// Copyright 2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. // // ignore-lexer-test FIXME #15883 use clone::Clone; use cmp::{Eq, Equiv, PartialEq}; use core::kinds::Sized; use default::Default; use fmt::Show; use fmt; use hash::{Hash, Hasher, RandomSipHasher}; use iter::{Iterator, FromIterator, FilterMap, Chain, Repeat, Zip, Extendable}; use iter; use option::{Some, None}; use result::{Ok, Err}; use super::{HashMap, Entries, MoveEntries, INITIAL_CAPACITY}; // Future Optimization (FIXME!) // ============================= // // Iteration over zero sized values is a noop. There is no need // for `bucket.val` in the case of HashSet. I suppose we would need HKT // to get rid of it properly. /// An implementation of a hash set using the underlying representation of a /// HashMap where the value is (). As with the `HashMap` type, a `HashSet` /// requires that the elements implement the `Eq` and `Hash` traits. /// /// # Example /// /// ``` /// use std::collections::HashSet; /// // Type inference lets us omit an explicit type signature (which /// // would be `HashSet<&str>` in this example). /// let mut books = HashSet::new(); /// /// // Add some books. /// books.insert("A Dance With Dragons"); /// books.insert("To Kill a Mockingbird"); /// books.insert("The Odyssey"); /// books.insert("The Great Gatsby"); /// /// // Check for a specific one. /// if !books.contains(&("The Winds of Winter")) { /// println!("We have {} books, but The Winds of Winter ain't one.", /// books.len()); /// } /// /// // Remove a book. /// books.remove(&"The Odyssey"); /// /// // Iterate over everything. /// for book in books.iter() { /// println!("{}", *book); /// } /// ``` /// /// The easiest way to use `HashSet` with a custom type is to derive /// `Eq` and `Hash`. We must also derive `PartialEq`, this will in the /// future be implied by `Eq`. /// /// ``` /// use std::collections::HashSet; /// #[deriving(Hash, Eq, PartialEq, Show)] /// struct Viking<'a> { /// name: &'a str, /// power: uint, /// } /// /// let mut vikings = HashSet::new(); /// /// vikings.insert(Viking { name: "Einar", power: 9u }); /// vikings.insert(Viking { name: "Einar", power: 9u }); /// vikings.insert(Viking { name: "Olaf", power: 4u }); /// vikings.insert(Viking { name: "Harald", power: 8u }); /// /// // Use derived implementation to print the vikings. /// for x in vikings.iter() { /// println!("{}", x); /// } /// ``` #[deriving(Clone)] pub struct HashSet { map: HashMap } impl HashSet { /// Create an empty HashSet. /// /// # Example /// /// ``` /// use std::collections::HashSet; /// let mut set: HashSet = HashSet::new(); /// ``` #[inline] pub fn new() -> HashSet { HashSet::with_capacity(INITIAL_CAPACITY) } /// Create an empty HashSet with space for at least `n` elements in /// the hash table. /// /// # Example /// /// ``` /// use std::collections::HashSet; /// let mut set: HashSet = HashSet::with_capacity(10); /// ``` #[inline] pub fn with_capacity(capacity: uint) -> HashSet { HashSet { map: HashMap::with_capacity(capacity) } } } impl, S, H: Hasher> HashSet { /// Creates a new empty hash set which will use the given hasher to hash /// keys. /// /// The hash set is also created with the default initial capacity. /// /// # Example /// /// ``` /// use std::collections::HashSet; /// use std::hash::sip::SipHasher; /// /// let h = SipHasher::new(); /// let mut set = HashSet::with_hasher(h); /// set.insert(2u); /// ``` #[inline] pub fn with_hasher(hasher: H) -> HashSet { HashSet::with_capacity_and_hasher(INITIAL_CAPACITY, hasher) } /// Create an empty HashSet with space for at least `capacity` /// elements in the hash table, using `hasher` to hash the keys. /// /// Warning: `hasher` is normally randomly generated, and /// is designed to allow `HashSet`s to be resistant to attacks that /// cause many collisions and very poor