import std.map.hashmap; import util.common.new_str_hash; import util.common.spanned; import util.common.span; import util.common.option; import util.common.some; import util.common.none; import util.common.ty_mach; import front.ast; import front.ast.ident; import front.ast.name; import front.ast.ty; import front.ast.expr; import front.ast.stmt; import front.ast.block; import front.ast.item; import front.ast.slot; import front.ast.decl; import front.ast.referent; import std._vec; import std.util.operator; type ast_fold[ENV] = @rec ( // Name fold. (fn(&ENV e, &span sp, ast.name_ n) -> name) fold_name, // Type folds. (fn(&ENV e, &span sp) -> @ty) fold_ty_nil, (fn(&ENV e, &span sp) -> @ty) fold_ty_bool, (fn(&ENV e, &span sp) -> @ty) fold_ty_int, (fn(&ENV e, &span sp) -> @ty) fold_ty_uint, (fn(&ENV e, &span sp, ty_mach tm) -> @ty) fold_ty_machine, (fn(&ENV e, &span sp) -> @ty) fold_ty_char, (fn(&ENV e, &span sp) -> @ty) fold_ty_str, (fn(&ENV e, &span sp, @ty t) -> @ty) fold_ty_box, (fn(&ENV e, &span sp, ast.path p, &option[referent] r) -> @ty) fold_ty_path, // Expr folds. (fn(&ENV e, &span sp, vec[@expr] es) -> @expr) fold_expr_vec, (fn(&ENV e, &span sp, vec[@expr] es) -> @expr) fold_expr_tup, (fn(&ENV e, &span sp, vec[tup(ident,@expr)] fields) -> @expr) fold_expr_rec, (fn(&ENV e, &span sp, @expr f, vec[@expr] args) -> @expr) fold_expr_call, (fn(&ENV e, &span sp, ast.binop, @expr lhs, @expr rhs) -> @expr) fold_expr_binary, (fn(&ENV e, &span sp, ast.unop, @expr e) -> @expr) fold_expr_unary, (fn(&ENV e, &span sp, @ast.lit) -> @expr) fold_expr_lit, (fn(&ENV e, &span sp, &name n, &option[referent] r) -> @expr) fold_expr_name, (fn(&ENV e, &span sp, @expr e, ident i) -> @expr) fold_expr_field, (fn(&ENV e, &span sp, @expr e, @expr ix) -> @expr) fold_expr_index, (fn(&ENV e, &span sp, @expr cond, block thn, &option[block] els) -> @expr) fold_expr_if, (fn(&ENV e, &span sp, block blk) -> @expr) fold_expr_block, // Decl folds. (fn(&ENV e, &span sp, ident ident, bool infer, &option[@ty] ty) -> @decl) fold_decl_local, (fn(&ENV e, &span sp, &name name, @item item) -> @decl) fold_decl_item, // Stmt folds. (fn(&ENV e, &span sp, @decl decl) -> @stmt) fold_stmt_decl, (fn(&ENV e, &span sp, &option[@expr] rv) -> @stmt) fold_stmt_ret, (fn(&ENV e, &span sp, @expr e) -> @stmt) fold_stmt_log, (fn(&ENV e, &span sp, @expr e) -> @stmt) fold_stmt_expr, // Item folds. (fn(&ENV e, &span sp, &ast._fn f, ast.item_id id) -> @item) fold_item_fn, (fn(&ENV e, &span sp, &ast._mod m) -> @item) fold_item_mod, (fn(&ENV e, &span sp, @ty t, ast.item_id id) -> @item) fold_item_ty, // Additional nodes. (fn(&ENV e, &span sp, vec[@stmt] stmts) -> block) fold_block, (fn(&ENV e, vec[ast.input] inputs, &ty output, block body) -> ast._fn) fold_fn, (fn(&ENV e, &ast._mod m) -> ast._mod) fold_mod, (fn(&ENV e, &span sp, &ast._mod m) -> @ast.crate) fold_crate, // Env updates. (fn(&ENV e, @ast.crate c) -> ENV) update_env_for_crate, (fn(&ENV e, @item i) -> ENV) update_env_for_item, (fn(&ENV e, @stmt s) -> ENV) update_env_for_stmt, (fn(&ENV e, @expr x) -> ENV) update_env_for_expr, (fn(&ENV e, @ty t) -> ENV) update_env_for_ty, // Traversal