//! Transforms syntax into `Path` objects, ideally with accounting for hygiene mod lower_use; use crate::intern::Interned; use either::Either; use hir_expand::name::{name, AsName}; use syntax::ast::{self, AstNode, TypeBoundsOwner}; use super::AssociatedTypeBinding; use crate::{ body::LowerCtx, path::{GenericArg, GenericArgs, ModPath, Path, PathKind}, type_ref::{LifetimeRef, TypeBound, TypeRef}, }; pub(super) use lower_use::convert_path; /// Converts an `ast::Path` to `Path`. Works with use trees. /// It correctly handles `$crate` based path from macro call. pub(super) fn lower_path(mut path: ast::Path, ctx: &LowerCtx) -> Option { let mut kind = PathKind::Plain; let mut type_anchor = None; let mut segments = Vec::new(); let mut generic_args = Vec::new(); let hygiene = ctx.hygiene(); loop { let segment = path.segment()?; if segment.coloncolon_token().is_some() { kind = PathKind::Abs; } match segment.kind()? { ast::PathSegmentKind::Name(name_ref) => { // FIXME: this should just return name match hygiene.name_ref_to_name(ctx.db.upcast(), name_ref) { Either::Left(name) => { let args = segment .generic_arg_list() .and_then(|it| lower_generic_args(ctx, it)) .or_else(|| { lower_generic_args_from_fn_path( ctx, segment.param_list(), segment.ret_type(), ) }) .map(Interned::new); segments.push(name); generic_args.push(args) } Either::Right(crate_id) => { kind = PathKind::DollarCrate(crate_id); break; } } } ast::PathSegmentKind::Type { type_ref, trait_ref } => { assert!(path.qualifier().is_none()); // this can only occur at the first segment let self_type = TypeRef::from_ast(ctx, type_ref?); match trait_ref { // ::foo None => { type_anchor = Some(Interned::new(self_type)); kind = PathKind::Plain; } // >::Foo desugars to Trait::Foo Some(trait_ref) => { let path = Path::from_src(trait_ref.path()?, ctx)?; let mod_path = (*path.mod_path).clone(); let num_segments = path.mod_path.segments.len(); kind = mod_path.kind; let mut prefix_segments = mod_path.segments; prefix_segments.reverse(); segments.extend(prefix_segments); let mut prefix_args = path.generic_args; prefix_args.reverse(); generic_args.extend(prefix_args); // Insert the type reference (T in the above example) as Self parameter for the trait let last_segment = generic_args.iter_mut().rev().nth(num_segments.saturating_sub(1))?; let mut args_inner = match last_segment { Some(it) => it.as_ref().clone(), None => GenericArgs::empty(), }; args_inner.has_self_type = true; args_inner.args.insert(0, GenericArg::Type(self_type)); *last_segment = Some(Interned::new(args_inner)); } } } ast::PathSegmentKind::CrateKw => { kind = PathKind::Crate; break; } ast::PathSegmentKind::SelfKw => { // don't break out if `self` is the last segment of a path, this mean we got a // use tree like `foo::{self}` which we want to resolve as `foo` if !segments.is_empty() { kind = PathKind::Super(0); break; } } ast::PathSegmentKind::SuperKw => { let nested_super_count = if let PathKind::Super(n) = kind { n } else { 0 }; kind = PathKind::Super(nested_super_count + 1); } } path = match qualifier(&path) { Some(it) => it, None => break, }; } segments.reverse(); generic_args.reverse(); if segments.is_empty() && kind == PathKind::Plain && type_anchor.is_none() { // plain empty paths don't exist, this means we got a single `self` segment as our path kind = PathKind::Super(0); } // handle local_inner_macros : // Basically, even in rustc it is quite hacky: // https://github.com/rust-lang/rust/blob/614f273e9388ddd7804d5cbc80b8865068a3744e/src/librustc_resolve/macros.rs#L456 // We follow what it did anyway :) if segments.len() == 1 && kind == PathKind::Plain { if let Some(_macro_call) = path.syntax().parent().and_then(ast::MacroCall::cast) { if let Some(crate_id) = hygiene.local_inner_macros(ctx.db.upcast(), path) { kind = PathKind::DollarCrate(crate_id); } } } let mod_path = Interned::new(ModPath::from_segments(kind, segments)); return Some(Path { type_anchor, mod_path, generic_args }); fn qualifier(path: &ast::Path) -> Option { if let Some(q) = path.qualifier() { return Some(q); } // FIXME: this bottom up traversal is not too precise. // Should we handle do a top-down analysis, recording results? let use_tree_list = path.syntax().ancestors().find_map(ast::UseTreeList::cast)?; let use_tree = use_tree_list.parent_use_tree(); use_tree.path() } } pub(super) fn lower_generic_args( lower_ctx: &LowerCtx, node: ast::GenericArgList, ) -> Option { let mut args = Vec::new(); let mut bindings = Vec::new(); for generic_arg in node.generic_args() { match generic_arg { ast::GenericArg::TypeArg(type_arg) => { let type_ref = TypeRef::from_ast_opt(lower_ctx, type_arg.ty()); args.push(GenericArg::Type(type_ref)); } ast::GenericArg::AssocTypeArg(assoc_type_arg) => { if let Some(name_ref) = assoc_type_arg.name_ref() { let name = name_ref.as_name(); let type_ref = assoc_type_arg.ty().map(|it| TypeRef::from_ast(lower_ctx, it)); let bounds = if let Some(l) = assoc_type_arg.type_bound_list() { l.bounds() .map(|it| Interned::new(TypeBound::from_ast(lower_ctx, it))) .collect() } else { Vec::new() }; bindings.push(AssociatedTypeBinding { name, type_ref, bounds }); } } ast::GenericArg::LifetimeArg(lifetime_arg) => { if let Some(lifetime) = lifetime_arg.lifetime() { let lifetime_ref = LifetimeRef::new(&lifetime); args.push(GenericArg::Lifetime(lifetime_ref)) } } // constants are ignored for now. ast::GenericArg::ConstArg(_) => (), } } if args.is_empty() && bindings.is_empty() { return None; } Some(GenericArgs { args, has_self_type: false, bindings }) } /// Collect `GenericArgs` from the parts of a fn-like path, i.e. `Fn(X, Y) /// -> Z` (which desugars to `Fn<(X, Y), Output=Z>`). fn lower_generic_args_from_fn_path( ctx: &LowerCtx, params: Option, ret_type: Option, ) -> Option { let mut args = Vec::new(); let mut bindings = Vec::new(); let params = params?; let mut param_types = Vec::new(); for param in params.params() { let type_ref = TypeRef::from_ast_opt(ctx, param.ty()); param_types.push(type_ref); } let arg = GenericArg::Type(TypeRef::Tuple(param_types)); args.push(arg); if let Some(ret_type) = ret_type { let type_ref = TypeRef::from_ast_opt(ctx, ret_type.ty()); bindings.push(AssociatedTypeBinding { name: name![Output], type_ref: Some(type_ref), bounds: Vec::new(), }); } else { // -> () let type_ref = TypeRef::Tuple(Vec::new()); bindings.push(AssociatedTypeBinding { name: name![Output], type_ref: Some(type_ref), bounds: Vec::new(), }); } Some(GenericArgs { args, has_self_type: false, bindings }) }