//! Some lints that are only useful in the compiler or crates that use compiler internals, such as //! Clippy. use crate::lints::{ BadOptAccessDiag, DefaultHashTypesDiag, DiagOutOfImpl, LintPassByHand, NonExistentDocKeyword, QueryInstability, SpanUseEqCtxtDiag, TyQualified, TykindDiag, TykindKind, UntranslatableDiag, UntranslatableDiagnosticTrivial, }; use crate::{EarlyContext, EarlyLintPass, LateContext, LateLintPass, LintContext}; use rustc_ast as ast; use rustc_hir::def::Res; use rustc_hir::{def_id::DefId, Expr, ExprKind, GenericArg, PatKind, Path, PathSegment, QPath}; use rustc_hir::{BinOp, BinOpKind, HirId, Impl, Item, ItemKind, Node, Pat, Ty, TyKind}; use rustc_middle::ty; use rustc_session::{declare_lint_pass, declare_tool_lint}; use rustc_span::hygiene::{ExpnKind, MacroKind}; use rustc_span::symbol::{kw, sym, Symbol}; use rustc_span::Span; declare_tool_lint! { /// The `default_hash_type` lint detects use of [`std::collections::HashMap`]/[`std::collections::HashSet`], /// suggesting the use of `FxHashMap`/`FxHashSet`. /// /// This can help as `FxHasher` can perform better than the default hasher. DOS protection is not /// required as input is assumed to be trusted. pub rustc::DEFAULT_HASH_TYPES, Allow, "forbid HashMap and HashSet and suggest the FxHash* variants", report_in_external_macro: true } declare_lint_pass!(DefaultHashTypes => [DEFAULT_HASH_TYPES]); impl LateLintPass<'_> for DefaultHashTypes { fn check_path(&mut self, cx: &LateContext<'_>, path: &Path<'_>, hir_id: HirId) { let Res::Def(rustc_hir::def::DefKind::Struct, def_id) = path.res else { return }; if matches!(cx.tcx.hir_node(hir_id), Node::Item(Item { kind: ItemKind::Use(..), .. })) { // don't lint imports, only actual usages return; } let preferred = match cx.tcx.get_diagnostic_name(def_id) { Some(sym::HashMap) => "FxHashMap", Some(sym::HashSet) => "FxHashSet", _ => return, }; cx.emit_span_lint( DEFAULT_HASH_TYPES, path.span, DefaultHashTypesDiag { preferred, used: cx.tcx.item_name(def_id) }, ); } } /// Helper function for lints that check for expressions with calls and use typeck results to /// get the `DefId` and `GenericArgsRef` of the function. fn typeck_results_of_method_fn<'tcx>( cx: &LateContext<'tcx>, expr: &Expr<'_>, ) -> Option<(Span, DefId, ty::GenericArgsRef<'tcx>)> { match expr.kind { ExprKind::MethodCall(segment, ..) if let Some(def_id) = cx.typeck_results().type_dependent_def_id(expr.hir_id) => { Some((segment.ident.span, def_id, cx.typeck_results().node_args(expr.hir_id))) } _ => match cx.typeck_results().node_type(expr.hir_id).kind() { &ty::FnDef(def_id, args) => Some((expr.span, def_id, args)), _ => None, }, } } declare_tool_lint! { /// The `potential_query_instability` lint detects use of methods which can lead to /// potential query instability, such as iterating over a `HashMap`. /// /// Due to the [incremental compilation](https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation.html) model, /// queries must return deterministic, stable results. `HashMap` iteration order can change between compilations, /// and will introduce instability if query results expose the order. pub rustc::POTENTIAL_QUERY_INSTABILITY, Allow, "require explicit opt-in when using potentially unstable methods or functions", report_in_external_macro: true } declare_lint_pass!