performance. Setting it /// manually using this function can expose a DoS attack vector. /// /// # Example /// /// ``` /// use std::collections::HashSet; /// use std::hash::sip::SipHasher; /// /// let h = SipHasher::new(); /// let mut set = HashSet::with_capacity_and_hasher(10u, h); /// set.insert(1i); /// ``` #[inline] pub fn with_capacity_and_hasher(capacity: uint, hasher: H) -> HashSet { HashSet { map: HashMap::with_capacity_and_hasher(capacity, hasher) } } /// Reserve space for at least `n` elements in the hash table. /// /// # Example /// /// ``` /// use std::collections::HashSet; /// let mut set: HashSet = HashSet::new(); /// set.reserve(10); /// ``` pub fn reserve(&mut self, n: uint) { self.map.reserve(n) } /// Returns true if the hash set contains a value equivalent to the /// given query value. /// /// # Example /// /// This is a slightly silly example where we define the number's /// parity as the equivalance class. It is important that the /// values hash the same, which is why we implement `Hash`. /// /// ``` /// use std::collections::HashSet; /// use std::hash::Hash; /// use std::hash::sip::SipState; /// /// #[deriving(Eq, PartialEq)] /// struct EvenOrOdd { /// num: uint /// }; /// /// impl Hash for EvenOrOdd { /// fn hash(&self, state: &mut SipState) { /// let parity = self.num % 2; /// parity.hash(state); /// } /// } /// /// impl Equiv for EvenOrOdd { /// fn equiv(&self, other: &EvenOrOdd) -> bool { /// self.num % 2 == other.num % 2 /// } /// } /// /// let mut set = HashSet::new(); /// set.insert(EvenOrOdd { num: 3u }); /// /// assert!(set.contains_equiv(&EvenOrOdd { num: 3u })); /// assert!(set.contains_equiv(&EvenOrOdd { num: 5u })); /// assert!(!set.contains_equiv(&EvenOrOdd { num: 4u })); /// assert!(!set.contains_equiv(&EvenOrOdd { num: 2u })); /// /// ``` pub fn contains_equiv + Equiv>(&self, value: &Q) -> bool { self.map.contains_key_equiv(value) } /// An iterator visiting all elements in arbitrary order. /// Iterator element type is &'a T. /// /// # Example /// /// ``` /// use std::collections::HashSet; /// let mut set = HashSet::new(); /// set.insert("a"); /// set.insert("b"); /// /// // Will print in an arbitrary order. /// for x in set.iter() { /// println!("{}", x); /// } /// ``` pub fn iter<'a>(&'a self) -> SetItems<'a, T> { self.map.keys() } /// Deprecated: use `into_iter`. #[deprecated = "use into_iter"] pub fn move_iter(self) -> SetMoveItems { self.into_iter() } /// Creates a consuming iterator, that is, one that moves each value out /// of the set in arbitrary order. The set cannot be used after calling /// this. /// /// # Example /// /// ``` /// use std::collections::HashSet; /// let mut set = HashSet::new(); /// set.insert("a".to_string()); /// set.insert("b".to_string()); /// /// // Not possible to collect to a Vec with a regular `.iter()`. /// let v: Vec = set.into_iter().collect(); /// /// // Will print in an arbitrary order. /// for x in v.iter() { /// println!("{}", x); /// } /// ``` pub fn into_iter(self) -> SetMoveItems { self.map.into_iter().map(|(k, _)| k) } /// Visit the values representing the difference. /// /// # Example /// /// ``` /// use std::collections::HashSet; /// let a: HashSet = [1i, 2, 3].iter().map(|&x| x).collect(); /// let b: HashSet = [4i, 2, 3, 4].iter().map(|&x| x).collect(); /// /// // Can be seen as `a - b`. /// for x in a.difference(&b) { /// println!("{}", x); // Print 1 /// } /// /// let diff: HashSet = a.difference(&b).map(|&x| x).collect(); /// assert_eq!(diff, [1i].iter().map(|&x| x).collect()); /// /// // Note that difference is not symmetric, /// // and `b - a` means something else: /// let diff: HashSet = b.difference(&a).map(|&x| x).collect(); /// assert_eq!