/* Module: math */ export consts; export min, max; export f32, f64; // Currently this module supports from -lmath: // C95 + log2 + log1p + trunc + round + rint export acos, asin, atan, atan2, ceil, cos, cosh, exp, abs, floor, fmod, frexp, ldexp, ln, ln1p, log10, log2, modf, rint, round, pow, sin, sinh, sqrt, tan, tanh, trunc; // These two must match in width according to architecture import ctypes::c_float; import ctypes::c_int; import c_float = f64; #[link_name = "m"] #[abi = "cdecl"] native mod f64 { // Alpabetically sorted by link_name pure fn acos(n: f64) -> f64; pure fn asin(n: f64) -> f64; pure fn atan(n: f64) -> f64; pure fn atan2(a: f64, b: f64) -> f64; pure fn ceil(n: f64) -> f64; pure fn cos(n: f64) -> f64; pure fn cosh(n: f64) -> f64; pure fn exp(n: f64) -> f64; #[link_name="fabs"] pure fn abs(n: f64) -> f64; pure fn floor(n: f64) -> f64; pure fn fmod(x: f64, y: f64) -> f64; pure fn frexp(n: f64, &value: c_int) -> f64; pure fn ldexp(x: f64, n: c_int) -> f64; #[link_name="log"] pure fn ln(n: f64) -> f64; #[link_name="log1p"] pure fn ln1p(n: f64) -> f64; pure fn log10(n: f64) -> f64; pure fn log2(n: f64) -> f64; pure fn modf(n: f64, &iptr: f64) -> f64; pure fn pow(n: f64, e: f64) -> f64; pure fn rint(n: f64) -> f64; pure fn round(n: f64) -> f64; pure fn sin(n: f64) -> f64; pure fn sinh(n: f64) -> f64; pure fn sqrt(n: f64) -> f64; pure fn tan(n: f64) -> f64; pure fn tanh(n: f64) -> f64; pure fn trunc(n: f64) -> f64; } #[link_name = "m"] #[abi = "cdecl"] native mod f32 { // Alpabetically sorted by link_name #[link_name="acosf"] pure fn acos(n: f32) -> f32; #[link_name="asinf"] pure fn asin(n: f32) -> f32; #[link_name="atanf"] pure fn atan(n: f32) -> f32; #[link_name="atan2f"] pure fn atan2(a: f32, b: f32) -> f32; #[link_name="ceilf"] pure fn ceil(n: f32) -> f32; #[link_name="cosf"] pure fn cos(n: f32) -> f32; #[link_name="coshf"] pure fn cosh(n: f32) -> f32; #[link_name="expf"] pure fn exp(n: f32) -> f32; #[link_name="fabsf"] pure fn abs(n: f32) -> f32; #[link_name="floorf"] pure fn floor(n: f32) -> f32; #[link_name="frexpf"] pure fn frexp(n: f64, &value: c_int) -> f32; #[link_name="fmodf"] pure fn fmod(x: f32, y: f32) -> f32; #[link_name="ldexpf"] pure fn ldexp(x: f32, n: c_int) -> f32; #[link_name="logf"] pure fn ln(n: f32) -> f32; #[link_name="log1p"] pure fn ln1p(n: f64) -> f64; #[link_name="log2f"] pure fn log2(n: f32) -> f32; #[link_name="log10f"] pure fn log10(n: f32) -> f32; #[link_name="modff"] pure fn modf(n: f32, &iptr: f32) -> f32; #[link_name="powf"] pure fn pow(n: f32, e: f32) -> f32; #[link_name="rintf"] pure fn rint(n: f32) -> f32; #[link_name="roundf"] pure fn round(n: f32) -> f32; #[link_name="sinf"] pure fn sin(n: f32) -> f32; #[link_name="sinhf"] pure fn sinh(n: f32) -> f32; #[link_name="sqrtf"] pure fn sqrt(n: f32) -> f32; #[link_name="tanf"] pure fn tan(n: f32) -> f32; #[link_name="tanhf"] pure fn tanh(n: f32) -> f32; #[link_name="truncf"] pure fn trunc(n: f32) -> f32; } mod consts { /* Const: pi Archimedes' constant */ const pi: float = 3.14159265358979323846264338327950288; /* Const: frac_pi_2 pi/2.0 */ const frac_pi_2: float = 1.57079632679489661923132169163975144; /* Const: frac_pi_4 pi/4.0 */ const frac_pi_4: float = 0.785398163397448309615660845819875721; /* Const: frac_1_pi 1.0/pi */ const frac_1_pi: float = 0.318309886183790671537767526745028724; /* Const: frac_2_pi 2.0/pi */ const frac_2_pi: float = 0.636619772367581343075535053490057448; /* Const: frac_2_sqrtpi 2.0/sqrt(pi) */ const frac_2_sqrtpi: float = 1.12837916709551257389615890312154517; /* Const: sqrt2 sqrt(2.0) */ const sqrt2: float = 1.41421356237309504880168872420969808; /* Const: frac_1_sqrt2 1.0/sqrt(2.0) */ const frac_1_sqrt2: float = 0.707106781186547524400844362104849039; /* Const: e Euler's number */ const e: float = 2.71828182845904523536028747135266250; /* Const: log2_e log2(e) */ const log2_e: float = 1.44269504088896340735992468100189214; /* Const: log10_e log10(e) */ const log10_e: float = 0.434294481903251827651128918916605082; /* Const: ln_2 ln(2.0) */ const ln_2: float = 0.693147180559945309417232121458176568; /* Const: ln_10 ln(10.0) */ const ln_10: float = 2.30258509299404568401799145468436421; } /* Function: min Returns the minimum of two values */ pure fn min(x: T, y: T) -> T { x < y ? x : y } /* Function: max Returns the maximum of two values */ pure fn max(x: T, y: T) -> T { x < y ? y : x } /* Function: acos Returns the arccosine of an angle (measured in