(QueryStability => [POTENTIAL_QUERY_INSTABILITY]); impl LateLintPass<'_> for QueryStability { fn check_expr(&mut self, cx: &LateContext<'_>, expr: &Expr<'_>) { let Some((span, def_id, args)) = typeck_results_of_method_fn(cx, expr) else { return }; if let Ok(Some(instance)) = ty::Instance::resolve(cx.tcx, cx.param_env, def_id, args) { let def_id = instance.def_id(); if cx.tcx.has_attr(def_id, sym::rustc_lint_query_instability) { cx.emit_span_lint( POTENTIAL_QUERY_INSTABILITY, span, QueryInstability { query: cx.tcx.item_name(def_id) }, ); } } } } declare_tool_lint! { /// The `usage_of_ty_tykind` lint detects usages of `ty::TyKind::`, /// where `ty::` would suffice. pub rustc::USAGE_OF_TY_TYKIND, Allow, "usage of `ty::TyKind` outside of the `ty::sty` module", report_in_external_macro: true } declare_tool_lint! { /// The `usage_of_qualified_ty` lint detects usages of `ty::TyKind`, /// where `Ty` should be used instead. pub rustc::USAGE_OF_QUALIFIED_TY, Allow, "using `ty::{Ty,TyCtxt}` instead of importing it", report_in_external_macro: true } declare_lint_pass!(TyTyKind => [ USAGE_OF_TY_TYKIND, USAGE_OF_QUALIFIED_TY, ]); impl<'tcx> LateLintPass<'tcx> for TyTyKind { fn check_path( &mut self, cx: &LateContext<'tcx>, path: &rustc_hir::Path<'tcx>, _: rustc_hir::HirId, ) { if let Some(segment) = path.segments.iter().nth_back(1) && lint_ty_kind_usage(cx, &segment.res) { let span = path.span.with_hi(segment.args.map_or(segment.ident.span, |a| a.span_ext).hi()); cx.emit_span_lint(USAGE_OF_TY_TYKIND, path.span, TykindKind { suggestion: span }); } } fn check_ty(&mut self, cx: &LateContext<'_>, ty: &'tcx Ty<'tcx>) { match &ty.kind { TyKind::Path(QPath::Resolved(_, path)) => { if lint_ty_kind_usage(cx, &path.res) { let hir = cx.tcx.hir(); let span = match hir.find_parent(ty.hir_id) { Some(Node::Pat(Pat { kind: PatKind::Path(qpath) | PatKind::TupleStruct(qpath, ..) | PatKind::Struct(qpath, ..), .. })) => { if let QPath::TypeRelative(qpath_ty, ..) = qpath && qpath_ty.hir_id == ty.hir_id { Some(path.span) } else { None } } Some(Node::Expr(Expr { kind: ExprKind::Path(qpath), .. })) => { if let QPath::TypeRelative(qpath_ty, ..) = qpath && qpath_ty.hir_id == ty.hir_id { Some(path.span) } else { None } } // Can't unify these two branches because qpath below is `&&` and above is `&` // and `A | B` paths don't play well together with adjustments, apparently. Some(Node::Expr(Expr { kind: ExprKind::Struct(qpath, ..), .. })) => { if let QPath::TypeRelative(qpath_ty, ..) = qpath && qpath_ty.hir_id == ty.hir_id { Some(path.span) } else { None } } _ => None, }; match span { Some(span) => { cx.emit_span_lint( USAGE_OF_TY_TYKIND, path.span, TykindKind { suggestion: span }, ); } None => cx.emit_span_lint(USAGE_OF_TY_TYKIND, path.span, TykindDiag), } } else if !ty.span.from_expansion() && path.segments.len() > 1 && let Some(ty) = is_ty_or_ty_ctxt(cx, path) { cx.emit_span_lint( USAGE_OF_QUALIFIED_TY, path.span, TyQualified { ty, suggestion: path.span }, ); } } _ => {} } } } fn lint_ty_kind_usage(cx: &LateContext<'_>, res: &Res) -> bool { if let Some(did) = res.opt_def_id() { cx.tcx.is_diagnostic_item(sym::TyKind, did) || cx.tcx.is_diagnostic_item(sym::IrTyKind, did) } else { false } } fn is_ty_or_ty_ctxt(cx: &LateContext<'_>, path: &Path<'_>) -> Option { match &path.res { Res::Def(_, def_id) => { if let Some(name @ (sym::Ty | sym::TyCtxt)) = cx.tcx.get_diagnostic_name(*def_id) { return Some(format!