use crate::back::write::create_informational_target_machine; use crate::{llvm, llvm_util}; use libc::c_int; use rustc_codegen_ssa::target_features::supported_target_features; use rustc_data_structures::fx::FxHashSet; use rustc_metadata::dynamic_lib::DynamicLibrary; use rustc_middle::bug; use rustc_session::config::PrintRequest; use rustc_session::Session; use rustc_span::symbol::Symbol; use rustc_target::spec::{MergeFunctions, PanicStrategy}; use std::ffi::{CStr, CString}; use tracing::debug; use std::mem; use std::path::Path; use std::ptr; use std::slice; use std::str; use std::sync::atomic::{AtomicBool, Ordering}; use std::sync::Once; static POISONED: AtomicBool = AtomicBool::new(false); static INIT: Once = Once::new(); pub(crate) fn init(sess: &Session) { unsafe { // Before we touch LLVM, make sure that multithreading is enabled. INIT.call_once(|| { if llvm::LLVMStartMultithreaded() != 1 { // use an extra bool to make sure that all future usage of LLVM // cannot proceed despite the Once not running more than once. POISONED.store(true, Ordering::SeqCst); } configure_llvm(sess); }); if POISONED.load(Ordering::SeqCst) { bug!("couldn't enable multi-threaded LLVM"); } } } fn require_inited() { INIT.call_once(|| bug!("llvm is not initialized")); if POISONED.load(Ordering::SeqCst) { bug!("couldn't enable multi-threaded LLVM"); } } unsafe fn configure_llvm(sess: &Session) { let n_args = sess.opts.cg.llvm_args.len() + sess.target.llvm_args.len(); let mut llvm_c_strs = Vec::with_capacity(n_args + 1); let mut llvm_args = Vec::with_capacity(n_args + 1); llvm::LLVMRustInstallFatalErrorHandler(); fn llvm_arg_to_arg_name(full_arg: &str) -> &str { full_arg.trim().split(|c: char| c == '=' || c.is_whitespace()).next().unwrap_or("") } let cg_opts = sess.opts.cg.llvm_args.iter(); let tg_opts = sess.target.llvm_args.iter(); let sess_args = cg_opts.chain(tg_opts); let user_specified_args: FxHashSet<_> = sess_args.clone().map(|s| llvm_arg_to_arg_name(s)).filter(|s| !s.is_empty()).collect(); { // This adds the given argument to LLVM. Unless `force` is true // user specified arguments are *not* overridden. let mut add = |arg: &str, force: bool| { if force || !user_specified_args.contains(llvm_arg_to_arg_name(arg)) { let s = CString::new(arg).unwrap(); llvm_args.push(s.as_ptr()); llvm_c_strs.push(s); } }; // Set the llvm "program name" to make usage and invalid argument messages more clear. add("rustc -Cllvm-args=\"...\" with", true); if sess.time_llvm_passes() { add("-time-passes", false); } if sess.print_llvm_passes() { add("-debug-pass=Structure", false); } if !sess.opts.debugging_opts.no_generate_arange_section { add("-generate-arange-section", false); } // Disable the machine outliner by default in LLVM versions 11 and LLVM // version 12, where it leads to miscompilation. // // Ref: // - https://github.com/rust-lang/rust/issues/85351 // - https://reviews.llvm.org/D103167 let llvm_version = llvm_util::get_version(); if llvm_version >= (11, 0, 0) && llvm_version < (13, 0, 0) { add("-enable-machine-outliner=never", false); } match sess.opts.debugging_opts.merge_functions.unwrap_or(sess.target.merge_functions) { MergeFunctions::Disabled | MergeFunctions::Trampolines => {} MergeFunctions::Aliases => { add("-mergefunc-use-aliases", false); } } if sess.target.os == "emscripten" && sess.panic_strategy() == PanicStrategy::Unwind { add("-enable-emscripten-cxx-exceptions", false); } // HACK(eddyb) LLVM inserts `llvm.assume` calls to preserve align attributes // during inlining. Unfortunately these may block other optimizations. add("-preserve-alignment-assumptions-during-inlining=false", false); // Use non-zero `import-instr-limit` multiplier for cold callsites. add("-import-cold-multiplier=0.1", false); for arg in sess_args { add(&(*arg), true); } } if sess.opts.debugging_opts.llvm_time_trace { // time-trace is not thread safe and running it in parallel will cause seg faults. if !sess.opts.debugging_opts.no_parallel_llvm { bug!("`-Z llvm-time-trace` requires `-Z no-parallel-llvm") } llvm::LLVMTimeTraceProfilerInitialize(); } llvm::LLVMInitializePasses(); for plugin in &sess.opts.debugging_opts.llvm_plugins { let path = Path::new(plugin); let res = DynamicLibrary::open(path); match res { Ok(_) => debug!("LLVM plugin loaded succesfully {} ({})", path.display(), plugin), Err(e) => bug!