// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! This module implements only the Sha256 function since that is all that is needed for internal //! use. This implementation is not intended for external use or for any use where security is //! important. use std::iter::range_step; use std::num::Zero; use std::slice::bytes::{MutableByteVector, copy_memory}; use serialize::hex::ToHex; /// Write a u32 into a vector, which must be 4 bytes long. The value is written in big-endian /// format. fn write_u32_be(dst: &mut[u8], input: u32) { use std::mem::to_be32; assert!(dst.len() == 4); unsafe { let x = dst.unsafe_mut_ref(0) as *mut _ as *mut u32; *x = to_be32(input); } } /// Read a vector of bytes into a vector of u32s. The values are read in big-endian format. fn read_u32v_be(dst: &mut[u32], input: &[u8]) { use std::mem::to_be32; assert!(dst.len() * 4 == input.len()); unsafe { let mut x = dst.unsafe_mut_ref(0) as *mut _ as *mut u32; let mut y = input.unsafe_ref(0) as *_ as *u32; for _ in range(0, dst.len()) { *x = to_be32(*y); x = x.offset(1); y = y.offset(1); } } } trait ToBits { /// Convert the value in bytes to the number of bits, a tuple where the 1st item is the /// high-order value and the 2nd item is the low order value. fn to_bits(self) -> (Self, Self); } impl ToBits for u64 { fn to_bits(self) -> (u64, u64) { return (self >> 61, self << 3); } } /// Adds the specified number of bytes to the bit count. fail!() if this would cause numeric /// overflow. fn add_bytes_to_bits(bits: T, bytes: T) -> T { let (new_high_bits, new_low_bits) = bytes.to_bits(); if new_high_bits > Zero::zero() { fail!("numeric overflow occured.") } match bits.checked_add(&new_low_bits) { Some(x) => return x, None => fail!("numeric overflow occured.") } } /// A FixedBuffer, likes its name implies, is a fixed size buffer. When the buffer becomes full, it /// must be processed. The input() method takes care of processing and then clearing the buffer /// automatically. However, other methods do not and require the caller to process the buffer. Any /// method that modifies the buffer directory or provides the caller with bytes that can be modified /// results in those bytes being marked as used by the buffer. trait FixedBuffer { /// Input a vector of bytes. If the buffer becomes full, process it with the provided /// function and then clear the buffer. fn input(&mut self, input: &[u8], func: |&[u8]|); /// Reset the buffer. fn reset(&mut self); /// Zero the buffer up until the specified index. The buffer position currently must not be /// greater than that index. fn zero_until(&mut self, idx: uint); /// Get a slice of the buffer of the specified size. There must be at least that many bytes /// remaining in the buffer. fn next<'s>(&'s mut self, len: uint) -> &'s mut [u8]; /// Get the current buffer. The buffer must already be full. This clears the buffer as well. fn full_buffer<'s>(&'s mut self) -> &'s [u8]; /// Get the current position of the buffer. fn position(&self) -> uint; /// Get the number of bytes remaining in the buffer until it is full. fn remaining(&self) -> uint; /// Get the size of the buffer fn size(&self) -> uint; } /// A FixedBuffer of 64 bytes useful for implementing Sha256 which has a 64 byte blocksize. struct FixedBuffer64 { buffer: [u8, ..64], buffer_idx: uint, } impl FixedBuffer64 { /// Create a new FixedBuffer64 fn new() -> FixedBuffer64 { return FixedBuffer64 { buffer: [0u8, ..64], buffer_idx: 0 }; } } impl FixedBuffer for FixedBuffer64 { fn input(&mut self, input: &[u8], func: |&[u8]|) { let mut i = 0; let size = self.size(); // If there is already data in the buffer, copy as much as we can into it and process // the data if the buffer becomes full. if self.buffer_idx != 0 { let buffer_remaining = size - self.buffer_idx; if input.len() >= buffer_remaining { copy_memory( self.buffer.mut_slice(self.buffer_idx, size), input.slice_to(buffer_remaining)); self.buffer_idx = 0; func(self.buffer); i += buffer_remaining; } else { copy_memory( self.buffer.mut_slice(self.buffer_idx, self.buffer_idx + input.len()), input); self.buffer_idx += input.len(); return; } } // While we have at least a full buffer size chunk's worth of data, process that data // without copying it into the buffer while input.len() - i >= size { func(input.slice(i, i + size)); i += size; } // Copy any input data into the buffer. At this point in the method, the amount of // data left in the input vector will be less than the buffer size and the buffer will // be empty. let input_remaining = input.len() - i; copy_memory( self.buffer.mut_slice(0, input_remaining), input.slice_from(i)); self.buffer_idx += input_remaining; } fn reset(&mut self) { self.buffer_idx = 0; } fn zero_until(&mut self, idx: uint) { assert!(idx >= self.buffer_idx); self.buffer.mut_slice(self.buffer_idx, idx).set_memory(0); self.buffer_idx = idx; } fn next<'s>(&'s mut self, len: uint) -> &'s mut [u8] { self.buffer_idx += len; return self.buffer.mut_slice(self.buffer_idx - len, self.buffer_idx); } fn full_buffer<'s>(&'s mut self) -> &'s [u8] { assert!(self.buffer_idx == 64); self.buffer_idx = 0; return self.buffer.slice_to(64); } fn position(&self) -> uint { self.buffer_idx } fn remaining(&self) -> uint { 64 - self.buffer_idx } fn size(&self) -> uint { 64 } } /// The StandardPadding trait adds a method useful for Sha256 to a FixedBuffer struct. trait StandardPadding { /// Add padding to the buffer. The buffer must not be full when this method is called and is /// guaranteed to have exactly rem remaining bytes when it returns. If there are not at least /// rem bytes available, the buffer will be zero padded, processed, cleared, and then filled /// with zeros again until only rem bytes are remaining. fn standard_padding(&mut self, rem: uint, func: |&[u8]|); } impl StandardPadding for T { fn standard_padding(&mut self, rem: uint, func: |&[u8]|) { let size = self.size(); self.next(1)[0] = 128; if self.remaining() < rem { self.zero_until(size); func(self.full_buffer()); } self.zero_until(size - rem); } } /// The Digest trait specifies an interface common to digest functions, such as SHA-1 and the SHA-2 /// family of digest functions. pub trait Digest { /// Provide message data. /// /// # Arguments /// /// * input - A vector of message data fn input(&mut self, input: &[u8]); /// Retrieve the digest result. This method may be called multiple times. /// /// # Arguments /// /// * out - the vector to hold the result. Must be large enough to contain output_bits(). fn result(&mut self, out: &mut [u8]); /// Reset the digest. This method must be called after result() and before supplying more /// data. fn reset(&mut self); /// Get the output size in bits. fn output_bits(&self) -> uint; /// Convenience function that feeds a string into a digest. /// /// # Arguments /// /// * `input` The string to feed into the digest fn input_str(&mut self, input: &str) { self.input(input.as_bytes()); } /// Convenience function that retrieves the result of a digest as a /// newly allocated vec of bytes. fn result_bytes(&mut self) -> Vec { let mut buf = Vec::from_elem((self.output_bits()+7)/8, 0u8); self.result(buf.as_mut_slice()); buf } /// Convenience function that retrieves the result of a digest as a /// ~str in hexadecimal format. fn result_str(&mut self) -> ~str { self.result_bytes().as_slice().to_hex() } } // A structure that represents that state of a digest computation for the SHA-2 512 family of digest // functions struct Engine256State { h0: u32, h1: u32, h2: u32, h3: u32, h4: u32, h5: u32, h6: u32, h7: u32, } impl Engine256State { fn new(h: &[u32, ..8]) -> Engine256State { return Engine256State { h0: h[0], h1: h[1], h2: h[2], h3: h[3], h4: h[4], h5: h[5], h6: h[6], h7: h[7] }; } fn reset(&mut self, h: &[u32, ..8]) { self.h0 = h[0]; self.h1 = h[1]; self.h2 = h[2]; self.h3 = h[3]; self.h4 = h[4]; self.h5 = h[5]; self.h6 = h[6]; self.h7 = h[7]; } fn process_block(&mut self, data: &[u8]) { fn ch(x: u32, y: u32, z: u32) -> u32 { ((x & y) ^ ((!x) & z)) } fn maj(x: u32, y: u32, z: u32) -> u32 { ((x & y) ^ (x & z) ^ (y & z)) } fn sum0(x: u32) -> u32 { ((x >> 2) | (x << 30)) ^ ((x >> 13) | (x << 19)) ^ ((x >> 22) | (x << 10)) } fn sum1(x: u32) -> u32 { ((x >> 6) | (x << 26)) ^ ((x >> 11) | (x << 21)) ^ ((x >> 25) | (x << 7)) } fn sigma0(x: u32) -> u32 { ((x >> 7) | (x << 25)) ^ ((x >> 18) | (x << 14)) ^ (x >> 3) } fn sigma1(x: u32) -> u32 { ((x >> 17) | (x << 15)) ^ ((x >> 19) | (x << 13)) ^ (x >> 10) } let mut a = self.h0; let mut b = self.h1; let mut c = self.h2; let mut d = self.h3; let mut e = self.h4; let mut f = self.h5; let mut g = self.h6; let mut h = self.h7; let mut w = [0u32, ..64]; // Sha-512 and Sha-256 use basically the same calculations which are implemented // by these macros. Inlining the calculations seems to result in better generated code. macro_rules! schedule_round( ($t:expr) => ( w[$t] = sigma1(w[$t - 2]) + w[$t - 7] + sigma0(w[$t - 15]) + w[$t - 16]; ) ) macro_rules! sha2_round( ($A:ident, $B:ident, $C:ident, $D:ident, $E:ident, $F:ident, $G:ident, $H:ident, $K:ident, $t:expr) => ( { $H += sum1($E) + ch($E, $F, $G) + $K[$t] + w[$t]; $D += $H; $H += sum0($A) + maj($A, $B, $C); } ) ) read_u32v_be(w.mut_slice(0, 16), data); // Putting the message schedule inside the same loop as the round calculations allows for // the compiler to generate better code. for t in range_step(0u, 48, 8) { schedule_round!(t + 16); schedule_round!(t + 17); schedule_round!(t + 18); schedule_round!(t + 19); schedule_round!(t + 20); schedule_round!(t + 21); schedule_round!(t + 22); schedule_round!(t + 23); sha2_round!(a, b, c, d, e, f, g, h, K32, t); sha2_round!(h, a, b, c, d, e, f, g, K32, t + 1); sha2_round!(g, h, a, b, c, d, e, f, K32, t + 2); sha2_round!(f, g, h, a, b, c, d, e, K32, t + 3); sha2_round!(e, f, g, h, a, b, c, d, K32, t + 4); sha2_round!(d, e, f, g, h, a, b, c, K32, t + 5); sha2_round!(c, d, e, f, g, h, a, b, K32, t + 6); sha2_round!(b, c, d, e, f, g, h, a, K32, t + 7); } for t in range_step(48u, 64, 8) { sha2_round!(a, b, c, d, e, f, g, h, K32, t); sha2_round!(h, a, b, c, d, e, f, g, K32, t + 1); sha2_round!(g, h, a, b, c, d, e, f, K32, t + 2); sha2_round!(f, g, h, a, b, c, d, e, K32, t + 3); sha2_round!(e, f, g, h, a, b, c, d, K32, t + 4); sha2_round!(d, e, f, g, h, a, b, c, K32, t + 5); sha2_round!(c, d, e, f, g, h, a, b, K32, t + 6); sha2_round!(b, c, d, e, f, g, h, a, K32, t + 7); } self.h0 += a; self.h1 += b; self.h2 += c; self.h3 += d; self.h4 += e; self.h5 += f; self.h6 += g; self.h7 += h; } } static K32: [u32, ..64] = [ 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 ]; // A structure that keeps track of the state of the Sha-256 operation and contains the logic // necessary to perform the final calculations. struct Engine256 { length_bits: u64, buffer: FixedBuffer64, state: Engine256State, finished: bool, } impl Engine256 { fn new(h: &[u32, ..8]) -> Engine256 { return Engine256 { length_bits: 0, buffer: FixedBuffer64::new(), state: Engine256State::new(h), finished: false } } fn reset(&mut self, h: &[u32, ..8]) { self.length_bits = 0; self.buffer.reset(); self.state.reset(h); self.finished = false; } fn input(&mut self, input: &[u8]) { assert!(!self.finished) // Assumes that input.len() can be converted to u64 without overflow self.length_bits = add_bytes_to_bits(self.length_bits, input.len() as u64); let self_state = &mut self.state; self.buffer.input(input, |input: &[u8]| { self_state.process_block(input) }); } fn finish(&mut self) { if self.finished { return; } let self_state = &mut self.state; self.buffer.standard_padding(8, |input: &[u8]| { self_state.process_block(input) }); write_u32_be(self.buffer.next(4), (self.length_bits >> 32) as u32 ); write_u32_be(self.buffer.next(4), self.length_bits as u32); self_state.process_block(self.buffer.full_buffer()); self.finished = true; } } /// The SHA-256 hash algorithm pub struct Sha256 { engine: Engine256 } impl Sha256 { /// Construct a new instance of a SHA-256 digest. pub fn new() -> Sha256 { Sha256 { engine: Engine256::new(&H256) } } } impl Digest for Sha256 { fn input(&mut self, d: &[u8]) { self.engine.input(d); } fn result(&mut self, out: &mut [u8]) { self.engine.finish(); write_u32_be(out.mut_slice(0, 4), self.engine.state.h0); write_u32_be(out.mut_slice(4, 8), self.engine.state.h1); write_u32_be(out.mut_slice(8, 12), self.engine.state.h2); write_u32_be(out.mut_slice(12, 16), self.engine.state.h3); write_u32_be(out.mut_slice(16, 20), self.engine.state.h4); write_u32_be(out.mut_slice(20, 24), self.engine.state.h5); write_u32_be(out.mut_slice(24, 28), self.engine.state.h6); write_u32_be(out.mut_slice(28, 32), self.engine.state.h7); } fn reset(&mut self) { self.engine.reset(&H256); } fn output_bits(&self) -> uint { 256 } } static H256: [u32, ..8] = [ 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 ]; #[cfg(test)] mod tests { extern crate rand; use super::{Digest, Sha256, FixedBuffer}; use std::num::Bounded; use self::rand::isaac::IsaacRng; use self::rand::Rng; use serialize::hex::FromHex; // A normal addition - no overflow occurs #[test] fn test_add_bytes_to_bits_ok() { assert!(super::add_bytes_to_bits::(100, 10) == 180); } // A simple failure case - adding 1 to the max value #[test] #[should_fail] fn test_add_bytes_to_bits_overflow() { super::add_bytes_to_bits::(Bounded::max_value(), 1); } struct Test { input: ~str, output_str: ~str, } fn test_hash(sh: &mut D, tests: &[Test]) { // Test that it works when accepting the message all at once for t in tests.iter() { sh.reset(); sh.input_str(t.input); let out_str = sh.result_str(); assert!(out_str == t.output_str); } // Test that it works when accepting the message in pieces for t in tests.iter() { sh.reset(); let len = t.input.len(); let mut left = len; while left > 0u { let take = (left + 1u) / 2u; sh.input_str(t.input.slice(len - left, take + len - left)); left = left - take; } let out_str = sh.result_str(); assert!(out_str == t.output_str); } } #[test] fn test_sha256() { // Examples from wikipedia let wikipedia_tests = vec!( Test { input: "".to_owned(), output_str: "e3b0c44298fc1c149afb\ f4c8996fb92427ae41e4649b934ca495991b7852b855".to_owned() }, Test { input: "The quick brown fox jumps over the lazy dog".to_owned(), output_str: "d7a8fbb307d7809469ca\ 9abcb0082e4f8d5651e46d3cdb762d02d0bf37c9e592".to_owned() }, Test { input: "The quick brown fox jumps over the lazy dog.".to_owned(), output_str: "ef537f25c895bfa78252\ 6529a9b63d97aa631564d5d789c2b765448c8635fb6c".to_owned() }); let tests = wikipedia_tests; let mut sh = ~Sha256::new(); test_hash(sh, tests.as_slice()); } /// Feed 1,000,000 'a's into the digest with varying input sizes and check that the result is /// correct. fn test_digest_1million_random(digest: &mut D, blocksize: uint, expected: &str) { let total_size = 1000000; let buffer = Vec::from_elem(blocksize * 2, 'a' as u8); let mut rng = IsaacRng::new_unseeded(); let mut count = 0; digest.reset(); while count < total_size { let next: uint = rng.gen_range(0, 2 * blocksize + 1); let remaining = total_size - count; let size = if next > remaining { remaining } else { next }; digest.input(buffer.slice_to(size)); count += size; } let result_str = digest.result_str(); let result_bytes = digest.result_bytes(); assert_eq!(expected, result_str.as_slice()); let expected_vec: Vec = expected.from_hex() .unwrap() .move_iter() .collect(); assert_eq!(expected_vec, result_bytes); } #[test] fn test_1million_random_sha256() { let mut sh = Sha256::new(); test_digest_1million_random( &mut sh, 64, "cdc76e5c9914fb9281a1c7e284d73e67f1809a48a497200e046d39ccc7112cd0"); } } #[cfg(test)] mod bench { extern crate test; use self::test::Bencher; use super::{Sha256, FixedBuffer, Digest}; #[bench] pub fn sha256_10(b: &mut Bencher) { let mut sh = Sha256::new(); let bytes = [1u8, ..10]; b.iter(|| { sh.input(bytes); }); b.bytes = bytes.len() as u64; } #[bench] pub fn sha256_1k(b: &mut Bencher) { let mut sh = Sha256::new(); let bytes = [1u8, ..1024]; b.iter(|| { sh.input(bytes); }); b.bytes = bytes.len() as u64; } #[bench] pub fn sha256_64k(b: &mut Bencher) { let mut sh = Sha256::new(); let bytes = [1u8, ..65536]; b.iter(|| { sh.input(bytes); }); b.bytes = bytes.len() as u64; } }