control. (fn(&ENV v) -> bool) keep_going ); //// Fold drivers. // FIXME: Finish these. fn fold_expr_name[ENV](&ENV env, ast_fold[ENV] fld, &name n, &option[referent] r) -> tup(name,option[referent]) { ret tup(n,r); } fn fold_ty[ENV](&ENV env, ast_fold[ENV] fld, @ty t) -> @ty { ret t; } fn fold_decl[ENV](&ENV env, ast_fold[ENV] fld, @decl d) -> @decl { ret d; } fn fold_exprs[ENV](&ENV env, ast_fold[ENV] fld, vec[@expr] e) -> vec[@expr] { let operator[@expr, @expr] fe = bind fold_expr[ENV](env, fld, _); ret _vec.map[@expr, @expr](fe, e); } fn fold_rec_entry[ENV](&ENV env, ast_fold[ENV] fld, &tup(ident,@expr) e) -> tup(ident,@expr) { ret tup(e._0, fold_expr(env, fld, e._1)); } fn fold_expr[ENV](&ENV env, ast_fold[ENV] fld, &@expr e) -> @expr { let ENV env_ = fld.update_env_for_expr(env, e); if (!fld.keep_going(env_)) { ret e; } alt (e.node) { case (ast.expr_vec(?es)) { auto ees = fold_exprs(env_, fld, es); ret fld.fold_expr_vec(env_, e.span, ees); } case (ast.expr_tup(?es)) { auto ees = fold_exprs(env_, fld, es); ret fld.fold_expr_vec(env_, e.span, ees); } case (ast.expr_rec(?es)) { let operator[tup(ident,@expr), tup(ident,@expr)] fe = bind fold_rec_entry[ENV](env, fld, _); auto ees = _vec.map[tup(ident,@expr), tup(ident,@expr)](fe, es); ret fld.fold_expr_rec(env_, e.span, ees); } case (ast.expr_call(?f, ?args)) { auto ff = fold_expr(env_, fld, f); auto aargs = fold_exprs(env_, fld, args); ret fld.fold_expr_call(env_, e.span, ff, aargs); } case (ast.expr_binary(?op, ?a, ?b)) { auto aa = fold_expr(env_, fld, a); auto bb = fold_expr(env_, fld, b); ret fld.fold_expr_binary(env_, e.span, op, aa, bb); } case (ast.expr_unary(?op, ?a)) { auto aa = fold_expr(env_, fld, a); ret fld.fold_expr_unary(env_, e.span, op, a); } case (ast.expr_lit(?lit)) { ret fld.fold_expr_lit(env_, e.span, lit); } case (ast.expr_name(?n, ?r)) { auto nn = fold_expr_name(env_, fld, n, r); ret fld.fold_expr_name(env_, e.span, nn._0, nn._1); } case (ast.expr_field(?e, ?i)) { auto ee = fold_expr(env_, fld, e); ret fld.fold_expr_field(env_, e.span, ee, i); } case (ast.expr_index(?e, ?i)) { auto ee = fold_expr(env_, fld, e); auto ii = fold_expr(env_, fld, i); ret fld.fold_expr_index(env_, e.span, ee, ii); } case (ast.expr_if(?cnd, ?thn, ?els)) { auto ccnd = fold_expr(env_, fld, cnd); auto tthn = fold_block(env_, fld, thn); auto eels = none[block]; alt (els) { case (some[block](?b)) { eels = some(fold_block(env_, fld, b)); } } ret fld.fold_expr_if(env_, e.span, ccnd, tthn, eels); } case (ast.expr_block(?b)) { auto bb = fold_block(env_, fld, b); ret fld.fold_expr_block(env_, e.span, bb); } } ret e; } fn fold_stmt[ENV](&ENV env, ast_fold[ENV] fld, &@stmt s) -> @stmt { let ENV env_ = fld.update_env_for_stmt(env, s); if (!fld.keep_going(env_)) { ret s; } alt (s.node) { case (ast.stmt_decl(?d)) { auto dd = fold_decl(env_, fld, d); ret fld.fold_stmt_decl(env_, s.span, d); } case (ast.stmt_ret(?oe)) { auto oee = none[@expr]; alt (oe) { case (some[@expr](?e)) { oee = some(fold_expr(env_, fld, e)); } } ret fld.fold_stmt_ret(env_, s.span, oee); } case (ast.stmt_log(?e)) { auto ee = fold_expr(env_, fld, e); ret