(diff, [4i].iter().map(|&x| x).collect()); /// ``` pub fn difference<'a>(&'a self, other: &'a HashSet) -> SetAlgebraItems<'a, T, H> { Repeat::new(other).zip(self.iter()) .filter_map(|(other, elt)| { if !other.contains(elt) { Some(elt) } else { None } }) } /// Visit the values representing the symmetric difference. /// /// # Example /// /// ``` /// use std::collections::HashSet; /// let a: HashSet = [1i, 2, 3].iter().map(|&x| x).collect(); /// let b: HashSet = [4i, 2, 3, 4].iter().map(|&x| x).collect(); /// /// // Print 1, 4 in arbitrary order. /// for x in a.symmetric_difference(&b) { /// println!("{}", x); /// } /// /// let diff1: HashSet = a.symmetric_difference(&b).map(|&x| x).collect(); /// let diff2: HashSet = b.symmetric_difference(&a).map(|&x| x).collect(); /// /// assert_eq!(diff1, diff2); /// assert_eq!(diff1, [1i, 4].iter().map(|&x| x).collect()); /// ``` pub fn symmetric_difference<'a>(&'a self, other: &'a HashSet) -> Chain, SetAlgebraItems<'a, T, H>> { self.difference(other).chain(other.difference(self)) } /// Visit the values representing the intersection. /// /// # Example /// /// ``` /// use std::collections::HashSet; /// let a: HashSet = [1i, 2, 3].iter().map(|&x| x).collect(); /// let b: HashSet = [4i, 2, 3, 4].iter().map(|&x| x).collect(); /// /// // Print 2, 3 in arbitrary order. /// for x in a.intersection(&b) { /// println!("{}", x); /// } /// /// let diff: HashSet = a.intersection(&b).map(|&x| x).collect(); /// assert_eq!(diff, [2i, 3].iter().map(|&x| x).collect()); /// ``` pub fn intersection<'a>(&'a self, other: &'a HashSet) -> SetAlgebraItems<'a, T, H> { Repeat::new(other).zip(self.iter()) .filter_map(|(other, elt)| { if other.contains(elt) { Some(elt) } else { None } }) } /// Visit the values representing the union. /// /// # Example /// /// ``` /// use std::collections::HashSet; /// let a: HashSet = [1i, 2, 3].iter().map(|&x| x).collect(); /// let b: HashSet = [4i, 2, 3, 4].iter().map(|&x| x).collect(); /// /// // Print 1, 2, 3, 4 in arbitrary order. /// for x in a.union(&b) { /// println!("{}", x); /// } /// /// let diff: HashSet = a.union(&b).map(|&x| x).collect(); /// assert_eq!(diff, [1i, 2, 3, 4].iter().map(|&x| x).collect()); /// ``` pub fn union<'a>(&'a self, other: &'a HashSet) -> Chain, SetAlgebraItems<'a, T, H>> { self.iter().chain(other.difference(self)) } /// Return the number of elements in the set /// /// # Example /// /// ``` /// use std::collections::HashSet; /// /// let mut v = HashSet::new(); /// assert_eq!(v.len(), 0); /// v.insert(1u); /// assert_eq!(v.len(), 1); /// ``` pub fn len(&self) -> uint { self.map.len() } /// Returns true if the set contains no elements /// /// # Example /// /// ``` /// use std::collections::HashSet; /// /// let mut v = HashSet::new(); /// assert!(v.is_empty()); /// v.insert(1u); /// assert!(!v.is_empty()); /// ``` pub fn is_empty(&self) -> bool { self.map.len() == 0 } /// Clears the set, removing all values. /// /// # Example /// /// ``` /// use std::collections::HashSet; /// /// let mut v = HashSet::new(); /// v.insert(1u); /// v.clear(); /// assert!(v.is_empty()); /// ``` pub fn clear(&mut self) { self.map.clear() } /// Returns `true` if the set contains a value. /// /// # Example /// /// ``` /// use std::collections::HashSet; /// /// let set: HashSet = [1, 2, 3].iter().map(|&x| x).collect(); /// assert_eq!(set.contains(&1), true); /// assert_eq!(set.contains(&4), false); /// ``` pub fn contains(&self, value: &T) -> bool { self.map.contains_key(value) } /// Returns `true` if the set has no elements in common with `other`. /// This is equivalent to checking for an empty intersection. /// /// # Example /// /// ``` /// use std::collections::HashSet; /// /// let a: HashSet = [1, 2, 3].iter().map(|&x| x).collect(); /// let mut b: HashSet = HashSet::new(); /// /// assert_eq!(a.is_disjoint(&b), true); /// b.insert(4); /// assert_eq!(a.is_disjoint(&b), true); /// b.insert(1); /// assert_eq!