use clippy_utils::diagnostics::span_lint_and_then; use clippy_utils::source::snippet_opt; use clippy_utils::ty::implements_trait; use clippy_utils::{binop_traits, sugg}; use clippy_utils::{eq_expr_value, trait_ref_of_method}; use if_chain::if_chain; use rustc_errors::Applicability; use rustc_hir as hir; use rustc_hir::intravisit::{walk_expr, Visitor}; use rustc_lint::{LateContext, LateLintPass}; use rustc_session::{declare_lint_pass, declare_tool_lint}; declare_clippy_lint! { /// ### What it does /// Checks for `a = a op b` or `a = b commutative_op a` /// patterns. /// /// ### Why is this bad? /// These can be written as the shorter `a op= b`. /// /// ### Known problems /// While forbidden by the spec, `OpAssign` traits may have /// implementations that differ from the regular `Op` impl. /// /// ### Example /// ```rust /// let mut a = 5; /// let b = 0; /// // ... /// // Bad /// a = a + b; /// /// // Good /// a += b; /// ``` #[clippy::version = "pre 1.29.0"] pub ASSIGN_OP_PATTERN, style, "assigning the result of an operation on a variable to that same variable" } declare_clippy_lint! { /// ### What it does /// Checks for `a op= a op b` or `a op= b op a` patterns. /// /// ### Why is this bad? /// Most likely these are bugs where one meant to write `a /// op= b`. /// /// ### Known problems /// Clippy cannot know for sure if `a op= a op b` should have /// been `a = a op a op b` or `a = a op b`/`a op= b`. Therefore, it suggests both. /// If `a op= a op b` is really the correct behaviour it should be /// written as `a = a op a op b` as it's less confusing. /// /// ### Example /// ```rust /// let mut a = 5; /// let b = 2; /// // ... /// a += a + b; /// ``` #[clippy::version = "pre 1.29.0"] pub MISREFACTORED_ASSIGN_OP, suspicious, "having a variable on both sides of an assign op" } declare_lint_pass!(AssignOps => [ASSIGN_OP_PATTERN, MISREFACTORED_ASSIGN_OP]); impl<'tcx> LateLintPass<'tcx> for AssignOps { #[allow(clippy::too_many_lines)] fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx hir::Expr<'_>) { match &expr.kind { hir::ExprKind::AssignOp(op, lhs, rhs) => { if let hir::ExprKind::Binary(binop, l, r) = &rhs.kind { if op.node != binop.node { return; } // lhs op= l op r if eq_expr_value(cx, lhs, l) { lint_misrefactored_assign_op(cx, expr, *op, rhs, lhs, r); } // lhs op= l commutative_op r if is_commutative(op.node) && eq_expr_value(cx, lhs, r) { lint_misrefactored_assign_op(cx, expr, *op, rhs, lhs, l); } } }, hir::ExprKind::Assign(assignee, e, _) => { if let hir::ExprKind::Binary(op, l, r) = &e.kind { let lint = |assignee: &hir::Expr<'_>, rhs: &hir::Expr<'_>| { let ty = cx.typeck_results().expr_ty(assignee); let rty = cx.typeck_results().expr_ty(rhs); if_chain! { if let Some((_, lang_item)) = binop_traits(op.node); if let Ok(trait_id) = cx.tcx.lang_items().require(lang_item); let parent_fn = cx.tcx.hir().get_parent_item(e.hir_id); if trait_ref_of_method(cx, parent_fn) .map_or(true, |t| t.path.res.def_id() != trait_id); if implements_trait(cx, ty, trait_id, &[rty.into()]); then { span_lint_and_then( cx, ASSIGN_OP_PATTERN, expr.span, "manual implementation of an assign operation", |diag| { if let (Some(snip_a), Some(snip_r)) = (snippet_opt(cx, assignee.span), snippet_opt(cx, rhs.span)) { diag.span_suggestion( expr.span, "replace it with", format!("{} {}= {}", snip_a, op.node.as_str(), snip_r), Applicability::MachineApplicable, ); } }, ); } } }; let mut visitor = ExprVisitor { assignee, counter: 0, cx, }; walk_expr(&mut visitor, e); if visitor.counter == 1 { // a = a op b if eq_expr_value(cx, assignee, l) { lint(assignee, r); } // a = b commutative_op a // Limited to primitive type as these ops are know to be commutative if eq_expr_value(cx, assignee, r) && cx.typeck_results().expr_ty(assignee).is_primitive_ty() { match op.node { hir::BinOpKind::Add | hir::BinOpKind::Mul | hir::BinOpKind::And | hir::BinOpKind::Or | hir::BinOpKind::BitXor | hir::BinOpKind::BitAnd | hir::BinOpKind::BitOr => { lint(assignee, l); }, _ => {}, } } } } }, _ => {}, } } } fn lint_misrefactored_assign_op( cx: &LateContext<'_>, expr: &hir::Expr<'_>, op: hir::BinOp, rhs: &hir::Expr<'_>, assignee: &hir::Expr<'_>, rhs_other: &hir::Expr<'_>, ) { span_lint_and_then( cx, MISREFACTORED_ASSIGN_OP, expr.span, "variable appears on both sides of an assignment operation", |diag| { if let (Some(snip_a), Some(snip_r)) = (snippet_opt(cx, assignee.span), snippet_opt(cx, rhs_other.span)) { let a = &sugg::Sugg::hir(cx, assignee, ".."); let r = &sugg::Sugg::hir(cx, rhs, ".."); let long = format!("{} = {}", snip_a, sugg::make_binop(op.node.into(), a, r)); diag.span_suggestion( expr.span, &format!( "did you mean `{} = {} {} {}` or `{}`? Consider replacing it with", snip_a, snip_a, op.node.as_str(), snip_r, long ), format!("{} {}= {}", snip_a, op.node.as_str(), snip_r), Applicability::MaybeIncorrect, ); diag.span_suggestion( expr.span, "or", long, Applicability::MaybeIncorrect, // snippet ); } }, ); } #[must_use] fn is_commutative(op: hir::BinOpKind) -> bool { use rustc_hir::BinOpKind::{ Add, And, BitAnd, BitOr, BitXor, Div, Eq, Ge, Gt, Le, Lt, Mul, Ne, Or, Rem, Shl, Shr, Sub, }; match op { Add | Mul | And | Or | BitXor | BitAnd | BitOr | Eq | Ne => true, Sub | Div | Rem | Shl | Shr | Lt | Le | Ge | Gt => false, } } struct ExprVisitor<'a, 'tcx> { assignee: &'a hir::Expr<'a>, counter: u8, cx: &'a LateContext<'tcx>, } impl<'a, 'tcx> Visitor<'tcx> for ExprVisitor<'a, 'tcx> { fn visit_expr(&mut self, expr: &'tcx hir::Expr<'_>) { if eq_expr_value(self.cx, self.assignee, expr) { self.counter += 1; } walk_expr(self, expr); } }