("couldn't load plugin: {}", e), } mem::forget(res); } rustc_llvm::initialize_available_targets(); llvm::LLVMRustSetLLVMOptions(llvm_args.len() as c_int, llvm_args.as_ptr()); } pub fn time_trace_profiler_finish(file_name: &str) { unsafe { let file_name = CString::new(file_name).unwrap(); llvm::LLVMTimeTraceProfilerFinish(file_name.as_ptr()); } } // WARNING: the features after applying `to_llvm_feature` must be known // to LLVM or the feature detection code will walk past the end of the feature // array, leading to crashes. // To find a list of LLVM's names, check llvm-project/llvm/include/llvm/Support/*TargetParser.def // where the * matches the architecture's name // Beware to not use the llvm github project for this, but check the git submodule // found in src/llvm-project // Though note that Rust can also be build with an external precompiled version of LLVM // which might lead to failures if the oldest tested / supported LLVM version // doesn't yet support the relevant intrinsics pub fn to_llvm_feature<'a>(sess: &Session, s: &'a str) -> Vec<&'a str> { let arch = if sess.target.arch == "x86_64" { "x86" } else { &*sess.target.arch }; match (arch, s) { ("x86", "sse4.2") => { if get_version() >= (14, 0, 0) { vec!["sse4.2", "crc32"] } else { vec!["sse4.2"] } } ("x86", "pclmulqdq") => vec!["pclmul"], ("x86", "rdrand") => vec!["rdrnd"], ("x86", "bmi1") => vec!["bmi"], ("x86", "cmpxchg16b") => vec!["cx16"], ("x86", "avx512vaes") => vec!["vaes"], ("x86", "avx512gfni") => vec!["gfni"], ("x86", "avx512vpclmulqdq") => vec!["vpclmulqdq"], ("aarch64", "fp") => vec!["fp-armv8"], ("aarch64", "fp16") => vec!["fullfp16"], ("aarch64", "fhm") => vec!["fp16fml"], ("aarch64", "rcpc2") => vec!["rcpc-immo"], ("aarch64", "dpb") => vec!["ccpp"], ("aarch64", "dpb2") => vec!["ccdp"], ("aarch64", "frintts") => vec!["fptoint"], ("aarch64", "fcma") => vec!["complxnum"], (_, s) => vec![s], } } pub fn target_features(sess: &Session) -> Vec { let target_machine = create_informational_target_machine(sess); supported_target_features(sess) .iter() .filter_map( |&(feature, gate)| { if sess.is_nightly_build() || gate.is_none() { Some(feature) } else { None } }, ) .filter(|feature| { for llvm_feature in to_llvm_feature(sess, feature) { let cstr = CString::new(llvm_feature).unwrap(); if unsafe { llvm::LLVMRustHasFeature(target_machine, cstr.as_ptr()) } { return true; } } false }) .map(|feature| Symbol::intern(feature)) .collect() } pub fn print_version() { let (major, minor, patch) = get_version(); println!("LLVM version: {}.{}.{}", major, minor, patch); } pub fn get_version() -> (u32, u32, u32) { // Can be called without initializing LLVM unsafe { (llvm::LLVMRustVersionMajor(), llvm::LLVMRustVersionMinor(), llvm::LLVMRustVersionPatch()) } } pub fn print_passes() { // Can be called without initializing LLVM unsafe { llvm::LLVMRustPrintPasses(); } } fn llvm_target_features(tm: &llvm::TargetMachine) -> Vec<(&str, &str)> { let len = unsafe { llvm::LLVMRustGetTargetFeaturesCount(tm) }; let mut ret = Vec::with_capacity(len); for i in 0..len { unsafe { let mut feature = ptr::null(); let mut desc = ptr::null(); llvm::LLVMRustGetTargetFeature(tm, i, &mut feature, &mut desc); if feature.is_null() || desc.is_null() { bug!("LLVM returned a `null` target feature string"); } let feature = CStr::from_ptr(feature).to_str().unwrap_or_else(|e| { bug!("LLVM returned a non-utf8 feature string: {}", e); }); let desc = CStr::from_ptr(desc).to_str().unwrap_or_else(|e| { bug!("LLVM returned a non-utf8 feature string: {}", e); }); ret.push((feature, desc)); } } ret } fn print_target_features(sess: &Session, tm: &llvm::TargetMachine) { let mut target_features = llvm_target_features(tm); let mut rustc_target_features = supported_target_features(sess) .iter() .filter_map(|(feature, _gate)| { for llvm_feature in to_llvm_feature(sess, *feature) { // LLVM asserts that these are sorted. LLVM and Rust both use byte comparison for these strings. match target_features.binary_search_by_key(&llvm_feature, |(f, _d)| (*f)).ok().map( |index| { let (_f, desc) = target_features.remove(index); (*feature, desc) }, ) { Some(v) => return Some(v), None => {} } } None }) .collect::>(); rustc_target_features.extend_from_slice(&[( "crt-static", "Enables C Run-time Libraries to be statically linked", )]); let max_feature_len = target_features .iter() .chain(rustc_target_features.iter()) .map(|(feature, _desc)| feature.len()) .max() .unwrap_or(0); println!("Features supported by rustc for this target:"); for (feature, desc) in &rustc_target_features { println!(" {1:0$} - {2}.", max_feature_len, feature, desc); } println!("\nCode-generation features supported by LLVM for this target:"); for (feature, desc) in &target_features { println!(" {1:0$} - {2}.", max_feature_len, feature, desc); } if target_features.is_empty() { println!(" Target features listing is not supported by this LLVM version."); } println!