use crate::{ lints::{ HiddenUnicodeCodepointsDiag, HiddenUnicodeCodepointsDiagLabels, HiddenUnicodeCodepointsDiagSub, }, EarlyContext, EarlyLintPass, LintContext, }; use ast::util::unicode::{contains_text_flow_control_chars, TEXT_FLOW_CONTROL_CHARS}; use rustc_ast as ast; use rustc_span::{BytePos, Span, Symbol}; declare_lint! { /// The `text_direction_codepoint_in_literal` lint detects Unicode codepoints that change the /// visual representation of text on screen in a way that does not correspond to their on /// memory representation. /// /// ### Explanation /// /// The unicode characters `\u{202A}`, `\u{202B}`, `\u{202D}`, `\u{202E}`, `\u{2066}`, /// `\u{2067}`, `\u{2068}`, `\u{202C}` and `\u{2069}` make the flow of text on screen change /// its direction on software that supports these codepoints. This makes the text "abc" display /// as "cba" on screen. By leveraging software that supports these, people can write specially /// crafted literals that make the surrounding code seem like it's performing one action, when /// in reality it is performing another. Because of this, we proactively lint against their /// presence to avoid surprises. /// /// ### Example /// /// ```rust,compile_fail /// #![deny(text_direction_codepoint_in_literal)] /// fn main() { /// println!("{:?}", '‮'); /// } /// ``` /// /// {{produces}} /// pub TEXT_DIRECTION_CODEPOINT_IN_LITERAL, Deny, "detect special Unicode codepoints that affect the visual representation of text on screen, \ changing the direction in which text flows", } declare_lint_pass!(HiddenUnicodeCodepoints => [TEXT_DIRECTION_CODEPOINT_IN_LITERAL]); impl HiddenUnicodeCodepoints { fn lint_text_direction_codepoint( &self, cx: &EarlyContext<'_>, text: Symbol, span: Span, padding: u32, point_at_inner_spans: bool, label: &str, ) { // Obtain the `Span`s for each of the forbidden chars. let spans: Vec<_> = text .as_str() .char_indices() .filter_map(|(i, c)| { TEXT_FLOW_CONTROL_CHARS.contains(&c).then(|| { let lo = span.lo() + BytePos(i as u32 + padding); (c, span.with_lo(lo).with_hi(lo + BytePos(c.len_utf8() as u32))) }) }) .collect(); let count = spans.len(); let labels = point_at_inner_spans .then_some(HiddenUnicodeCodepointsDiagLabels { spans: spans.clone() }); let sub = if point_at_inner_spans && !spans.is_empty() { HiddenUnicodeCodepointsDiagSub::Escape { spans } } else { HiddenUnicodeCodepointsDiagSub::NoEscape { spans } }; cx.emit_span_lint( TEXT_DIRECTION_CODEPOINT_IN_LITERAL, span, HiddenUnicodeCodepointsDiag { label, count, span_label: span, labels, sub }, ); } } impl EarlyLintPass for HiddenUnicodeCodepoints { fn check_attribute(&mut self, cx: &EarlyContext<'_>, attr: &ast::Attribute) { if let ast::AttrKind::DocComment(_, comment) = attr.kind { if contains_text_flow_control_chars(comment.as_str()) { self.lint_text_direction_codepoint(cx, comment, attr.span, 0, false, "doc comment"); } } } #[inline] fn check_expr(&mut self, cx: &EarlyContext<'_>, expr: &ast::Expr) { // byte strings are already handled well enough by `EscapeError::NonAsciiCharInByteString` match &expr.kind { ast::ExprKind::Lit(token_lit) => { let text = token_lit.symbol; if !contains_text_flow_control_chars(text.as_str()) { return; } let padding = match token_lit.kind { // account for `"` or `'` ast::token::LitKind::Str | ast::token::LitKind::Char => 1, // account for `r###"` ast::token::LitKind::StrRaw(n) => n as u32 + 2, _ => return, }; self.lint_text_direction_codepoint(cx, text, expr.span, padding, true, "literal"); } _ => {} }; } }