fld.fold_stmt_log(env_, s.span, e); } case (ast.stmt_expr(?e)) { auto ee = fold_expr(env_, fld, e); ret fld.fold_stmt_expr(env_, s.span, e); } } ret s; } fn fold_block[ENV](&ENV env, ast_fold[ENV] fld, &block blk) -> block { let operator[@stmt, @stmt] fs = bind fold_stmt[ENV](env, fld, _); auto stmts = _vec.map[@stmt, @stmt](fs, blk.node); ret respan(blk.span, stmts); } fn fold_slot[ENV](&ENV env, ast_fold[ENV] fld, &slot s) -> slot { auto ty = fold_ty[ENV](env, fld, s.ty); ret rec(ty=ty, mode=s.mode, id=s.id); } fn fold_fn[ENV](&ENV env, ast_fold[ENV] fld, &ast._fn f) -> ast._fn { fn fold_input[ENV](&ENV env, ast_fold[ENV] fld, &ast.input i) -> ast.input { ret rec(slot=fold_slot[ENV](env, fld, i.slot), ident=i.ident); } let operator[ast.input,ast.input] fi = bind fold_input[ENV](env, fld, _); auto inputs = _vec.map[ast.input, ast.input](fi, f.inputs); auto output = fold_ty[ENV](env, fld, @f.output); auto body = fold_block[ENV](env, fld, f.body); ret fld.fold_fn(env, inputs, *output, body); } fn fold_item[ENV](&ENV env, ast_fold[ENV] fld, @item i) -> @item { let ENV env_ = fld.update_env_for_item(env, i); if (!fld.keep_going(env_)) { ret i; } alt (i.node) { case (ast.item_fn(?ff, ?id)) { let ast._fn ff_ = fold_fn[ENV](env_, fld, ff); ret fld.fold_item_fn(env_, i.span, ff_, id); } case (ast.item_mod(?mm)) { let ast._mod mm_ = fold_mod[ENV](env_, fld, mm); ret fld.fold_item_mod(env_, i.span, mm_); } case (ast.item_ty(?ty, ?id)) { let @ast.ty ty_ = fold_ty[ENV](env_, fld, ty); ret fld.fold_item_ty(env_, i.span, ty_, id); } } fail; } fn fold_mod[ENV](&ENV e, ast_fold[ENV] fld, &ast._mod m_in) -> ast._mod { auto m_out = new_str_hash[@item](); for each (tup(ident, @item) pairs in m_in.items()) { auto i = fold_item[ENV](e, fld, pairs._1); m_out.insert(pairs._0, i); } ret fld.fold_mod(e, m_out); } fn fold_crate[ENV](&ENV env, ast_fold[ENV] fld, @ast.crate c) -> @ast.crate { let ENV env_ = fld.update_env_for_crate(env, c); let ast._mod m = fold_mod[ENV](env_, fld, c.node.module); ret fld.fold_crate(env_, c.span, m); } //// Identity folds. fn respan[T](&span sp, &T t) -> spanned[T] { ret rec(node=t, span=sp); } // Name identity. fn identity_fold_name[ENV](&ENV env, &span sp, ast.name_ n) -> name { ret respan(sp, n); } // Type identities. fn identity_fold_ty_nil[ENV](&ENV env, &span sp) -> @ty { ret @respan(sp, ast.ty_nil); } fn identity_fold_ty_bool[ENV](&ENV env, &span sp) -> @ty { ret @respan(sp, ast.ty_bool); } fn identity_fold_ty_int[ENV](&ENV env, &span sp) -> @ty { ret @respan(sp, ast.ty_int); } fn identity_fold_ty_uint[ENV](&ENV env, &span sp) -> @ty { ret @respan(sp, ast.ty_uint); } fn identity_fold_ty_machine[ENV](&ENV env, &span sp, ty_mach tm) -> @ty { ret @respan(sp, ast.ty_machine(tm)); } fn identity_fold_ty_char[ENV](&ENV env, &span sp) -> @ty { ret @respan(sp, ast.ty_char); } fn identity_fold_ty_str[ENV](&ENV env, &span sp) -> @ty { ret @respan(sp, ast.ty_str); } fn identity_fold_ty_box[ENV](&ENV env, &span sp, @ty t) -> @ty { ret @respan(sp, ast.ty_box(t)); } fn identity_fold_ty_path[ENV](&ENV env, &span sp, ast.path p, &option[referent] r) -> @ty { ret @respan(sp, ast.ty_path(p, r)); } // Expr identities. fn identity_fold_expr_vec[ENV](&ENV env, &span sp, vec[@expr] es) -> @expr { ret @respan(sp, ast.expr_vec(es)); } fn identity_fold_expr_tup[ENV](&ENV env, &span sp, vec[@expr] es) -> @expr { ret @respan(sp, ast.expr_tup(es)); } fn identity_fold_expr_rec[ENV](&ENV env, &span sp, vec[tup(ident,@expr)] fields) -> @expr { ret @respan(sp, ast.expr_rec(fields)); } fn identity_fold_expr_call[ENV](&ENV env, &span sp, @expr f, vec[@expr] args) -> @expr { ret @respan(sp, ast.expr_call(f, args)); } fn identity_fold_expr_binary[ENV](&ENV env, &span sp, ast.binop b, @expr lhs, @expr rhs) -> @expr { ret @respan(sp, ast.expr_binary(b, lhs, rhs)); } fn identity_fold_expr_unary[ENV](&ENV env, &span sp, ast.unop u, @expr e) -> @expr { ret @respan(sp, ast.expr_unary(u, e)); } fn identity_fold_expr_lit[ENV](&ENV env, &span sp, @ast.lit lit) -> @expr { ret @respan(sp, ast.expr_lit(lit)); } fn identity_fold_expr_name[ENV](&ENV env, &span sp, &name n, &option[referent] r) -> @expr { ret @respan(sp, ast.expr_name(n, r)); } fn identity_fold_expr_field[ENV](&ENV env, &span sp, @expr e, ident i) -> @expr { ret @respan(sp, ast.expr_field(e, i)); } fn identity_fold_expr_index[ENV](&ENV env, &span sp, @expr e, @expr ix) -> @expr { ret @respan(sp, ast.expr_index(e, ix)); } fn identity_fold_expr_if[ENV](&ENV env, &span sp, @expr cond, block thn, &option[block] els) -> @expr { ret @respan(sp, ast.expr_if(cond, thn, els)); } fn identity_fold_expr_block[ENV](&ENV env, &span sp, block blk) -> @expr { ret @respan(sp, ast.expr_block(blk)); } // Decl identities. fn identity_fold_decl_local[ENV](&ENV e, &span sp, ident i, bool infer, &option[@ty] t) -> @decl { ret @respan(sp, ast.decl_local(i, infer, t)); } fn identity_fold_decl_item[ENV](&ENV e, &span sp, &name n, @item i) -> @decl { ret @respan(sp, ast.decl_item(n, i)); } // Stmt identities. fn identity_fold_stmt_decl[ENV](&ENV env, &span sp, @decl d) -> @stmt { ret @respan(sp, ast.stmt_decl(d)); } fn identity_fold_stmt_ret[ENV](&ENV env, &span sp, &option[@expr] rv) -> @stmt { ret @respan(sp, ast.stmt_ret(rv)); } fn identity_fold_stmt_log[ENV](&ENV e, &span sp, @expr x) -> @stmt { ret @respan(sp, ast.stmt_log(x)); } fn identity_fold_stmt_expr[ENV](&ENV e, &span sp, @expr x) -> @stmt { ret @respan(sp, ast.stmt_expr(x)); } // Item identities. fn identity_fold_item_fn[ENV](&ENV e, &span sp, &ast._fn f, ast.item_id id) -> @item { ret @respan(sp, ast.item_fn(f, id)); } fn identity_fold_item_mod[ENV](&ENV e, &span sp, &ast._mod m) -> @item { ret @respan(sp, ast.item_mod(m)); } fn identity_fold_item_ty[ENV](&ENV e, &span sp, @ty t, ast.item_id id) -> @item { ret @respan(sp, ast.item_ty(t, id)); } // Additional identities. fn identity_fold_block[ENV](&ENV e, &span sp, vec[@stmt] stmts) -> block { ret respan(sp, stmts); } fn identity_fold_fn[ENV](&ENV e, vec[ast.input] inputs, &ast.ty output, block body) -> ast._fn { ret rec(inputs=inputs, output=output, body=body); } fn identity_fold_mod[ENV](&ENV e, &ast._mod m) -> ast._mod { ret m; } fn identity_fold_crate[ENV](&ENV e, &span sp, &ast._mod m) -> @ast.crate { ret @respan(sp, rec(module=m)); } // Env update identities. fn identity_update_env_for_crate[ENV](&ENV e, @ast.crate c) -> ENV { ret e; } fn identity_update_env_for_item[ENV](&ENV e, @item i) -> ENV { ret e; } fn identity_update_env_for_stmt[ENV](&ENV e, @stmt s) -> ENV { ret e; } fn identity_update_env_for_expr[ENV](&ENV e, @expr x) -> ENV { ret e; } fn identity_update_env_for_ty[ENV](&ENV e, @ty t) -> ENV { ret e; } // Always-true traversal control fn. fn always_keep_going[ENV](&ENV e) -> bool { ret true; } fn new_identity_fold[ENV]() -> ast_fold[ENV] { ret @rec ( fold_name = bind identity_fold_name[ENV](_,_,_), fold_ty_nil = bind identity_fold_ty_nil[ENV](_,_), fold_ty_bool = bind identity_fold_ty_bool[ENV](_,_), fold_ty_int = bind identity_fold_ty_int[ENV](_,_), fold_ty_uint = bind identity_fold_ty_uint[ENV](_,_), fold_ty_machine = bind identity_fold_ty_machine[ENV](_,_,_), fold_ty_char = bind identity_fold_ty_char[ENV](_,_), fold_ty_str = bind identity_fold_ty_str[ENV](_,_), fold_ty_box = bind identity_fold_ty_box[ENV](_,_,_), fold_ty_path = bind identity_fold_ty_path[ENV](_,_,_,_), fold_expr_vec = bind identity_fold_expr_vec[ENV](_,_,_), fold_expr_tup = bind identity_fold_expr_tup[ENV](_,_,_), fold_expr_rec = bind identity_fold_expr_rec[ENV](_,_,_), fold_expr_call = bind identity_fold_expr_call[ENV](_,_,_,_), fold_expr_binary = bind identity_fold_expr_binary[ENV](_,_,_,_,_), fold_expr_unary = bind identity_fold_expr_unary[ENV](_,_,_,_), fold_expr_lit = bind identity_fold_expr_lit[ENV](_,_,_), fold_expr_name = bind identity_fold_expr_name[ENV](_,_,_,_), fold_expr_field = bind identity_fold_expr_field[ENV](_,_,_,_), fold_expr_index = bind identity_fold_expr_index[ENV](_,_,_,_), fold_expr_if = bind identity_fold_expr_if[ENV](_,_,_,_,_), fold_expr_block = bind identity_fold_expr_block[ENV](_,_,_), fold_decl_local = bind identity_fold_decl_local[ENV](_,_,_,_,_), fold_decl_item = bind identity_fold_decl_item[ENV](_,_,_,_), fold_stmt_decl = bind identity_fold_stmt_decl[ENV](_,_,_), fold_stmt_ret = bind identity_fold_stmt_ret[ENV](_,_,_), fold_stmt_log = bind identity_fold_stmt_log[ENV](_,_,_), fold_stmt_expr = bind identity_fold_stmt_expr[ENV](_,_,_), fold_item_fn = bind identity_fold_item_fn[ENV](_,_,_,_), fold_item_mod = bind identity_fold_item_mod[ENV](_,_,_), fold_item_ty = bind identity_fold_item_ty[ENV](_,_,_,_), fold_block = bind identity_fold_block[ENV](_,_,_), fold_fn = bind identity_fold_fn[ENV](_,_,_,_), fold_mod = bind identity_fold_mod[ENV](_,_), fold_crate = bind identity_fold_crate[ENV](_,_,_), update_env_for_crate = bind identity_update_env_for_crate[ENV](_,_), update_env_for_item = bind identity_update_env_for_item[ENV](_,_), update_env_for_stmt = bind identity_update_env_for_stmt[ENV](_,_), update_env_for_expr = bind identity_update_env_for_expr[ENV](_,_), update_env_for_ty = bind identity_update_env_for_ty[ENV](_,_), keep_going = bind always_keep_going[ENV](_) ); } // // Local Variables: // mode: rust // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // compile-command: "make -k -C ../.. 2>&1 | sed -e 's/\\/x\\//x:\\//g'"; // End: //