// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use metadata::encoder; use middle::ty::{ReSkolemized, ReVar}; use middle::ty::{BoundRegion, BrAnon, BrNamed}; use middle::ty::{BrFresh, ctxt}; use middle::ty::{mt, t, param_ty}; use middle::ty::{ReFree, ReScope, ReInfer, ReStatic, Region, ReEmpty}; use middle::ty::{ty_bool, ty_char, ty_bot, ty_box, ty_struct, ty_enum}; use middle::ty::{ty_err, ty_str, ty_vec, ty_float, ty_bare_fn, ty_closure}; use middle::ty::{ty_nil, ty_param, ty_ptr, ty_rptr, ty_self, ty_tup}; use middle::ty::{ty_uniq, ty_trait, ty_int, ty_uint, ty_unboxed_vec, ty_infer}; use middle::ty; use middle::typeck; use std::vec_ng::Vec; use syntax::abi::AbiSet; use syntax::ast_map; use syntax::codemap::{Span, Pos}; use syntax::parse::token; use syntax::print::pprust; use syntax::{ast, ast_util}; use syntax::opt_vec; use syntax::opt_vec::OptVec; /// Produces a string suitable for debugging output. pub trait Repr { fn repr(&self, tcx: &ctxt) -> ~str; } /// Produces a string suitable for showing to the user. pub trait UserString { fn user_string(&self, tcx: &ctxt) -> ~str; } pub fn note_and_explain_region(cx: &ctxt, prefix: &str, region: ty::Region, suffix: &str) { match explain_region_and_span(cx, region) { (ref str, Some(span)) => { cx.sess.span_note( span, format!("{}{}{}", prefix, *str, suffix)); } (ref str, None) => { cx.sess.note( format!("{}{}{}", prefix, *str, suffix)); } } } /// Returns a string like "the block at 27:31" that attempts to explain a /// lifetime in a way it might plausibly be understood. pub fn explain_region(cx: &ctxt, region: ty::Region) -> ~str { let (res, _) = explain_region_and_span(cx, region); return res; } pub fn explain_region_and_span(cx: &ctxt, region: ty::Region) -> (~str, Option) { return match region { ReScope(node_id) => { match cx.map.find(node_id) { Some(ast_map::NodeBlock(ref blk)) => { explain_span(cx, "block", blk.span) } Some(ast_map::NodeExpr(expr)) => { match expr.node { ast::ExprCall(..) => explain_span(cx, "call", expr.span), ast::ExprMethodCall(..) => { explain_span(cx, "method call", expr.span) }, ast::ExprMatch(..) => explain_span(cx, "match", expr.span), _ => explain_span(cx, "expression", expr.span) } } Some(ast_map::NodeStmt(stmt)) => { explain_span(cx, "statement", stmt.span) } Some(ast_map::NodeItem(it)) if (match it.node { ast::ItemFn(..) => true, _ => false}) => { explain_span(cx, "function body", it.span) } Some(_) | None => { // this really should not happen (format!("unknown scope: {}. Please report a bug.", node_id), None) } } } ReFree(ref fr) => { let prefix = match fr.bound_region { BrAnon(idx) => format!("the anonymous lifetime \\#{} defined on", idx + 1), BrFresh(_) => format!("an anonymous lifetime defined on"), _ => format!("the lifetime {} as defined on", bound_region_ptr_to_str(cx, fr.bound_region)) }; match cx.map.find(fr.scope_id) { Some(ast_map::NodeBlock(ref blk)) => { let (msg, opt_span) = explain_span(cx, "block", blk.span); (format!("{} {}", prefix, msg), opt_span) } Some(ast_map::NodeItem(it)) if match it.node { ast::ItemImpl(..) => true, _ => false} => { let (msg, opt_span) = explain_span(cx, "impl", it.span); (format!("{} {}", prefix, msg), opt_span) } Some(_) | None => { // this really should not happen (format!