// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Utility mixins that apply to all Readers and Writers #![allow(missing_doc)] // FIXME: Not sure how this should be structured // FIXME: Iteration should probably be considered separately use container::Container; use iter::Iterator; use option::{Option, Some, None}; use result::{Ok, Err}; use io; use io::{IoError, IoResult, Reader}; use slice::{ImmutableVector, Vector}; use ptr::RawPtr; /// An iterator that reads a single byte on each iteration, /// until `.read_byte()` returns `EndOfFile`. /// /// # Notes about the Iteration Protocol /// /// The `Bytes` may yield `None` and thus terminate /// an iteration, but continue to yield elements if iteration /// is attempted again. /// /// # Error /// /// Any error other than `EndOfFile` that is produced by the underlying Reader /// is returned by the iterator and should be handled by the caller. pub struct Bytes<'r, T> { reader: &'r mut T, } impl<'r, R: Reader> Bytes<'r, R> { /// Constructs a new byte iterator from the given Reader instance. pub fn new(r: &'r mut R) -> Bytes<'r, R> { Bytes { reader: r, } } } impl<'r, R: Reader> Iterator> for Bytes<'r, R> { #[inline] fn next(&mut self) -> Option> { match self.reader.read_byte() { Ok(x) => Some(Ok(x)), Err(IoError { kind: io::EndOfFile, .. }) => None, Err(e) => Some(Err(e)) } } } /// Converts an 8-bit to 64-bit unsigned value to a little-endian byte /// representation of the given size. If the size is not big enough to /// represent the value, then the high-order bytes are truncated. /// /// Arguments: /// /// * `n`: The value to convert. /// * `size`: The size of the value, in bytes. This must be 8 or less, or task /// failure occurs. If this is less than 8, then a value of that /// many bytes is produced. For example, if `size` is 4, then a /// 32-bit byte representation is produced. /// * `f`: A callback that receives the value. /// /// This function returns the value returned by the callback, for convenience. pub fn u64_to_le_bytes(n: u64, size: uint, f: |v: &[u8]| -> T) -> T { use mem::{to_le16, to_le32, to_le64}; use cast::transmute; // LLVM fails to properly optimize this when using shifts instead of the to_le* intrinsics assert!(size <= 8u); match size { 1u => f(&[n as u8]), 2u => f(unsafe { transmute::<_, [u8, ..2]>(to_le16(n as u16)) }), 4u => f(unsafe { transmute::<_, [u8, ..4]>(to_le32(n as u32)) }), 8u => f(unsafe { transmute::<_, [u8, ..8]>(to_le64(n)) }), _ => { let mut bytes = vec!(); let mut i = size; let mut n = n; while i > 0u { bytes.push((n & 255_u64) as u8); n >>= 8_u64; i -= 1u; } f(bytes.as_slice()) } } } /// Converts an 8-bit to 64-bit unsigned value to a big-endian byte /// representation of the given size. If the size is not big enough to /// represent the value, then the high-order bytes are truncated. /// /// Arguments: /// /// * `n`: The value to convert. /// * `size`: The size of the value, in bytes. This must be 8 or less, or task /// failure occurs. If this is less than 8, then a value of that /// many bytes is produced. For example, if `size` is 4, then a /// 32-bit byte representation is produced. /// * `f`: A callback that receives the value. /// /// This function returns the value returned by the callback, for convenience. pub fn u64_to_be_bytes(n: u64, size: uint, f: |v: &[u8]| -> T) -> T { use mem::{to_be16, to_be32, to_be64}; use cast::transmute; // LLVM fails to properly optimize this when using shifts instead of the to_be* intrinsics assert!(size <= 8u); match size { 1u => f(&[n as u8]), 2u => f(unsafe { transmute::<_, [u8, ..2]>(to_be16(n as u16)) }), 4u => f(unsafe { transmute::<_, [u8, ..4]>(to_be32(n as u32)) }), 8u => f(unsafe { transmute::<_, [u8, ..8]>(to_be64(n)) }), _ => { let mut bytes = vec!(); let mut i = size; while i > 0u { let shift = ((i - 1u) * 8u) as u64; bytes.push((n >> shift) as u8); i -= 1u; } f(bytes.as_slice()) } } } /// Extracts an 8-bit to 64-bit unsigned big-endian value from the given byte /// buffer and returns it as a 64-bit value. /// /// Arguments: /// /// * `data`: The buffer in which to extract the value. /// * `start`: The offset at which to extract the value. /// * `size`: The size of the value in bytes to extract. This must be 8 or /// less, or task failure occurs. If this is less than 8, then only /// that many bytes are parsed. For example, if `size` is 4, then a /// 32-bit value is parsed. pub fn u64_from_be_bytes(data: &[u8], start: uint, size: uint) -> u64 { use ptr::{copy_nonoverlapping_memory}; use mem::from_be64; use slice::MutableVector; assert!