("{}{}", name, gen_args(path.segments.last().unwrap()))); } } // Only lint on `&Ty` and `&TyCtxt` if it is used outside of a trait. Res::SelfTyAlias { alias_to: did, is_trait_impl: false, .. } => { if let ty::Adt(adt, args) = cx.tcx.type_of(did).instantiate_identity().kind() { if let Some(name @ (sym::Ty | sym::TyCtxt)) = cx.tcx.get_diagnostic_name(adt.did()) { // NOTE: This path is currently unreachable as `Ty<'tcx>` is // defined as a type alias meaning that `impl<'tcx> Ty<'tcx>` // is not actually allowed. // // I(@lcnr) still kept this branch in so we don't miss this // if we ever change it in the future. return Some(format!("{}<{}>", name, args[0])); } } } _ => (), } None } fn gen_args(segment: &PathSegment<'_>) -> String { if let Some(args) = &segment.args { let lifetimes = args .args .iter() .filter_map(|arg| { if let GenericArg::Lifetime(lt) = arg { Some(lt.ident.to_string()) } else { None } }) .collect::>(); if !lifetimes.is_empty() { return format!("<{}>", lifetimes.join(", ")); } } String::new() } declare_tool_lint! { /// The `lint_pass_impl_without_macro` detects manual implementations of a lint /// pass, without using [`declare_lint_pass`] or [`impl_lint_pass`]. pub rustc::LINT_PASS_IMPL_WITHOUT_MACRO, Allow, "`impl LintPass` without the `declare_lint_pass!` or `impl_lint_pass!` macros" } declare_lint_pass!(LintPassImpl => [LINT_PASS_IMPL_WITHOUT_MACRO]); impl EarlyLintPass for LintPassImpl { fn check_item(&mut self, cx: &EarlyContext<'_>, item: &ast::Item) { if let ast::ItemKind::Impl(box ast::Impl { of_trait: Some(lint_pass), .. }) = &item.kind { if let Some(last) = lint_pass.path.segments.last() { if last.ident.name == sym::LintPass { let expn_data = lint_pass.path.span.ctxt().outer_expn_data(); let call_site = expn_data.call_site; if expn_data.kind != ExpnKind::Macro(MacroKind::Bang, sym::impl_lint_pass) && call_site.ctxt().outer_expn_data().kind != ExpnKind::Macro(MacroKind::Bang, sym::declare_lint_pass) { cx.emit_span_lint( LINT_PASS_IMPL_WITHOUT_MACRO, lint_pass.path.span, LintPassByHand, ); } } } } } } declare_tool_lint! { /// The `existing_doc_keyword` lint detects use `#[doc()]` keywords /// that don't exist, e.g. `#[doc(keyword = "..")]`. pub rustc::EXISTING_DOC_KEYWORD, Allow, "Check that documented keywords in std and core actually exist", report_in_external_macro: true } declare_lint_pass!(ExistingDocKeyword => [EXISTING_DOC_KEYWORD]); fn is_doc_keyword(s: Symbol) -> bool { s <= kw::Union } impl<'tcx> LateLintPass<'tcx> for ExistingDocKeyword { fn check_item(&mut self, cx: &LateContext<'_>, item: &rustc_hir::Item<'_>) { for attr in cx.tcx.hir().attrs(item.hir_id()) { if !attr.has_name(sym::doc) { continue; } if let Some(list) = attr.meta_item_list() { for nested in list { if nested.has_name(sym::keyword) { let keyword = nested .value_str() .expect("#[doc(keyword = \"...