("{} node {}", prefix, fr.scope_id), None) } } } ReStatic => { (~"the static lifetime", None) } ReEmpty => { (~"the empty lifetime", None) } // I believe these cases should not occur (except when debugging, // perhaps) ty::ReInfer(_) | ty::ReEarlyBound(..) | ty::ReLateBound(..) => { (format!("lifetime {:?}", region), None) } }; fn explain_span(cx: &ctxt, heading: &str, span: Span) -> (~str, Option) { let lo = cx.sess.codemap().lookup_char_pos_adj(span.lo); (format!("the {} at {}:{}", heading, lo.line, lo.col.to_uint()), Some(span)) } } pub fn bound_region_ptr_to_str(cx: &ctxt, br: BoundRegion) -> ~str { bound_region_to_str(cx, "&", true, br) } pub fn bound_region_to_str(cx: &ctxt, prefix: &str, space: bool, br: BoundRegion) -> ~str { let space_str = if space { " " } else { "" }; if cx.sess.verbose() { return format!("{}{}{}", prefix, br.repr(cx), space_str); } match br { BrNamed(_, name) => format!("{}'{}{}", prefix, token::get_name(name), space_str), BrAnon(_) => prefix.to_str(), BrFresh(_) => prefix.to_str(), } } pub fn ReScope_id_to_str(cx: &ctxt, node_id: ast::NodeId) -> ~str { match cx.map.find(node_id) { Some(ast_map::NodeBlock(ref blk)) => { format!("", cx.sess.codemap().span_to_str(blk.span)) } Some(ast_map::NodeExpr(expr)) => { match expr.node { ast::ExprCall(..) => { format!("", cx.sess.codemap().span_to_str(expr.span)) } ast::ExprMatch(..) => { format!("", cx.sess.codemap().span_to_str(expr.span)) } ast::ExprAssignOp(..) | ast::ExprUnary(..) | ast::ExprBinary(..) | ast::ExprIndex(..) => { format!("", cx.sess.codemap().span_to_str(expr.span)) } _ => { format!("", cx.sess.codemap().span_to_str(expr.span)) } } } None => { format!("", node_id) } _ => cx.sess.bug(format!("ReScope refers to {}", cx.map.node_to_str(node_id))) } } // In general, if you are giving a region error message, // you should use `explain_region()` or, better yet, // `note_and_explain_region()` pub fn region_ptr_to_str(cx: &ctxt, region: Region) -> ~str { region_to_str(cx, "&", true, region) } pub fn region_to_str(cx: &ctxt, prefix: &str, space: bool, region: Region) -> ~str { let space_str = if space { " " } else { "" }; if cx.sess.verbose() { return format!("{}{}{}", prefix, region.repr(cx), space_str); } // These printouts are concise. They do not contain all the information // the user might want to diagnose an error, but there is basically no way // to fit that into a short string. Hence the recommendation to use // `explain_region()` or `note_and_explain_region()`. match region { ty::ReScope(_) => prefix.to_str(), ty::ReEarlyBound(_, _, name) => token::get_name(name).get().to_str(), ty::ReLateBound(_, br) => bound_region_to_str(cx, prefix, space, br), ty::ReFree(ref fr) => bound_region_to_str(cx, prefix, space, fr.bound_region), ty::ReInfer(ReSkolemized(_, br)) => { bound_region_to_str(cx, prefix, space, br) } ty::ReInfer(ReVar(_)) => prefix.to_str(), ty::ReStatic => format!("{}'static{}", prefix, space_str), ty::ReEmpty => format!("{}'{}", prefix, space_str) } } pub fn mutability_to_str(m: ast::Mutability) -> ~str { match m { ast::MutMutable => ~"mut ", ast::MutImmutable => ~"", } } pub fn mt_to_str(cx: &ctxt, m: &mt) -> ~str { mt_to_str_wrapped(cx, "", m, "") } pub fn mt_to_str_wrapped(cx: &ctxt, before: &str, m: &mt, after: &str) -> ~str { let mstr = mutability_to_str(m.mutbl); return format!