation.relate(a_clause, b_clause)?; Ok(Implies(clause)) } (ForAll(a_clause), ForAll(b_clause)) => { let clause = relation.relate(a_clause, b_clause)?; Ok(ForAll(clause)) } _ => Err(TypeError::Mismatch), } } } impl<'tcx> Relate<'tcx> for traits::Clauses<'tcx> { fn relate>( relation: &mut R, a: &traits::Clauses<'tcx>, b: &traits::Clauses<'tcx>, ) -> RelateResult<'tcx, traits::Clauses<'tcx>> { if a.len() != b.len() { return Err(TypeError::Mismatch); } let tcx = relation.tcx(); let clauses = a.iter().zip(b.iter()).map(|(a, b)| relation.relate(a, b)); Ok(tcx.mk_clauses(clauses)?) } } impl<'tcx> Relate<'tcx> for traits::ProgramClause<'tcx> { fn relate>( relation: &mut R, a: &traits::ProgramClause<'tcx>, b: &traits::ProgramClause<'tcx>, ) -> RelateResult<'tcx, traits::ProgramClause<'tcx>> { Ok(traits::ProgramClause { goal: relation.relate(&a.goal, &b.goal)?, hypotheses: relation.relate(&a.hypotheses, &b.hypotheses)?, category: traits::ProgramClauseCategory::Other, }) } } impl<'tcx> Relate<'tcx> for traits::Environment<'tcx> { fn relate>( relation: &mut R, a: &traits::Environment<'tcx>, b: &traits::Environment<'tcx>, ) -> RelateResult<'tcx, traits::Environment<'tcx>> { Ok(traits::Environment { clauses: relation.relate(&a.clauses, &b.clauses)? }) } } impl<'tcx, G> Relate<'tcx> for traits::InEnvironment<'tcx, G> where G: Relate<'tcx>, { fn relate>( relation: &mut R, a: &traits::InEnvironment<'tcx, G>, b: &traits::InEnvironment<'tcx, G>, ) -> RelateResult<'tcx, traits::InEnvironment<'tcx, G>> { Ok(traits::InEnvironment { environment: relation.relate(&a.environment, &b.environment)?, goal: relation.relate(&a.goal, &b.goal)?, }) } } /////////////////////////////////////////////////////////////////////////// // Error handling pub fn expected_found(relation: &mut R, a: &T, b: &T) -> ExpectedFound where R: TypeRelation<'tcx>, T: Clone, { expected_found_bool(relation.a_is_expected(), a, b) } pub fn expected_found_bool(a_is_expected: bool, a: &T, b: &T) -> ExpectedFound where T: Clone, { let a = a.clone(); let b = b.clone(); if a_is_expected { ExpectedFound { expected: a, found: b } } else { ExpectedFound { expected: b, found: a } } }