\")] expected a value!"); if is_doc_keyword(keyword) { return; } cx.emit_span_lint( EXISTING_DOC_KEYWORD, attr.span, NonExistentDocKeyword { keyword }, ); } } } } } } declare_tool_lint! { /// The `untranslatable_diagnostic` lint detects diagnostics created /// without using translatable Fluent strings. /// /// More details on translatable diagnostics can be found [here](https://rustc-dev-guide.rust-lang.org/diagnostics/translation.html). pub rustc::UNTRANSLATABLE_DIAGNOSTIC, Allow, "prevent creation of diagnostics which cannot be translated", report_in_external_macro: true } declare_tool_lint! { /// The `diagnostic_outside_of_impl` lint detects diagnostics created manually, /// and inside an `IntoDiagnostic`/`AddToDiagnostic` implementation, /// or a `#[derive(Diagnostic)]`/`#[derive(Subdiagnostic)]` expansion. /// /// More details on diagnostics implementations can be found [here](https://rustc-dev-guide.rust-lang.org/diagnostics/diagnostic-structs.html). pub rustc::DIAGNOSTIC_OUTSIDE_OF_IMPL, Allow, "prevent creation of diagnostics outside of `IntoDiagnostic`/`AddToDiagnostic` impls", report_in_external_macro: true } declare_tool_lint! { /// The `untranslatable_diagnostic_trivial` lint detects diagnostics created using only static strings. pub rustc::UNTRANSLATABLE_DIAGNOSTIC_TRIVIAL, Deny, "prevent creation of diagnostics which cannot be translated, which use only static strings", report_in_external_macro: true } declare_lint_pass!(Diagnostics => [ UNTRANSLATABLE_DIAGNOSTIC, DIAGNOSTIC_OUTSIDE_OF_IMPL, UNTRANSLATABLE_DIAGNOSTIC_TRIVIAL ]); impl LateLintPass<'_> for Diagnostics { fn check_expr(&mut self, cx: &LateContext<'_>, expr: &Expr<'_>) { let Some((span, def_id, args)) = typeck_results_of_method_fn(cx, expr) else { return }; debug!(?span, ?def_id, ?args); let has_attr = ty::Instance::resolve(cx.tcx, cx.param_env, def_id, args) .ok() .flatten() .is_some_and(|inst| cx.tcx.has_attr(inst.def_id(), sym::rustc_lint_diagnostics)); if !has_attr { return; } let mut found_parent_with_attr = false; let mut found_impl = false; for (hir_id, parent) in cx.tcx.hir().parent_iter(expr.hir_id) { if let Some(owner_did) = hir_id.as_owner() { found_parent_with_attr = found_parent_with_attr || cx.tcx.has_attr(owner_did, sym::rustc_lint_diagnostics); } debug!(?parent); if let Node::Item(Item { kind: ItemKind::Impl(impl_), .. }) = parent && let Impl { of_trait: Some(of_trait), .. } = impl_ && let Some(def_id) = of_trait.trait_def_id() && let Some(name) = cx.tcx.get_diagnostic_name(def_id) && matches!(name, sym::IntoDiagnostic | sym::AddToDiagnostic | sym::DecorateLint) { found_impl = true; break; } } debug!(?found_impl); if !found_parent_with_attr && !found_impl { cx.emit_span_lint(DIAGNOSTIC_OUTSIDE_OF_IMPL, span, DiagOutOfImpl); } let mut found_diagnostic_message = false; for ty in args.types() { debug!(?ty); if let Some(adt_def) = ty.ty_adt_def() && let Some(name) = cx.tcx.get_diagnostic_name(adt_def.did()) && matches!(name, sym::DiagnosticMessage | sym::SubdiagnosticMessage) { found_diagnostic_message = true; break; } } debug!