("{}{}{}{}", mstr, before, ty_to_str(cx, m.ty), after); } pub fn vstore_to_str(cx: &ctxt, vs: ty::vstore) -> ~str { match vs { ty::vstore_fixed(n) => format!("{}", n), ty::vstore_uniq => ~"~", ty::vstore_slice(r) => region_ptr_to_str(cx, r) } } pub fn trait_store_to_str(cx: &ctxt, s: ty::TraitStore) -> ~str { match s { ty::UniqTraitStore => ~"~", ty::RegionTraitStore(r) => region_ptr_to_str(cx, r) } } pub fn vstore_ty_to_str(cx: &ctxt, mt: &mt, vs: ty::vstore) -> ~str { match vs { ty::vstore_fixed(_) => { format!("[{}, .. {}]", mt_to_str(cx, mt), vstore_to_str(cx, vs)) } _ => { format!("{}{}", vstore_to_str(cx, vs), mt_to_str_wrapped(cx, "[", mt, "]")) } } } pub fn vec_map_to_str(ts: &[T], f: |t: &T| -> ~str) -> ~str { let tstrs = ts.map(f); format!("[{}]", tstrs.connect(", ")) } pub fn tys_to_str(cx: &ctxt, ts: &[t]) -> ~str { vec_map_to_str(ts, |t| ty_to_str(cx, *t)) } pub fn fn_sig_to_str(cx: &ctxt, typ: &ty::FnSig) -> ~str { format!("fn{}{} -> {}", typ.binder_id, typ.inputs.repr(cx), typ.output.repr(cx)) } pub fn trait_ref_to_str(cx: &ctxt, trait_ref: &ty::TraitRef) -> ~str { trait_ref.user_string(cx) } pub fn ty_to_str(cx: &ctxt, typ: t) -> ~str { fn fn_input_to_str(cx: &ctxt, input: ty::t) -> ~str { ty_to_str(cx, input) } fn bare_fn_to_str(cx: &ctxt, purity: ast::Purity, abis: AbiSet, ident: Option, sig: &ty::FnSig) -> ~str { let mut s = if abis.is_rust() { ~"" } else { format!("extern {} ", abis.to_str()) }; match purity { ast::ImpureFn => {} _ => { s.push_str(purity.to_str()); s.push_char(' '); } }; s.push_str("fn"); match ident { Some(i) => { s.push_char(' '); s.push_str(token::get_ident(i).get()); } _ => { } } push_sig_to_str(cx, &mut s, '(', ')', sig); return s; } fn closure_to_str(cx: &ctxt, cty: &ty::ClosureTy) -> ~str { let is_proc = (cty.sigil, cty.onceness) == (ast::OwnedSigil, ast::Once); let is_borrowed_closure = cty.sigil == ast::BorrowedSigil; let mut s = if is_proc || is_borrowed_closure { ~"" } else { cty.sigil.to_str() }; match (cty.sigil, cty.region) { (ast::ManagedSigil, ty::ReStatic) | (ast::OwnedSigil, ty::ReStatic) => {} (_, region) => { s.push_str(region_to_str(cx, "", true, region)); } } match cty.purity { ast::ImpureFn => {} _ => { s.push_str(cty.purity.to_str()); s.push_char(' '); } }; if is_proc { s.push_str("proc"); } else { match cty.onceness { ast::Many => {} ast::Once => { s.push_str(cty.onceness.to_str()); s.push_char(' '); } }; if !is_borrowed_closure { s.push_str("fn"); } } if !is_borrowed_closure { // Print bounds before `fn` if this is not a borrowed closure. if !cty.bounds.is_empty() { s.push_str(":"); s.push_str(cty.bounds.repr(cx)); } push_sig_to_str(cx, &mut s, '(', ')', &cty.sig); } else { // Print bounds after the signature if this is a borrowed closure. push_sig_to_str(cx, &mut s, '|', '|', &cty.sig); if is_borrowed_closure { if !cty.bounds.is_empty() { s.push_str(":"); s.push_str(cty.bounds.repr(cx)); } } } return s; } fn push_sig_to_str(cx: &ctxt, s: &mut ~str, bra: char, ket: char, sig: &ty::FnSig) { s.push_char(bra); let strs = sig.inputs.map(|a| fn_input_to_str(cx, *a)); s.push_str(strs.connect(", ")); if sig.variadic { s.push_str(", ..."); } s.push_char(ket); if ty::get(sig.output).sty != ty_nil { s.push_str(" -> "); if ty::type_is_bot(sig.output) { s.push_char('!'); } else { s.push_str(ty_to_str(cx, sig.output)); } } } // if there is an id, print that instead of the structural type: /*for def_id in ty::type_def_id(typ).iter() { // note that this typedef cannot have type parameters return ty::item_path_str(cx, *def_id); }*/ // pretty print the structural type representation: return match ty::get(typ).sty { ty_nil => ~"()", ty_bot => ~"!", ty_bool => ~"bool", ty_char => ~"char", ty_int(ast::TyI) => ~"int", ty_int(t) => ast_util::int_ty_to_str(t), ty_uint(ast::TyU) => ~"uint", ty_uint(t) => ast_util::uint_ty_to_str(t), ty_float(t) => ast_util::float_ty_to_str(t), ty_box(typ) => ~"@" + ty_to_str(cx, typ), ty_uniq(typ) => ~"~" + ty_to_str(cx, typ), ty_ptr(ref tm) => ~"*" + mt_to_str(cx, tm), ty_rptr(r, ref tm) => { region_ptr_to_str(cx, r) + mt_to_str(cx, tm) } ty_unboxed_vec(ref tm) => { format!("unboxed_vec<{}>", mt_to_str(cx, tm)) } ty_tup(ref elems) => { let strs = elems.map(|elem| ty_to_str(cx, *elem)); ~"(" + strs.connect(",") + ")" } ty_closure(ref f) => { closure_to_str(cx, f) } ty_bare_fn(ref f) => { bare_fn_to_str(cx, f.purity, f.abis, None, &f.sig) } ty_infer(infer_ty) => infer_ty.to_str(), ty_err => ~"[type error]", ty_param(param_ty {idx: id, def_id: did}) => { let ty_param_defs = cx.ty_param_defs.borrow(); let param_def = ty_param_defs.get().find(&did.node); let ident = match param_def { Some(def) => token::get_ident(def.ident).get().to_str(), // This should not happen... None => format!("BUG[{:?}]", id) }; if !cx.sess.verbose() { ident } else { format!("{}:{:?}", ident, did) } } ty_self(..) => ~"Self", ty_enum(did, ref substs) | ty_struct(did, ref substs) => { let base = ty::item_path_str(cx, did); parameterized(cx, base, &substs.regions, substs.tps.as_slice(), did, false) } ty_trait(did, ref substs, s, mutbl, ref bounds) => { let base = ty::item_path_str(cx, did); let ty = parameterized(cx, base, &substs.regions, substs.tps.as_slice(), did, true); let bound_sep = if bounds.is_empty() { "" } else { ":" }; let bound_str = bounds.repr(cx); format!("{}{}{}{}{}", trait_store_to_str(cx, s), mutability_to_str(mutbl), ty, bound_sep, bound_str) } ty_vec(ref mt, vs) => { vstore_ty_to_str(cx, mt, vs) } ty_str(vs) => format!("{}{}", vstore_to_str(cx, vs), "str") } } pub fn parameterized(cx: &ctxt, base: &str, regions: &ty::RegionSubsts, tps: &[ty::t], did: ast::DefId, is_trait: bool) -> ~str { let mut strs = Vec::new(); match *regions { ty::ErasedRegions => { } ty::NonerasedRegions(ref regions) => { for &r in regions.iter() { strs.push(region_to_str(cx, "", false, r)) } } } let generics = if is_trait { ty::lookup_trait_def(cx, did).generics.clone() } else { ty::lookup_item_type(cx, did).generics }; let ty_params = generics.type_param_defs(); let has_defaults = ty_params.last().map_or(false, |def| def.default.is_some()); let num_defaults = if has_defaults { // We should have a borrowed version of substs instead of cloning. let mut substs = ty::substs { tps: Vec::from_slice(tps), regions: regions.clone(), self_ty: None }; ty_params.iter().zip(tps.iter()).rev().take_while(|&(def, &actual)| { substs.tps.pop(); match def.default { Some(default) => ty::subst(cx, &substs, default) == actual, None => false } }).len() } else { 0 }; for t in tps.slice_to(tps.len() - num_defaults).iter() { strs.push(ty_to_str(cx, *t)) } if strs.len() > 0u { format!("{}<{}>", base, strs.connect(",")) } else { format!("{}", base) } } pub fn ty_to_short_str(cx: &ctxt, typ: t) -> ~str { let mut s = encoder::encoded_ty(cx, typ); if s.len() >= 32u { s = s.slice(0u, 32u).to_owned(); } return s; } impl Repr for Option { fn repr(&self, tcx: &ctxt) -> ~str { match self { &None => ~"None", &Some(ref t) => t.repr(tcx), } } } impl Repr for Result { fn repr(&self, tcx: &ctxt) -> ~str { match self { &Ok(ref t) => t.repr(tcx), &Err(ref u) => format!("Err({})", u.repr(tcx)) } } } impl Repr for () { fn repr(&self, _tcx: &ctxt) -> ~str { ~"()" } } impl Repr for @T { fn repr(&self, tcx: &ctxt) -> ~str { (&**self).repr(tcx) } } impl Repr for ~T { fn repr(&self, tcx: &ctxt) -> ~str { (&**self).repr(tcx) } } fn repr_vec(tcx: &ctxt, v: &[T]) -> ~str { vec_map_to_str(v, |t| t.repr(tcx)) } impl<'a, T:Repr> Repr for &'a [T] { fn repr(&self, tcx: &ctxt) -> ~str { repr_vec(tcx, *self) } } impl Repr for OptVec { fn repr(&self, tcx: &ctxt) -> ~str { match *self { opt_vec::Empty => ~"[]", opt_vec::Vec(ref v) => repr_vec(tcx, v.as_slice()) } } } // This is necessary to handle types like Option<~[T]>, for which // autoderef cannot convert the &[T] handler impl Repr for Vec { fn repr(&self, tcx: &ctxt) -> ~str { repr_vec(tcx, self.as_slice()) } } impl Repr for ty::TypeParameterDef { fn repr(&self, tcx: &ctxt) -> ~str { format!("TypeParameterDef({:?}, {})", self.def_id, self.bounds.repr(tcx)) } } impl Repr for ty::RegionParameterDef { fn repr(&self, _tcx: &ctxt) -> ~str { format!("RegionParameterDef({}, {:?})", token::get_name(self.name), self.def_id) } } impl Repr for ty::t { fn repr(&self, tcx: &ctxt) -> ~str { ty_to_str(tcx, *self) } } impl Repr for ty::substs { fn repr(&self, tcx: &ctxt) -> ~str { format!("substs(regions={}, self_ty={}, tps={})", self.regions.repr(tcx), self.self_ty.repr(tcx), self.tps.repr(tcx)) } } impl Repr for ty::RegionSubsts { fn repr(&self, tcx: &ctxt) -> ~str { match *self { ty::ErasedRegions => ~"erased", ty::NonerasedRegions(ref regions) => regions.repr(tcx) } } } impl Repr for ty::ParamBounds { fn repr(&self, tcx: &ctxt) -> ~str { let mut res = Vec::new(); for b in self.builtin_bounds.iter() { res.push(match b { ty::BoundStatic => ~"'static", ty::BoundSend => ~"Send", ty::BoundFreeze => ~"Freeze", ty::BoundSized => ~"Sized", ty::BoundPod => ~"Pod", }); } for t in self.trait_bounds.iter() { res.push(t.repr(tcx)); } res.connect("+") } } impl Repr for ty::TraitRef { fn repr(&self, tcx: &ctxt) -> ~str { trait_ref_to_str(tcx, self) } } impl Repr for ast::Expr { fn repr(&self, _tcx: &ctxt) -> ~str { format!("expr({}: {})", self.id, pprust::expr_to_str(self)) } } impl Repr for ast::Item { fn repr(&self, tcx: &ctxt) -> ~str { format!("item({})", tcx.map.node_to_str(self.id)) } } impl Repr for ast::Stmt { fn repr(&self, _tcx: &ctxt) -> ~str { format!("stmt({}: {})", ast_util::stmt_id(self), pprust::stmt_to_str(self)) } } impl Repr for ast::Pat { fn repr(&self, _tcx: &ctxt) -> ~str { format!("pat({}: {})", self.id, pprust::pat_to_str(self)) } } impl Repr for ty::BoundRegion { fn repr(&self, tcx: &ctxt) -> ~str { match *self { ty::BrAnon(id) => format!("BrAnon({})", id), ty::BrNamed(id, name) => format!("BrNamed({}, {})", id.repr(tcx), token::get_name(name)), ty::BrFresh(id) => format!