/* Module: uint */ /* Const: min_value Return the minimal value for an uint. This is always 0 */ const min_value: uint = 0u; /* Const: max_value Return the maximal value for an uint. This is 2^wordsize - 1 */ const max_value: uint = 0u - 1u; /* Function: add */ pure fn add(x: uint, y: uint) -> uint { ret x + y; } /* Function: sub */ pure fn sub(x: uint, y: uint) -> uint { ret x - y; } /* Function: mul */ pure fn mul(x: uint, y: uint) -> uint { ret x * y; } /* Function: div */ pure fn div(x: uint, y: uint) -> uint { ret x / y; } /* Function: div_ceil Divide two numbers, return the result, rounded up. Parameters: x - an integer y - an integer distinct from 0u Return: The smallest integer `q` such that `x/y <= q`. */ pure fn div_ceil(x: uint, y: uint) -> uint { let div = div(x, y); if x % y == 0u { ret div;} else { ret div + 1u; } } /* Function: div_ceil Divide two numbers, return the result, rounded to the closest integer. Parameters: x - an integer y - an integer distinct from 0u Return: The integer `q` closest to `x/y`. */ pure fn div_round(x: uint, y: uint) -> uint { let div = div(x, y); if x % y * 2u < y { ret div;} else { ret div + 1u; } } /* Function: div_ceil Divide two numbers, return the result, rounded down. Parameters: x - an integer y - an integer distinct from 0u Note: This is the same function as `div`. Return: The smallest integer `q` such that `x/y <= q`. This is either `x/y` or `x/y + 1`. */ pure fn div_floor(x: uint, y: uint) -> uint { ret x / y; } /* Function: rem */ pure fn rem(x: uint, y: uint) -> uint { ret x % y; } /* Predicate: lt */ pure fn lt(x: uint, y: uint) -> bool { ret x < y; } /* Predicate: le */ pure fn le(x: uint, y: uint) -> bool { ret x <= y; } /* Predicate: eq */ pure fn eq(x: uint, y: uint) -> bool { ret x == y; } /* Predicate: ne */ pure fn ne(x: uint, y: uint) -> bool { ret x != y; } /* Predicate: ge */ pure fn ge(x: uint, y: uint) -> bool { ret x >= y; } /* Predicate: gt */ pure fn gt(x: uint, y: uint) -> bool { ret x > y; } /* Function: hash Produce a uint suitable for use in a hash table */ fn hash(x: uint) -> uint { ret x; } /* Function: range Iterate over the range [`lo`..`hi`) */ fn range(lo: uint, hi: uint, it: fn(uint)) { let i = lo; while i < hi { it(i); i += 1u; } } /* Function: loop Iterate over the range [`lo`..`hi`), or stop when requested Parameters: lo - The integer at which to start the loop (included) hi - The integer at which to stop the loop (excluded) it - A block to execute with each consecutive integer of the range. Return `true` to continue, `false` to stop. Returns: `true` If execution proceeded correctly, `false` if it was interrupted, that is if `it` returned `false` at any point. */ fn loop(lo: uint, hi: uint, it: fn(uint) -> bool) -> bool { let i = lo; while i < hi { if (!it(i)) { ret false; } i += 1u; } ret true; } /* Function: next_power_of_two Returns the smallest power of 2 greater than or equal to `n` */ fn next_power_of_two(n: uint) -> uint { let halfbits: uint = sys::size_of::() * 4u; let tmp: uint = n - 1u; let shift: uint = 1u; while shift <= halfbits { tmp |= tmp >> shift; shift <<= 1u; } ret tmp + 1u; } /* Function: parse_buf Parse a buffer of bytes Parameters: buf - A byte buffer radix - The base of the number Failure: buf must not be empty */ fn parse_buf(buf: [u8], radix: uint) -> uint { if vec::len::(buf) == 0u { #error("parse_buf(): buf is empty"); fail; } let i = vec::len::(buf) - 1u; let power = 1u; let n = 0u; while true { let digit = char::to_digit(buf[i] as char); if (digit as uint) >= radix { fail; } n += (digit as uint) * power; power *= radix; if i == 0u { ret n; } i -= 1u; } fail; } /* Function: from_str Parse a string to an int Failure: s must not be empty */ fn from_str(s: str) -> uint { parse_buf(str::bytes(s), 10u) } /* Function: to_str Convert to a string in a given base */ fn to_str(num: uint, radix: uint) -> str { let n = num; assert (0u < radix && radix <= 16u); fn