(size <= 8u); if data.len() - start < size { fail!("index out of bounds"); } let mut buf = [0u8, ..8]; unsafe { let ptr = data.as_ptr().offset(start as int); let out = buf.as_mut_ptr(); copy_nonoverlapping_memory(out.offset((8 - size) as int), ptr, size); from_be64(*(out as *u64)) } } #[cfg(test)] mod test { use prelude::*; use io; use io::{MemReader, MemWriter}; struct InitialZeroByteReader { count: int, } impl Reader for InitialZeroByteReader { fn read(&mut self, buf: &mut [u8]) -> io::IoResult { if self.count == 0 { self.count = 1; Ok(0) } else { buf[0] = 10; Ok(1) } } } struct EofReader; impl Reader for EofReader { fn read(&mut self, _: &mut [u8]) -> io::IoResult { Err(io::standard_error(io::EndOfFile)) } } struct ErroringReader; impl Reader for ErroringReader { fn read(&mut self, _: &mut [u8]) -> io::IoResult { Err(io::standard_error(io::InvalidInput)) } } struct PartialReader { count: int, } impl Reader for PartialReader { fn read(&mut self, buf: &mut [u8]) -> io::IoResult { if self.count == 0 { self.count = 1; buf[0] = 10; buf[1] = 11; Ok(2) } else { buf[0] = 12; buf[1] = 13; Ok(2) } } } struct ErroringLaterReader { count: int, } impl Reader for ErroringLaterReader { fn read(&mut self, buf: &mut [u8]) -> io::IoResult { if self.count == 0 { self.count = 1; buf[0] = 10; Ok(1) } else { Err(io::standard_error(io::InvalidInput)) } } } struct ThreeChunkReader { count: int, } impl Reader for ThreeChunkReader { fn read(&mut self, buf: &mut [u8]) -> io::IoResult { if self.count == 0 { self.count = 1; buf[0] = 10; buf[1] = 11; Ok(2) } else if self.count == 1 { self.count = 2; buf[0] = 12; buf[1] = 13; Ok(2) } else { Err(io::standard_error(io::EndOfFile)) } } } #[test] fn read_byte() { let mut reader = MemReader::new(vec!(10)); let byte = reader.read_byte(); assert!(byte == Ok(10)); } #[test] fn read_byte_0_bytes() { let mut reader = InitialZeroByteReader { count: 0, }; let byte = reader.read_byte(); assert!(byte == Ok(10)); } #[test] fn read_byte_eof() { let mut reader = EofReader; let byte = reader.read_byte(); assert!(byte.is_err()); } #[test] fn read_byte_error() { let mut reader = ErroringReader; let byte = reader.read_byte(); assert!(byte.is_err()); } #[test] fn bytes_0_bytes() { let mut reader = InitialZeroByteReader { count: 0, }; let byte = reader.bytes().next(); assert!(byte == Some(Ok(10))); } #[test] fn bytes_eof() { let mut reader = EofReader; let byte = reader.bytes().next(); assert!(byte.is_none()); } #[test] fn bytes_error() { let mut reader = ErroringReader; let mut it = reader.bytes(); let byte = it.next(); assert!(byte.unwrap().is_err()); } #[test] fn read_bytes() { let mut reader = MemReader::new(vec!(10, 11, 12, 13)); let bytes = reader.read_exact(4).unwrap(); assert!(bytes == vec!(10, 11, 12, 13)); } #[test] fn read_bytes_partial() { let mut reader = PartialReader { count: 0, }; let bytes = reader.read_exact(4).unwrap(); assert!(bytes == vec!(10, 11, 12, 13)); } #[test] fn read_bytes_eof() { let mut reader = MemReader::new(vec!(10, 11)); assert!(reader.read_exact(4).is_err()); } #[test] fn push_exact() { let mut reader = MemReader::new(vec!(10, 11, 12, 13)); let mut buf = vec!(8, 9); reader.push_exact(&mut buf, 4).unwrap(); assert!(buf == vec!(8, 9, 10, 11, 12, 13)); } #[test] fn push_exact_partial() { let mut reader = PartialReader { count: 0, }; let mut buf = vec!(8, 9); reader.push_exact(&mut buf, 4).unwrap(); assert!(buf == vec!(8, 9, 10, 11, 12, 13)); } #[test] fn push_exact_eof() { let mut reader = MemReader::new(vec!(10, 11)); let mut buf = vec!(8, 9); assert!(reader.push_exact(&mut buf, 4).is_err()); assert!(buf == vec!(8, 9, 10, 11)); } #[test] fn push_exact_error() { let mut reader = ErroringLaterReader { count: 0, }; let mut buf = vec!(8, 9); assert!(reader.push_exact(&mut buf, 4).is_err()); assert!(buf == vec!