("BrFresh({})", id), } } } impl Repr for ty::Region { fn repr(&self, tcx: &ctxt) -> ~str { match *self { ty::ReEarlyBound(id, index, name) => { format!("ReEarlyBound({}, {}, {})", id, index, token::get_name(name)) } ty::ReLateBound(binder_id, ref bound_region) => { format!("ReLateBound({}, {})", binder_id, bound_region.repr(tcx)) } ty::ReFree(ref fr) => { format!("ReFree({}, {})", fr.scope_id, fr.bound_region.repr(tcx)) } ty::ReScope(id) => { format!("ReScope({})", id) } ty::ReStatic => { format!("ReStatic") } ty::ReInfer(ReVar(ref vid)) => { format!("ReInfer({})", vid.id) } ty::ReInfer(ReSkolemized(id, ref bound_region)) => { format!("re_skolemized({}, {})", id, bound_region.repr(tcx)) } ty::ReEmpty => { format!("ReEmpty") } } } } impl Repr for ast::DefId { fn repr(&self, tcx: &ctxt) -> ~str { // Unfortunately, there seems to be no way to attempt to print // a path for a def-id, so I'll just make a best effort for now // and otherwise fallback to just printing the crate/node pair if self.krate == ast::LOCAL_CRATE { { match tcx.map.find(self.node) { Some(ast_map::NodeItem(..)) | Some(ast_map::NodeForeignItem(..)) | Some(ast_map::NodeMethod(..)) | Some(ast_map::NodeTraitMethod(..)) | Some(ast_map::NodeVariant(..)) | Some(ast_map::NodeStructCtor(..)) => { return format!("{:?}:{}", *self, ty::item_path_str(tcx, *self)); } _ => {} } } } return format!("{:?}", *self); } } impl Repr for ty::ty_param_bounds_and_ty { fn repr(&self, tcx: &ctxt) -> ~str { format!("ty_param_bounds_and_ty \\{generics: {}, ty: {}\\}", self.generics.repr(tcx), self.ty.repr(tcx)) } } impl Repr for ty::Generics { fn repr(&self, tcx: &ctxt) -> ~str { format!("Generics(type_param_defs: {}, region_param_defs: {})", self.type_param_defs().repr(tcx), self.region_param_defs().repr(tcx)) } } impl Repr for ty::ItemVariances { fn repr(&self, tcx: &ctxt) -> ~str { format!("IterVariances(self_param={}, type_params={}, region_params={})", self.self_param.repr(tcx), self.type_params.repr(tcx), self.region_params.repr(tcx)) } } impl Repr for ty::Variance { fn repr(&self, _: &ctxt) -> ~str { self.to_str().to_owned() } } impl Repr for ty::Method { fn repr(&self, tcx: &ctxt) -> ~str { format!("method(ident: {}, generics: {}, fty: {}, \ explicit_self: {}, vis: {}, def_id: {})", self.ident.repr(tcx), self.generics.repr(tcx), self.fty.repr(tcx), self.explicit_self.repr(tcx), self.vis.repr(tcx), self.def_id.repr(tcx)) } } impl Repr for ast::Name { fn repr(&self, _tcx: &ctxt) -> ~str { token::get_name(*self).get().to_str() } } impl Repr for ast::Ident { fn repr(&self, _tcx: &ctxt) -> ~str { token::get_ident(*self).get().to_str() } } impl Repr for ast::ExplicitSelf_ { fn repr(&self, _tcx: &ctxt) -> ~str { format!("{:?}", *self) } } impl Repr for ast::Visibility { fn repr(&self, _tcx: &ctxt) -> ~str { format!("{:?}", *self) } } impl Repr for ty::BareFnTy { fn repr(&self, tcx: &ctxt) -> ~str { format!("BareFnTy \\{purity: {:?}, abis: {}, sig: {}\\}", self.purity, self.abis.to_str(), self.sig.repr(tcx)) } } impl Repr for ty::FnSig { fn repr(&self, tcx: &ctxt) -> ~str { fn_sig_to_str(tcx, self) } } impl Repr for typeck::MethodCallee { fn repr(&self, tcx: &ctxt) -> ~str { format!