// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! An analysis to determine which locals require allocas and //! which do not. use rustc_data_structures::bitvec::BitVector; use rustc_data_structures::graph::dominators::Dominators; use rustc_data_structures::indexed_vec::{Idx, IndexVec}; use rustc::mir::{self, Location, TerminatorKind}; use rustc::mir::visit::{Visitor, PlaceContext}; use rustc::mir::traversal; use rustc::ty; use rustc::ty::layout::LayoutOf; use type_of::LayoutLlvmExt; use super::FunctionCx; pub fn non_ssa_locals<'a, 'tcx>(fx: &FunctionCx<'a, 'tcx>) -> BitVector { let mir = fx.mir; let mut analyzer = LocalAnalyzer::new(fx); analyzer.visit_mir(mir); for (index, ty) in mir.local_decls.iter().map(|l| l.ty).enumerate() { let ty = fx.monomorphize(&ty); debug!("local {} has type {:?}", index, ty); let layout = fx.cx.layout_of(ty); if layout.is_llvm_immediate() { // These sorts of types are immediates that we can store // in an ValueRef without an alloca. } else if layout.is_llvm_scalar_pair() { // We allow pairs and uses of any of their 2 fields. } else { // These sorts of types require an alloca. Note that // is_llvm_immediate() may *still* be true, particularly // for newtypes, but we currently force some types // (e.g. structs) into an alloca unconditionally, just so // that we don't have to deal with having two pathways // (gep vs extractvalue etc). analyzer.not_ssa(mir::Local::new(index)); } } analyzer.non_ssa_locals } struct LocalAnalyzer<'mir, 'a: 'mir, 'tcx: 'a> { fx: &'mir FunctionCx<'a, 'tcx>, dominators: Dominators, non_ssa_locals: BitVector, // The location of the first visited direct assignment to each // local, or an invalid location (out of bounds `block` index). first_assignment: IndexVec } impl<'mir, 'a, 'tcx> LocalAnalyzer<'mir, 'a, 'tcx> { fn new(fx: &'mir FunctionCx<'a, 'tcx>) -> LocalAnalyzer<'mir, 'a, 'tcx> { let invalid_location = mir::BasicBlock::new(fx.mir.basic_blocks().len()).start_location(); let mut analyzer = LocalAnalyzer { fx, dominators: fx.mir.dominators(), non_ssa_locals: BitVector::new(fx.mir.local_decls.len()), first_assignment: IndexVec::from_elem(invalid_location, &fx.mir.local_decls) }; // Arguments get assigned to by means of the function being called for arg in fx.mir.args_iter() { analyzer.first_assignment[arg] = mir::START_BLOCK.start_location(); } analyzer } fn first_assignment(&self, local: mir::Local) -> Option { let location = self.first_assignment[local]; if location.block.index() < self.fx.mir.basic_blocks().len() { Some(location) } else { None } } fn not_ssa(&mut self, local: mir::Local) { debug!("marking {:?} as non-SSA", local); self.non_ssa_locals.insert(local.index()); } fn assign(&mut self, local: mir::Local, location: Location) { if self.first_assignment(local).is_some() { self.not_ssa(local); } else { self.first_assignment[local] = location; } } } impl<'mir, 'a, 'tcx> Visitor<'tcx> for LocalAnalyzer<'mir, 'a, 'tcx> { fn visit_assign(&mut self, block: mir::BasicBlock, place: &mir::Place<'tcx>, rvalue: &mir::Rvalue<'tcx>, location: Location) { debug!("visit_assign(block={:?}, place={:?}, rvalue={:?})", block, place, rvalue); if let mir::Place::Local(index) = *place { self.assign(index, location); if !self.fx.rvalue_creates_operand(rvalue) { self.not_ssa(index); } } else { self.visit_place(place, PlaceContext::Store, location); } self.visit_rvalue(rvalue, location); } fn visit_terminator_kind(&mut self, block: mir::BasicBlock, kind: &mir::TerminatorKind<'tcx>, location: Location) { let check = match *kind { mir::TerminatorKind::Call { func: mir::Operand::Constant(ref c), ref args, .. } => match c.ty.sty { ty::TyFnDef(did, _) => Some((did, args)), _ => None, }, _ => None, }; if let Some((def_id, args)) = check { if Some(def_id) == self.fx.cx.tcx.lang_items().box_free_fn() { // box_free(x) shares with `drop x` the property that it // is not guaranteed to be statically dominated by the // definition of x, so x must always be in an alloca. if let mir::Operand::Move(ref place) = args[0] { self.visit_place(place, PlaceContext::Drop, location); } } } self.super_terminator_kind(block, kind, location); } fn visit_place(&mut self, place: &mir::Place<'tcx>, context: PlaceContext<'tcx>, location: Location) { debug!("visit_place(place={:?}, context={:?