(?found_diagnostic_message); if !found_parent_with_attr && !found_diagnostic_message { cx.emit_span_lint(UNTRANSLATABLE_DIAGNOSTIC, span, UntranslatableDiag); } } } impl EarlyLintPass for Diagnostics { #[allow(unused_must_use)] fn check_stmt(&mut self, cx: &EarlyContext<'_>, stmt: &ast::Stmt) { // Looking for a straight chain of method calls from 'struct_span_err' to 'emit'. let ast::StmtKind::Semi(expr) = &stmt.kind else { return; }; let ast::ExprKind::MethodCall(meth) = &expr.kind else { return; }; if meth.seg.ident.name != sym::emit || !meth.args.is_empty() { return; } let mut segments = vec![]; let mut cur = &meth.receiver; let fake = &[].into(); loop { match &cur.kind { ast::ExprKind::Call(func, args) => { if let ast::ExprKind::Path(_, path) = &func.kind { segments.push((path.segments.last().unwrap().ident.name, args)) } break; } ast::ExprKind::MethodCall(method) => { segments.push((method.seg.ident.name, &method.args)); cur = &method.receiver; } ast::ExprKind::MacCall(mac) => { segments.push((mac.path.segments.last().unwrap().ident.name, fake)); break; } _ => { break; } } } segments.reverse(); if segments.is_empty() { return; } if segments[0].0.as_str() != "struct_span_err" { return; } if !segments.iter().all(|(name, args)| { let arg = match name.as_str() { "struct_span_err" | "span_note" | "span_label" | "span_help" if args.len() == 2 => { &args[1] } "note" | "help" if args.len() == 1 => &args[0], _ => { return false; } }; if let ast::ExprKind::Lit(lit) = arg.kind && let ast::token::LitKind::Str = lit.kind { true } else { false } }) { return; } cx.emit_span_lint( UNTRANSLATABLE_DIAGNOSTIC_TRIVIAL, stmt.span, UntranslatableDiagnosticTrivial, ); } } declare_tool_lint! { /// The `bad_opt_access` lint detects accessing options by field instead of /// the wrapper function. pub rustc::BAD_OPT_ACCESS, Deny, "prevent using options by field access when there is a wrapper function", report_in_external_macro: true } declare_lint_pass!(BadOptAccess => [ BAD_OPT_ACCESS ]); impl LateLintPass<'_> for BadOptAccess { fn check_expr(&mut self, cx: &LateContext<'_>, expr: &Expr<'_>) { let ExprKind::Field(base, target) = expr.kind else { return }; let Some(adt_def) = cx.typeck_results().expr_ty(base).ty_adt_def() else { return }; // Skip types without `#[rustc_lint_opt_ty]` - only so that the rest of the lint can be // avoided. if !cx.tcx.has_attr(adt_def.did(), sym::rustc_lint_opt_ty) { return; } for field in adt_def.all_fields() { if field.name == target.name && let Some(attr) = cx.tcx.get_attr(field.did, sym::rustc_lint_opt_deny_field_access) && let Some(items) = attr.meta_item_list() && let Some(item) = items.first() && let Some(lit) = item.lit() && let ast::LitKind::Str(val, _) = lit.kind { cx.emit_span_lint( BAD_OPT_ACCESS, expr.span, BadOptAccessDiag { msg: val.as_str() }, ); } } } } declare_tool_lint! { pub rustc::SPAN_USE_EQ_CTXT, Allow, "forbid uses of `==` with `Span::ctxt`, suggest `Span::eq_ctxt` instead", report_in_external_macro: true } declare_lint_pass!(SpanUseEqCtxt => [SPAN_USE_EQ_CTXT]); impl<'tcx> LateLintPass<'tcx> for SpanUseEqCtxt { fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &Expr<'_>) { if let ExprKind::Binary(BinOp { node: BinOpKind::Eq | BinOpKind::Ne, .. }, lhs, rhs) = expr.kind { if is_span_ctxt_call(cx, lhs) && is_span_ctxt_call(cx, rhs) { cx.emit_span_lint(SPAN_USE_EQ_CTXT, expr.span, SpanUseEqCtxtDiag); } } } } fn is_span_ctxt_call(cx: &LateContext<'_>, expr: &Expr<'_>) -> bool { match &expr.kind { ExprKind::MethodCall(..) => cx .typeck_results() .type_dependent_def_id(expr.hir_id) .is_some_and(|call_did| cx.tcx.is_diagnostic_item(sym::SpanCtxt, call_did)), _ => false, } }