("MethodCallee \\{origin: {}, ty: {}, {}\\}", self.origin.repr(tcx), self.ty.repr(tcx), self.substs.repr(tcx)) } } impl Repr for typeck::MethodOrigin { fn repr(&self, tcx: &ctxt) -> ~str { match self { &typeck::MethodStatic(def_id) => { format!("MethodStatic({})", def_id.repr(tcx)) } &typeck::MethodParam(ref p) => { p.repr(tcx) } &typeck::MethodObject(ref p) => { p.repr(tcx) } } } } impl Repr for typeck::MethodParam { fn repr(&self, tcx: &ctxt) -> ~str { format!("MethodParam({},{:?},{:?},{:?})", self.trait_id.repr(tcx), self.method_num, self.param_num, self.bound_num) } } impl Repr for typeck::MethodObject { fn repr(&self, tcx: &ctxt) -> ~str { format!("MethodObject({},{:?},{:?})", self.trait_id.repr(tcx), self.method_num, self.real_index) } } impl Repr for ty::RegionVid { fn repr(&self, _tcx: &ctxt) -> ~str { format!("{:?}", *self) } } impl Repr for ty::TraitStore { fn repr(&self, tcx: &ctxt) -> ~str { match self { &ty::UniqTraitStore => ~"~Trait", &ty::RegionTraitStore(r) => format!("&{} Trait", r.repr(tcx)) } } } impl Repr for ty::vstore { fn repr(&self, tcx: &ctxt) -> ~str { vstore_to_str(tcx, *self) } } impl Repr for ty::BuiltinBound { fn repr(&self, _tcx: &ctxt) -> ~str { format!("{:?}", *self) } } impl UserString for ty::BuiltinBound { fn user_string(&self, _tcx: &ctxt) -> ~str { match *self { ty::BoundStatic => ~"'static", ty::BoundSend => ~"Send", ty::BoundFreeze => ~"Freeze", ty::BoundSized => ~"Sized", ty::BoundPod => ~"Pod", } } } impl Repr for ty::BuiltinBounds { fn repr(&self, tcx: &ctxt) -> ~str { self.user_string(tcx) } } impl Repr for Span { fn repr(&self, tcx: &ctxt) -> ~str { tcx.sess.codemap().span_to_str(*self) } } impl UserString for @A { fn user_string(&self, tcx: &ctxt) -> ~str { let this: &A = &**self; this.user_string(tcx) } } impl UserString for ty::BuiltinBounds { fn user_string(&self, tcx: &ctxt) -> ~str { if self.is_empty() { ~"" } else { let mut result = Vec::new(); for bb in self.iter() { result.push(bb.user_string(tcx)); } result.connect("+") } } } impl UserString for ty::TraitRef { fn user_string(&self, tcx: &ctxt) -> ~str { let base = ty::item_path_str(tcx, self.def_id); if tcx.sess.verbose() && self.substs.self_ty.is_some() { let mut all_tps = self.substs.tps.clone(); for &t in self.substs.self_ty.iter() { all_tps.push(t); } parameterized(tcx, base, &self.substs.regions, all_tps.as_slice(), self.def_id, true) } else { parameterized(tcx, base, &self.substs.regions, self.substs.tps.as_slice(), self.def_id, true) } } } impl UserString for ty::t { fn user_string(&self, tcx: &ctxt) -> ~str { ty_to_str(tcx, *self) } } impl UserString for ast::Ident { fn user_string(&self, _tcx: &ctxt) -> ~str { token::get_name(self.name).get().to_owned() } } impl Repr for AbiSet { fn repr(&self, _tcx: &ctxt) -> ~str { self.to_str() } } impl UserString for AbiSet { fn user_string(&self, _tcx: &ctxt) -> ~str { self.to_str() } } impl Repr for ty::UpvarId { fn repr(&self, tcx: &ctxt) -> ~str { format!("UpvarId({};`{}`;{})", self.var_id, ty::local_var_name_str(tcx, self.var_id), self.closure_expr_id) } } impl Repr for ast::Mutability { fn repr(&self, _tcx: &ctxt) -> ~str { format!("{:?}", *self) } } impl Repr for ty::BorrowKind { fn repr(&self, _tcx: &ctxt) -> ~str { format!("{:?}", *self) } } impl Repr for ty::UpvarBorrow { fn repr(&self, tcx: &ctxt) -> ~str { format!("UpvarBorrow({}, {})", self.kind.repr(tcx), self.region.repr(tcx)) } }