})", place, context); let cx = self.fx.cx; if let mir::Place::Projection(ref proj) = *place { // Allow uses of projections that are ZSTs or from scalar fields. let is_consume = match context { PlaceContext::Copy | PlaceContext::Move => true, _ => false }; if is_consume { let base_ty = proj.base.ty(self.fx.mir, cx.tcx); let base_ty = self.fx.monomorphize(&base_ty); // ZSTs don't require any actual memory access. let elem_ty = base_ty.projection_ty(cx.tcx, &proj.elem).to_ty(cx.tcx); let elem_ty = self.fx.monomorphize(&elem_ty); if cx.layout_of(elem_ty).is_zst() { return; } if let mir::ProjectionElem::Field(..) = proj.elem { let layout = cx.layout_of(base_ty.to_ty(cx.tcx)); if layout.is_llvm_immediate() || layout.is_llvm_scalar_pair() { // Recurse with the same context, instead of `Projection`, // potentially stopping at non-operand projections, // which would trigger `not_ssa` on locals. self.visit_place(&proj.base, context, location); return; } } } // A deref projection only reads the pointer, never needs the place. if let mir::ProjectionElem::Deref = proj.elem { return self.visit_place(&proj.base, PlaceContext::Copy, location); } } self.super_place(place, context, location); } fn visit_local(&mut self, &local: &mir::Local, context: PlaceContext<'tcx>, location: Location) { match context { PlaceContext::Call => { self.assign(local, location); } PlaceContext::StorageLive | PlaceContext::StorageDead | PlaceContext::Validate => {} PlaceContext::Copy | PlaceContext::Move => { // Reads from uninitialized variables (e.g. in dead code, after // optimizations) require locals to be in (uninitialized) memory. // NB: there can be uninitialized reads of a local visited after // an assignment to that local, if they happen on disjoint paths. let ssa_read = match self.first_assignment(local) { Some(assignment_location) => { assignment_location.dominates(location, &self.dominators) } None => false }; if !ssa_read { self.not_ssa(local); } } PlaceContext::Inspect | PlaceContext::Store | PlaceContext::AsmOutput | PlaceContext::Borrow { .. } | PlaceContext::Projection(..) => { self.not_ssa(local); } PlaceContext::Drop => { let ty = mir::Place::Local(local).ty(self.fx.mir, self.fx.cx.tcx); let ty = self.fx.monomorphize(&ty.to_ty(self.fx.cx.tcx)); // Only need the place if we're actually dropping it. if self.fx.cx.type_needs_drop(ty) { self.not_ssa(local); } } } } } #[derive(Copy, Clone, Debug, PartialEq, Eq)] pub enum CleanupKind { NotCleanup, Funclet, Internal { funclet: mir::BasicBlock } } impl CleanupKind { pub fn funclet_bb(self, for_bb: mir::BasicBlock) -> Option { match self { CleanupKind::NotCleanup => None, CleanupKind::Funclet => Some(for_bb), CleanupKind::Internal { funclet } => Some(funclet), } } } pub fn cleanup_kinds<'a, 'tcx>(mir: &mir::Mir<'tcx>) -> IndexVec { fn discover_masters<'tcx>(result: &mut IndexVec, mir: &mir::Mir<'tcx>) { for (bb, data) in mir.basic_blocks().iter_enumerated() { match data.terminator().kind { TerminatorKind::Goto { .. } | TerminatorKind::Resume | TerminatorKind::Abort | TerminatorKind::Return | TerminatorKind::GeneratorDrop | TerminatorKind::Unreachable | TerminatorKind::SwitchInt { .. } | TerminatorKind::Yield { .. } | TerminatorKind::FalseEdges { .. } | TerminatorKind::FalseUnwind { .. } => { /* nothing to do */ } TerminatorKind::Call { cleanup: unwind, .. } | TerminatorKind::Assert { cleanup: unwind, .. } | TerminatorKind::DropAndReplace { unwind, .. } | TerminatorKind::Drop { unwind, .. } => { if let Some(unwind) = unwind { debug!("cleanup_kinds: {:?}/{:?} registering {:?} as funclet", bb, data, unwind); result[unwind] = CleanupKind::Funclet; } } } } } fn propagate<'tcx>(result: &mut IndexVec, mir: &mir::Mir<'tcx>) { let mut funclet_succs = IndexVec::from_elem(None, mir.basic_blocks()); let mut set_successor = |funclet: mir::BasicBlock, succ| { match funclet_succs[funclet] { ref mut s @ None => { debug!("set_successor: updating successor of {:?} to {:?}", funclet, succ); *s = Some(succ); }, Some(s) => if s != succ { span_bug!(mir.span, "funclet {:?} has 2 parents - {:?} and {:?}", funclet, s, succ); } } }; for (bb, data) in traversal::reverse_postorder(mir) { let funclet = match result[bb] { CleanupKind::NotCleanup => continue, CleanupKind::Funclet => bb, CleanupKind::Internal { funclet } => funclet, }; debug!("cleanup_kinds: {:?}/{:?}/{:?} propagating funclet {:?}", bb, data, result[bb], funclet); for &succ in data.terminator().successors() { let kind = result[succ]; debug!("cleanup_kinds: propagating {:?} to {:?}/{:?}", funclet, succ, kind); match kind { CleanupKind::NotCleanup => { result[succ] = CleanupKind::Internal { funclet: funclet }; } CleanupKind::Funclet => { if funclet != succ { set_successor(funclet, succ); } } CleanupKind::Internal { funclet: succ_funclet } => { if funclet != succ_funclet { // `succ` has 2 different funclet going into it, so it must // be a funclet by itself. debug!("promoting {:?} to a funclet and updating {:?}", succ, succ_funclet); result[succ] = CleanupKind::Funclet; set_successor(succ_funclet, succ); set_successor(funclet, succ); } } } } } } let mut result = IndexVec::from_elem(CleanupKind::NotCleanup, mir.basic_blocks()); discover_masters(&mut result, mir); propagate(&mut result, mir); debug!("cleanup_kinds: result={:?}", result); result }