(8, 9, 10)); } #[test] fn read_to_end() { let mut reader = ThreeChunkReader { count: 0, }; let buf = reader.read_to_end().unwrap(); assert!(buf == vec!(10, 11, 12, 13)); } #[test] #[should_fail] fn read_to_end_error() { let mut reader = ThreeChunkReader { count: 0, }; let buf = reader.read_to_end().unwrap(); assert!(buf == vec!(10, 11)); } #[test] fn test_read_write_le_mem() { let uints = [0, 1, 2, 42, 10_123, 100_123_456, ::u64::MAX]; let mut writer = MemWriter::new(); for i in uints.iter() { writer.write_le_u64(*i).unwrap(); } let mut reader = MemReader::new(writer.unwrap()); for i in uints.iter() { assert!(reader.read_le_u64().unwrap() == *i); } } #[test] fn test_read_write_be() { let uints = [0, 1, 2, 42, 10_123, 100_123_456, ::u64::MAX]; let mut writer = MemWriter::new(); for i in uints.iter() { writer.write_be_u64(*i).unwrap(); } let mut reader = MemReader::new(writer.unwrap()); for i in uints.iter() { assert!(reader.read_be_u64().unwrap() == *i); } } #[test] fn test_read_be_int_n() { let ints = [::i32::MIN, -123456, -42, -5, 0, 1, ::i32::MAX]; let mut writer = MemWriter::new(); for i in ints.iter() { writer.write_be_i32(*i).unwrap(); } let mut reader = MemReader::new(writer.unwrap()); for i in ints.iter() { // this tests that the sign extension is working // (comparing the values as i32 would not test this) assert!(reader.read_be_int_n(4).unwrap() == *i as i64); } } #[test] fn test_read_f32() { //big-endian floating-point 8.1250 let buf = ~[0x41, 0x02, 0x00, 0x00]; let mut writer = MemWriter::new(); writer.write(buf).unwrap(); let mut reader = MemReader::new(writer.unwrap()); let f = reader.read_be_f32().unwrap(); assert!(f == 8.1250); } #[test] fn test_read_write_f32() { let f:f32 = 8.1250; let mut writer = MemWriter::new(); writer.write_be_f32(f).unwrap(); writer.write_le_f32(f).unwrap(); let mut reader = MemReader::new(writer.unwrap()); assert!(reader.read_be_f32().unwrap() == 8.1250); assert!(reader.read_le_f32().unwrap() == 8.1250); } #[test] fn test_u64_from_be_bytes() { use super::u64_from_be_bytes; let buf = [0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09]; // Aligned access assert_eq!(u64_from_be_bytes(buf, 0, 0), 0); assert_eq!(u64_from_be_bytes(buf, 0, 1), 0x01); assert_eq!(u64_from_be_bytes(buf, 0, 2), 0x0102); assert_eq!(u64_from_be_bytes(buf, 0, 3), 0x010203); assert_eq!(u64_from_be_bytes(buf, 0, 4), 0x01020304); assert_eq!(u64_from_be_bytes(buf, 0, 5), 0x0102030405); assert_eq!(u64_from_be_bytes(buf, 0, 6), 0x010203040506); assert_eq!(u64_from_be_bytes(buf, 0, 7), 0x01020304050607); assert_eq!(u64_from_be_bytes(buf, 0, 8), 0x0102030405060708); // Unaligned access assert_eq!(u64_from_be_bytes(buf, 1, 0), 0); assert_eq!(u64_from_be_bytes(buf, 1, 1), 0x02); assert_eq!(u64_from_be_bytes(buf, 1, 2), 0x0203); assert_eq!(u64_from_be_bytes(buf, 1, 3), 0x020304); assert_eq!(u64_from_be_bytes(buf, 1, 4), 0x02030405); assert_eq!(u64_from_be_bytes(buf, 1, 5), 0x0203040506); assert_eq!(u64_from_be_bytes(buf, 1, 6), 0x020304050607); assert_eq!(u64_from_be_bytes(buf, 1, 7), 0x02030405060708); assert_eq!(u64_from_be_bytes(buf, 1, 8), 0x0203040506070809); } } #[cfg(test)] mod bench { extern crate test; use container::Container; use prelude::*; use self::test::Bencher; macro_rules! u64_from_be_bytes_bench_impl( ($size:expr, $stride:expr, $start_index:expr) => ({ use super::u64_from_be_bytes; let data = Vec::from_fn($stride*100+$start_index, |i| i as u8); let mut sum = 0u64; b.iter(|| { let mut i = $start_index; while i < data.len() { sum += u64_from_be_bytes(data.as_slice(), i, $size); i += $stride; } }); }) ) #[bench] fn u64_from_be_bytes_4_aligned(b: &mut Bencher) { u64_from_be_bytes_bench_impl!(4, 4, 0); } #[bench] fn u64_from_be_bytes_4_unaligned(b: &mut Bencher) { u64_from_be_bytes_bench_impl!(4, 4, 1); } #[bench] fn u64_from_be_bytes_7_aligned(b: &mut Bencher) { u64_from_be_bytes_bench_impl!(7, 8, 0); } #[bench] fn u64_from_be_bytes_7_unaligned(b: &mut Bencher) { u64_from_be_bytes_bench_impl!(7, 8, 1); } #[bench] fn u64_from_be_bytes_8_aligned(b: &mut Bencher) { u64_from_be_bytes_bench_impl!(8, 8, 0); } #[bench] fn u64_from_be_bytes_8_unaligned(b: &mut Bencher) { u64_from_be_bytes_bench_impl!(8, 8, 1); } }