(a.is_disjoint(&b), false); /// ``` pub fn is_disjoint(&self, other: &HashSet) -> bool { self.iter().all(|v| !other.contains(v)) } /// Returns `true` if the set is a subset of another. /// /// # Example /// /// ``` /// use std::collections::HashSet; /// /// let sup: HashSet = [1, 2, 3].iter().map(|&x| x).collect(); /// let mut set: HashSet = HashSet::new(); /// /// assert_eq!(set.is_subset(&sup), true); /// set.insert(2); /// assert_eq!(set.is_subset(&sup), true); /// set.insert(4); /// assert_eq!(set.is_subset(&sup), false); /// ``` pub fn is_subset(&self, other: &HashSet) -> bool { self.iter().all(|v| other.contains(v)) } /// Returns `true` if the set is a superset of another. /// /// # Example /// /// ``` /// use std::collections::HashSet; /// /// let sub: HashSet = [1, 2].iter().map(|&x| x).collect(); /// let mut set: HashSet = HashSet::new(); /// /// assert_eq!(set.is_superset(&sub), false); /// /// set.insert(0); /// set.insert(1); /// assert_eq!(set.is_superset(&sub), false); /// /// set.insert(2); /// assert_eq!(set.is_superset(&sub), true); /// ``` #[inline] pub fn is_superset(&self, other: &HashSet) -> bool { other.is_subset(self) } /// Adds a value to the set. Returns `true` if the value was not already /// present in the set. /// /// # Example /// /// ``` /// use std::collections::HashSet; /// /// let mut set = HashSet::new(); /// /// assert_eq!(set.insert(2u), true); /// assert_eq!(set.insert(2), false); /// assert_eq!(set.len(), 1); /// ``` pub fn insert(&mut self, value: T) -> bool { self.map.insert(value, ()) } /// Removes a value from the set. Returns `true` if the value was /// present in the set. /// /// # Example /// /// ``` /// use std::collections::HashSet; /// /// let mut set = HashSet::new(); /// /// set.insert(2u); /// assert_eq!(set.remove(&2), true); /// assert_eq!(set.remove(&2), false); /// ``` pub fn remove(&mut self, value: &T) -> bool { self.map.remove(value) } } impl, S, H: Hasher> PartialEq for HashSet { fn eq(&self, other: &HashSet) -> bool { if self.len() != other.len() { return false; } self.iter().all(|key| other.contains(key)) } } impl, S, H: Hasher> Eq for HashSet {} impl + fmt::Show, S, H: Hasher> fmt::Show for HashSet { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { try!(write!(f, "{{")); for (i, x) in self.iter().enumerate() { if i != 0 { try!(write!(f, ", ")); } try!(write!(f, "{}", *x)); } write!(f, "}}") } } impl, S, H: Hasher + Default> FromIterator for HashSet { fn from_iter>(iter: I) -> HashSet { let (lower, _) = iter.size_hint(); let mut set = HashSet::with_capacity_and_hasher(lower, Default::default()); set.extend(iter); set } } impl, S, H: Hasher + Default> Extendable for HashSet { fn extend>(&mut self, mut iter: I) { for k in iter { self.insert(k); } } } impl, S, H: Hasher + Default> Default for HashSet { fn default() -> HashSet { HashSet::with_hasher(Default::default()) } } /// HashSet iterator pub type SetItems<'a, K> = iter::Map<'static, (&'a K, &'a ()), &'a K, Entries<'a, K, ()>>; /// HashSet move iterator pub type SetMoveItems = iter::Map<'static, (K, ()), K, MoveEntries>; // `Repeat` is used to feed the filter closure an explicit capture // of a reference to the other set /// Set operations iterator pub type SetAlgebraItems<'a, T, H> = FilterMap<'static, (&'a HashSet, &'a T), &'a T, Zip>, SetItems<'a, T>>>; #[cfg(test)] mod test_set { use prelude::*; use super::HashSet; use slice::ImmutablePartialEqSlice; #[test] fn test_disjoint() { let mut xs = HashSet::new(); let mut ys = HashSet::new(); assert!(xs.is_disjoint(&ys)); assert!(ys.is_disjoint(&xs)); assert!(xs.insert(5i)); assert!(ys.insert(11i)); assert!(xs.is_disjoint(&ys)); assert!(ys.is_disjoint(&xs)); assert!(xs.insert(7)); assert!(xs.insert(19)); assert!(xs.insert(4)); assert!(ys.insert(2)); assert!(ys.insert(-11)); assert!(xs.is_disjoint(&ys)); assert!(ys.is_disjoint(&xs)); assert!(ys.insert(7)); assert!