digit(n: uint) -> char { ret alt n { 0u { '0' } 1u { '1' } 2u { '2' } 3u { '3' } 4u { '4' } 5u { '5' } 6u { '6' } 7u { '7' } 8u { '8' } 9u { '9' } 10u { 'a' } 11u { 'b' } 12u { 'c' } 13u { 'd' } 14u { 'e' } 15u { 'f' } _ { fail } }; } if n == 0u { ret "0"; } let s: str = ""; while n != 0u { s += str::unsafe_from_byte(digit(n % radix) as u8); n /= radix; } let s1: str = ""; let len: uint = str::byte_len(s); while len != 0u { len -= 1u; s1 += str::unsafe_from_byte(s[len]); } ret s1; } /* Function: str Convert to a string */ fn str(i: uint) -> str { ret to_str(i, 10u); } #[cfg(test)] mod tests { #[test] fn test_from_str() { assert (uint::from_str("0") == 0u); assert (uint::from_str("3") == 3u); assert (uint::from_str("10") == 10u); assert (uint::from_str("123456789") == 123456789u); assert (uint::from_str("00100") == 100u); } #[test] #[should_fail] #[ignore(cfg(target_os = "win32"))] fn test_from_str_fail_1() { uint::from_str(" "); } #[test] #[should_fail] #[ignore(cfg(target_os = "win32"))] fn test_from_str_fail_2() { uint::from_str("x"); } #[test] fn test_parse_buf() { import str::bytes; assert (uint::parse_buf(bytes("123"), 10u) == 123u); assert (uint::parse_buf(bytes("1001"), 2u) == 9u); assert (uint::parse_buf(bytes("123"), 8u) == 83u); assert (uint::parse_buf(bytes("123"), 16u) == 291u); assert (uint::parse_buf(bytes("ffff"), 16u) == 65535u); assert (uint::parse_buf(bytes("z"), 36u) == 35u); } #[test] #[should_fail] #[ignore(cfg(target_os = "win32"))] fn test_parse_buf_fail_1() { uint::parse_buf(str::bytes("Z"), 10u); } #[test] #[should_fail] #[ignore(cfg(target_os = "win32"))] fn test_parse_buf_fail_2() { uint::parse_buf(str::bytes("_"), 2u); } #[test] fn test_next_power_of_two() { assert (uint::next_power_of_two(0u) == 0u); assert (uint::next_power_of_two(1u) == 1u); assert (uint::next_power_of_two(2u) == 2u); assert (uint::next_power_of_two(3u) == 4u); assert (uint::next_power_of_two(4u) == 4u); assert (uint::next_power_of_two(5u) == 8u); assert (uint::next_power_of_two(6u) == 8u); assert (uint::next_power_of_two(7u) == 8u); assert (uint::next_power_of_two(8u) == 8u); assert (uint::next_power_of_two(9u) == 16u); assert (uint::next_power_of_two(10u) == 16u); assert (uint::next_power_of_two(11u) == 16u); assert (uint::next_power_of_two(12u) == 16u); assert (uint::next_power_of_two(13u) == 16u); assert (uint::next_power_of_two(14u) == 16u); assert (uint::next_power_of_two(15u) == 16u); assert (uint::next_power_of_two(16u) == 16u); assert (uint::next_power_of_two(17u) == 32u); assert (uint::next_power_of_two(18u) == 32u); assert (uint::next_power_of_two(19u) == 32u); assert (uint::next_power_of_two(20u) == 32u); assert (uint::next_power_of_two(21u) == 32u); assert (uint::next_power_of_two(22u) == 32u); assert (uint::next_power_of_two(23u) == 32u); assert (uint::next_power_of_two(24u) == 32u); assert (uint::next_power_of_two(25u) == 32u); assert (uint::next_power_of_two(26u) == 32u); assert (uint::next_power_of_two(27u) == 32u); assert (uint::next_power_of_two(28u) == 32u); assert (uint::next_power_of_two(29u) == 32u); assert (uint::next_power_of_two(30u) == 32u); assert (uint::next_power_of_two(31u) == 32u); assert (uint::next_power_of_two(32u) == 32u); assert (uint::next_power_of_two(33u) == 64u); assert (uint::next_power_of_two(34u) == 64u); assert (uint::next_power_of_two(35u) == 64u); assert (uint::next_power_of_two(36u) == 64u); assert (uint::next_power_of_two(37u) == 64u); assert (uint::next_power_of_two(38u) == 64u); assert (uint::next_power_of_two(39u) == 64u); } #[test] fn test_overflows() { assert (uint::max_value > 0u); assert (uint::min_value <= 0u); assert (uint::min_value + uint::max_value + 1u == 0u); } #[test] fn test_div() { assert(uint::div_floor(3u, 4u) == 0u); assert(uint::div_ceil(3u, 4u) == 1u); assert(uint::div_round(3u, 4u) == 1u); } } // Local Variables: // mode: rust; // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // End: