// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! An analysis to determine which locals require allocas and //! which do not. use rustc_data_structures::bitvec::BitVector; use rustc_data_structures::indexed_vec::{Idx, IndexVec}; use rustc::mir::{self, Location, TerminatorKind}; use rustc::mir::visit::{Visitor, LvalueContext}; use rustc::mir::traversal; use common::{self, BlockAndBuilder}; use super::rvalue; pub fn lvalue_locals<'a, 'tcx>(bcx: &BlockAndBuilder<'a, 'tcx>, mir: &mir::Mir<'tcx>) -> BitVector { let mut analyzer = LocalAnalyzer::new(mir, &bcx); analyzer.visit_mir(mir); for (index, ty) in mir.local_decls.iter().map(|l| l.ty).enumerate() { let ty = bcx.fcx().monomorphize(&ty); debug!("local {} has type {:?}", index, ty); if ty.is_scalar() || ty.is_unique() || ty.is_region_ptr() || ty.is_simd() || common::type_is_zero_size(bcx.ccx(), ty) { // These sorts of types are immediates that we can store // in an ValueRef without an alloca. assert!(common::type_is_immediate(bcx.ccx(), ty) || common::type_is_fat_ptr(bcx.ccx(), ty)); } else if common::type_is_imm_pair(bcx.ccx(), ty) { // We allow pairs and uses of any of their 2 fields. } else { // These sorts of types require an alloca. Note that // type_is_immediate() may *still* be true, particularly // for newtypes, but we currently force some types // (e.g. structs) into an alloca unconditionally, just so // that we don't have to deal with having two pathways // (gep vs extractvalue etc). analyzer.mark_as_lvalue(mir::Local::new(index)); } } analyzer.lvalue_locals } struct LocalAnalyzer<'mir, 'a: 'mir, 'tcx: 'a> { mir: &'mir mir::Mir<'tcx>, bcx: &'mir BlockAndBuilder<'a, 'tcx>, lvalue_locals: BitVector, seen_assigned: BitVector } impl<'mir, 'a, 'tcx> LocalAnalyzer<'mir, 'a, 'tcx> { fn new(mir: &'mir mir::Mir<'tcx>, bcx: &'mir BlockAndBuilder<'a, 'tcx>) -> LocalAnalyzer<'mir, 'a, 'tcx> { LocalAnalyzer { mir: mir, bcx: bcx, lvalue_locals: BitVector::new(mir.local_decls.len()), seen_assigned: BitVector::new(mir.local_decls.len()) } } fn mark_as_lvalue(&mut self, local: mir::Local) { debug!("marking {:?} as lvalue", local); self.lvalue_locals.insert(local.index()); } fn mark_assigned(&mut self, local: mir::Local) { if !self.seen_assigned.insert(local.index()) { self.mark_as_lvalue(local); } } } impl<'mir, 'a, 'tcx> Visitor<'tcx> for LocalAnalyzer<'mir, 'a, 'tcx> { fn visit_assign(&mut self, block: mir::BasicBlock, lvalue: &mir::Lvalue<'tcx>, rvalue: &mir::Rvalue<'tcx>, location: Location) { debug!("visit_assign(block={:?}, lvalue={:?}, rvalue={:?})", block, lvalue, rvalue); if let mir::Lvalue::Local(index) = *lvalue { self.mark_assigned(index); if !rvalue::rvalue_creates_operand(self.mir, self.bcx, rvalue) { self.mark_as_lvalue(index); } } else { self.visit_lvalue(lvalue, LvalueContext::Store, location); } self.visit_rvalue(rvalue, location); } fn visit_terminator_kind(&mut self, block: mir::BasicBlock, kind: &mir::TerminatorKind<'tcx>, location: Location) { match *kind { mir::TerminatorKind::Call { func: mir::Operand::Constant(mir::Constant { literal: mir::Literal::Item { def_id, .. }, .. }), ref args, .. } if Some(def_id) == self.bcx.tcx().lang_items.box_free_fn() => { // box_free(x) shares with `drop x` the property that it // is not guaranteed to be statically dominated by the // definition of x, so x must always be in an alloca. if let mir::Operand::Consume(ref lvalue) = args[0] { self.visit_lvalue(lvalue, LvalueContext::Drop, location); } } _ => {} } self.super_terminator_kind(block, kind, location); } fn visit_lvalue(&mut self, lvalue: &mir::Lvalue<'tcx>, context: LvalueContext<'tcx>, location: Location) { debug!("visit_lvalue(lvalue={:?}, context={:?})", lvalue, context); // Allow uses of projections of immediate pair fields. if let mir::Lvalue::Projection(ref proj) = *lvalue { if let mir::Lvalue::Local(_) = proj.base { let ty = proj.base.ty(self.mir, self.bcx.tcx()); let ty = self.bcx.fcx().monomorphize(&ty.to_ty(self.bcx.tcx())); if common::type_is_imm_pair(self.bcx.ccx(), ty) { if let mir::ProjectionElem::Field(..) = proj.elem { if let LvalueContext::Consume = context { return; } } } } } if let mir::Lvalue::Local(index) = *lvalue { match context { LvalueContext::Call => { self.mark_assigned(index); } LvalueContext::StorageLive | LvalueContext::StorageDead | LvalueContext::Consume => {} LvalueContext::Store | LvalueContext::Inspect | LvalueContext::Borrow { .. } | LvalueContext::Projection(..) => { self.mark_as_lvalue(index); } LvalueContext::Drop => { let ty = lvalue.ty(self.mir, self.bcx.tcx()); let ty = self.bcx.fcx().monomorphize(&ty.to_ty(self.bcx.tcx())); // Only need the lvalue if we're actually dropping it. if self.bcx.ccx().shared().type_needs_drop(ty) { self.mark_as_lvalue(index); } } } } // A deref projection only reads the pointer, never needs the lvalue. if let mir::Lvalue::Projection(ref proj) = *lvalue { if let mir::ProjectionElem::Deref = proj.elem { return self.visit_lvalue(&proj.base, LvalueContext::Consume, location); } } self.super_lvalue(lvalue, context, location); } } #[derive(Copy, Clone, Debug, PartialEq, Eq)] pub enum CleanupKind { NotCleanup, Funclet, Internal { funclet: mir::BasicBlock } } pub fn cleanup_kinds<'a, 'tcx>(mir: &mir::Mir<'tcx>) -> IndexVec { fn discover_masters<'tcx>(result: &mut IndexVec, mir: &mir::Mir<'tcx>) { for (bb, data) in mir.basic_blocks().iter_enumerated() { match data.terminator().kind { TerminatorKind::Goto { .. } | TerminatorKind::Resume | TerminatorKind::Return | TerminatorKind::Unreachable | TerminatorKind::If { .. } | TerminatorKind::Switch { .. } | TerminatorKind::SwitchInt { .. } => { /* nothing to do */ } TerminatorKind::Call { cleanup: unwind, .. } | TerminatorKind::Assert { cleanup: unwind, .. } | TerminatorKind::DropAndReplace { unwind, .. } | TerminatorKind::Drop { unwind, .. } => { if let Some(unwind) = unwind { debug!("cleanup_kinds: {:?}/{:?} registering {:?} as funclet", bb, data, unwind); result[unwind] = CleanupKind::Funclet; } } } } } fn propagate<'tcx>(result: &mut IndexVec, mir: &mir::Mir<'tcx>) { let mut funclet_succs = IndexVec::from_elem(None, mir.basic_blocks()); let mut set_successor = |funclet: mir::BasicBlock, succ| { match funclet_succs[funclet] { ref mut s @ None => { debug!("set_successor: updating successor of {:?} to {:?}", funclet, succ); *s = Some(succ); }, Some(s) => if s != succ { span_bug!(mir.span, "funclet {:?} has 2 parents - {:?} and {:?}", funclet, s, succ); } } }; for (bb, data) in traversal::reverse_postorder(mir) { let funclet = match result[bb] { CleanupKind::NotCleanup => continue, CleanupKind::Funclet => bb, CleanupKind::Internal { funclet } => funclet, }; debug!("cleanup_kinds: {:?}/{:?}/{:?} propagating funclet {:?}", bb, data, result[bb], funclet); for &succ in data.terminator().successors().iter() { let kind = result[succ]; debug!("cleanup_kinds: propagating {:?} to {:?}/{:?}", funclet, succ, kind); match kind { CleanupKind::NotCleanup => { result[succ] = CleanupKind::Internal { funclet: funclet }; } CleanupKind::Funclet => { set_successor(funclet, succ); } CleanupKind::Internal { funclet: succ_funclet } => { if funclet != succ_funclet { // `succ` has 2 different funclet going into it, so it must // be a funclet by itself. debug!("promoting {:?} to a funclet and updating {:?}", succ, succ_funclet); result[succ] = CleanupKind::Funclet; set_successor(succ_funclet, succ); set_successor(funclet, succ); } } } } } } let mut result = IndexVec::from_elem(CleanupKind::NotCleanup, mir.basic_blocks()); discover_masters(&mut result, mir); propagate(&mut result, mir); debug!("cleanup_kinds: result={:?}", result); result }