(!xs.is_disjoint(&ys)); assert!(!ys.is_disjoint(&xs)); } #[test] fn test_subset_and_superset() { let mut a = HashSet::new(); assert!(a.insert(0i)); assert!(a.insert(5)); assert!(a.insert(11)); assert!(a.insert(7)); let mut b = HashSet::new(); assert!(b.insert(0i)); assert!(b.insert(7)); assert!(b.insert(19)); assert!(b.insert(250)); assert!(b.insert(11)); assert!(b.insert(200)); assert!(!a.is_subset(&b)); assert!(!a.is_superset(&b)); assert!(!b.is_subset(&a)); assert!(!b.is_superset(&a)); assert!(b.insert(5)); assert!(a.is_subset(&b)); assert!(!a.is_superset(&b)); assert!(!b.is_subset(&a)); assert!(b.is_superset(&a)); } #[test] fn test_iterate() { let mut a = HashSet::new(); for i in range(0u, 32) { assert!(a.insert(i)); } let mut observed: u32 = 0; for k in a.iter() { observed |= 1 << *k; } assert_eq!(observed, 0xFFFF_FFFF); } #[test] fn test_intersection() { let mut a = HashSet::new(); let mut b = HashSet::new(); assert!(a.insert(11i)); assert!(a.insert(1)); assert!(a.insert(3)); assert!(a.insert(77)); assert!(a.insert(103)); assert!(a.insert(5)); assert!(a.insert(-5)); assert!(b.insert(2i)); assert!(b.insert(11)); assert!(b.insert(77)); assert!(b.insert(-9)); assert!(b.insert(-42)); assert!(b.insert(5)); assert!(b.insert(3)); let mut i = 0; let expected = [3, 5, 11, 77]; for x in a.intersection(&b) { assert!(expected.contains(x)); i += 1 } assert_eq!(i, expected.len()); } #[test] fn test_difference() { let mut a = HashSet::new(); let mut b = HashSet::new(); assert!(a.insert(1i)); assert!(a.insert(3)); assert!(a.insert(5)); assert!(a.insert(9)); assert!(a.insert(11)); assert!(b.insert(3i)); assert!(b.insert(9)); let mut i = 0; let expected = [1, 5, 11]; for x in a.difference(&b) { assert!(expected.contains(x)); i += 1 } assert_eq!(i, expected.len()); } #[test] fn test_symmetric_difference() { let mut a = HashSet::new(); let mut b = HashSet::new(); assert!(a.insert(1i)); assert!(a.insert(3)); assert!(a.insert(5)); assert!(a.insert(9)); assert!(a.insert(11)); assert!(b.insert(-2i)); assert!(b.insert(3)); assert!(b.insert(9)); assert!(b.insert(14)); assert!(b.insert(22)); let mut i = 0; let expected = [-2, 1, 5, 11, 14, 22]; for x in a.symmetric_difference(&b) { assert!(expected.contains(x)); i += 1 } assert_eq!(i, expected.len()); } #[test] fn test_union() { let mut a = HashSet::new(); let mut b = HashSet::new(); assert!(a.insert(1i)); assert!(a.insert(3)); assert!(a.insert(5)); assert!(a.insert(9)); assert!(a.insert(11)); assert!(a.insert(16)); assert!(a.insert(19)); assert!(a.insert(24)); assert!(b.insert(-2i)); assert!(b.insert(1)); assert!(b.insert(5)); assert!(b.insert(9)); assert!(b.insert(13)); assert!(b.insert(19)); let mut i = 0; let expected = [-2, 1, 3, 5, 9, 11, 13, 16, 19, 24]; for x in a.union(&b) { assert!(expected.contains(x)); i += 1 } assert_eq!(i, expected.len()); } #[test] fn test_from_iter() { let xs = [1i, 2, 3, 4, 5, 6, 7, 8, 9]; let set: HashSet = xs.iter().map(|&x| x).collect(); for x in xs.iter() { assert!(set.contains(x)); } } #[test] fn test_move_iter() { let hs = { let mut hs = HashSet::new(); hs.insert('a'); hs.insert('b'); hs }; let v = hs.into_iter().collect::>(); assert!(['a', 'b'] == v.as_slice() || ['b', 'a'] == v.as_slice()); } #[test] fn test_eq() { // These constants once happened to expose a bug in insert(). // I'm keeping them around to prevent a regression. let mut s1 = HashSet::new(); s1.insert(1i); s1.insert(2); s1.insert(3); let mut s2 = HashSet::new(); s2.insert(1i); s2.insert(2); assert!(s1 != s2); s2.insert(3); assert_eq!(s1, s2); } #[test] fn test_show() { let mut set: HashSet = HashSet::new(); let empty: HashSet = HashSet::new(); set.insert(1i); set.insert(2); let set_str = format!("{}", set); assert!(set_str == "{1, 2}".to_string() || set_str == "{2, 1}".to_string()); assert_eq!(format!("{}", empty), "{}".to_string()); } }