("\nUse +feature to enable a feature, or -feature to disable it."); println!("For example, rustc -C target-cpu=mycpu -C target-feature=+feature1,-feature2\n"); println!("Code-generation features cannot be used in cfg or #[target_feature],"); println!("and may be renamed or removed in a future version of LLVM or rustc.\n"); } pub(crate) fn print(req: PrintRequest, sess: &Session) { require_inited(); let tm = create_informational_target_machine(sess); match req { PrintRequest::TargetCPUs => unsafe { llvm::LLVMRustPrintTargetCPUs(tm) }, PrintRequest::TargetFeatures => print_target_features(sess, tm), _ => bug!("rustc_codegen_llvm can't handle print request: {:?}", req), } } fn handle_native(name: &str) -> &str { if name != "native" { return name; } unsafe { let mut len = 0; let ptr = llvm::LLVMRustGetHostCPUName(&mut len); str::from_utf8(slice::from_raw_parts(ptr as *const u8, len)).unwrap() } } pub fn target_cpu(sess: &Session) -> &str { let name = sess.opts.cg.target_cpu.as_ref().unwrap_or(&sess.target.cpu); handle_native(name) } /// The list of LLVM features computed from CLI flags (`-Ctarget-cpu`, `-Ctarget-feature`, /// `--target` and similar). // FIXME(nagisa): Cache the output of this somehow? Maybe make this a query? We're calling this // for every function that has `#[target_feature]` on it. The global features won't change between // the functions; only crates, maybe… pub fn llvm_global_features(sess: &Session) -> Vec { // FIXME(nagisa): this should definitely be available more centrally and to other codegen backends. /// These features control behaviour of rustc rather than llvm. const RUSTC_SPECIFIC_FEATURES: &[&str] = &["crt-static"]; // Features that come earlier are overriden by conflicting features later in the string. // Typically we'll want more explicit settings to override the implicit ones, so: // // * Features from -Ctarget-cpu=*; are overriden by [^1] // * Features implied by --target; are overriden by // * Features from -Ctarget-feature; are overriden by // * function specific features. // // [^1]: target-cpu=native is handled here, other target-cpu values are handled implicitly // through LLVM TargetMachine implementation. // // FIXME(nagisa): it isn't clear what's the best interaction between features implied by // `-Ctarget-cpu` and `--target` are. On one hand, you'd expect CLI arguments to always // override anything that's implicit, so e.g. when there's no `--target` flag, features implied // the host target are overriden by `-Ctarget-cpu=*`. On the other hand, what about when both // `--target` and `-Ctarget-cpu=*` are specified? Both then imply some target features and both // flags are specified by the user on the CLI. It isn't as clear-cut which order of precedence // should be taken in cases like these. let mut features = vec![]; // -Ctarget-cpu=native match sess.opts.cg.target_cpu { Some(ref s) if s == "native" => { let features_string = unsafe { let ptr = llvm::LLVMGetHostCPUFeatures(); let features_string = if !ptr.is_null() { CStr::from_ptr(ptr) .to_str() .unwrap_or_else(|e| { bug!("LLVM returned a non-utf8 features string: {}", e); }) .to_owned() } else { bug!("could not allocate host CPU features, LLVM returned a `null` string"); }; llvm::LLVMDisposeMessage(ptr); features_string }; features.extend(features_string.split(',').map(String::from)); } Some(_) | None => {} }; let filter = |s: &str| { if s.is_empty() { return vec![]; } let feature = if s.starts_with('+') || s.starts_with('-') { &s[1..] } else { return vec![s.to_string()]; }; // Rustc-specific feature requests like `+crt-static` or `-crt-static` // are not passed down to LLVM. if RUSTC_SPECIFIC_FEATURES.contains(&feature) { return vec![]; } // ... otherwise though we run through `to_llvm_feature` feature when // passing requests down to LLVM. This means that all in-language // features also work on the command line instead of having two // different names when the LLVM name and the Rust name differ. to_llvm_feature(sess, feature).iter().map(|f| format!("{}{}", &s[..1], f)).collect() }; // Features implied by an implicit or explicit `--target`. features.extend(sess.target.features.split(',').flat_map(&filter)); // -Ctarget-features features.extend(sess.opts.cg.target_feature.split(',').flat_map(&filter)); // FIXME: Move outline-atomics to target definition when earliest supported LLVM is 12. if get_version() >= (12, 0, 0) && sess.target.llvm_target.contains("aarch64-unknown-linux") { features.push("+outline-atomics".to_string()); } features } pub fn tune_cpu(sess: &Session) -> Option<&str> { let name = sess.opts.debugging_opts.tune_cpu.as_ref()?; Some(handle_native(name)) }