rad) */ pure fn acos(x: float) -> float { c_float::acos(x as c_float) as float } /* Function: asin Returns the arcsine of an angle (measured in rad) */ pure fn asin(x: float) -> float { c_float::asin(x as c_float) as float } /* Function: atan Returns the arctangents of an angle (measured in rad) */ pure fn atan(x: float) -> float { c_float::atan(x as c_float) as float } /* Function: atan2 Returns the arctangent of an angle (measured in rad) */ pure fn atan2(y: float, x: float) -> float { c_float::atan2(y as c_float, x as c_float) as float } /* Function: ceil Returns the smallest integral value less than or equal to `n` */ pure fn ceil(n: float) -> float { c_float::ceil(n as c_float) as float } /* Function: cos Returns the cosine of an angle `x` (measured in rad) */ pure fn cos(x: float) -> float { c_float::cos(x as c_float) as float } /* Function: cosh Returns the hyperbolic cosine of `x` */ pure fn cosh(x: float) -> float { c_float::cosh(x as c_float) as float } /* Function: exp Returns `consts::e` to the power of `n* */ pure fn exp(n: float) -> float { c_float::exp(n as c_float) as float } /* Function: abs Returns the absolute value of `n` */ pure fn abs(n: float) -> float { c_float::abs(n as c_float) as float } /* Function: floor Returns the largest integral value less than or equal to `n` */ pure fn floor(n: float) -> float { c_float::floor(n as c_float) as float } /* Function: fmod Returns the floating-point remainder of `x/y` */ pure fn fmod(x: float, y: float) -> float { c_float::fmod(x as c_float, y as c_float) as float } /* Function: ln Returns the natural logaritm of `n` */ pure fn ln(n: float) -> float { c_float::ln(n as c_float) as float } /* Function: ldexp Returns `x` multiplied by 2 to the power of `n` */ pure fn ldexp(n: float, i: int) -> float { c_float::ldexp(n as c_float, i as c_int) as float } /* Function: ln1p Returns the natural logarithm of `1+n` accurately, even for very small values of `n` */ pure fn ln1p(n: float) -> float { c_float::ln1p(n as c_float) as float } /* Function: log10 Returns the logarithm to base 10 of `n` */ pure fn log10(n: float) -> float { c_float::log10(n as c_float) as float } /* Function: log2 Returns the logarithm to base 2 of `n` */ pure fn log2(n: float) -> float { c_float::log2(n as c_float) as float } /* Function: modf Breaks `n` into integral and fractional parts such that both have the same sign as `n` The integral part is stored in `iptr`. Returns: The fractional part of `n` */ pure fn modf(n: float, &iptr: float) -> float { unchecked { let f = iptr as c_float; let r = c_float::modf(n as c_float, f) as float; iptr = f as float; ret r; } } /* Function: frexp Breaks `n` into a normalized fraction and an integral power of 2 The inegral part is stored in iptr. The functions return a number x such that x has a magnitude in the interval [1/2, 1) or 0, and `n == x*(2 to the power of exp)`. Returns: The fractional part of `n` */ pure fn frexp(n: float, &exp: c_int) -> float { c_float::frexp(n as c_float, exp) as float } /* Function: pow */ pure fn pow(v: float, e: float) -> float { c_float::pow(v as c_float, e as c_float) as float } /* Function: rint Returns the integral value nearest to `x` (according to the prevailing rounding mode) in floating-point format */ pure fn rint(x: float) -> float { c_float::rint(x as c_float) as float } /* Function: round Return the integral value nearest to `x` rounding half-way cases away from zero, regardless of the current rounding direction. */ pure fn round(x: float) -> float { c_float::round(x as c_float) as float } /* Function: sin Returns the sine of an angle `x` (measured in rad) */ pure fn sin(x: float) -> float { c_float::sin(x as c_float) as float } /* Function: sinh Returns the hyperbolic sine of an angle `x` (measured in rad) */ pure fn sinh(x: float) -> float { c_float::sinh(x as c_float) as float } /* Function: sqrt Returns the square root of `x` */ pure fn sqrt(x: float) -> float { c_float::sqrt(x as c_float) as float } /* Function: tan Returns the tangent of an angle `x` (measured in rad) */ pure fn tan(x: float) -> float { c_float::tan(x as c_float) as float } /* Function: tanh Returns the hyperbolic tangent of an angle `x` (measured in rad) */ pure fn tanh(x: float) -> float { c_float::tanh(x as c_float) as float } /* Function: trunc Returns the integral value nearest to but no larger in magnitude than `x` */ pure fn trunc(x: float) -> float { c_float::trunc(x as c_float) as float }