// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Utilities for slice manipulation //! //! The `slice` module contains useful code to help work with slice values. //! Slices are a view into a block of memory represented as a pointer and a length. //! //! ```rust //! // slicing a Vec //! let vec = vec!(1i, 2, 3); //! let int_slice = vec.as_slice(); //! // coercing an array to a slice //! let str_slice: &[&str] = &["one", "two", "three"]; //! ``` //! //! Slices are either mutable or shared. The shared slice type is `&[T]`, //! while the mutable slice type is `&mut[T]`. For example, you can mutate the //! block of memory that a mutable slice points to: //! //! ```rust //! let x: &mut[int] = &mut [1i, 2, 3]; //! x[1] = 7; //! assert_eq!(x[0], 1); //! assert_eq!(x[1], 7); //! assert_eq!(x[2], 3); //! ``` //! //! Here are some of the things this module contains: //! //! ## Structs //! //! There are several structs that are useful for slices, such as `Items`, which //! represents iteration over a slice. //! //! ## Traits //! //! A number of traits add methods that allow you to accomplish tasks //! with slices, the most important being `SliceExt`. Other traits //! apply only to slices of elements satisfying certain bounds (like //! `Ord`). //! //! An example is the `slice` method which enables slicing syntax `[a..b]` that //! returns an immutable "view" into a `Vec` or another slice from the index //! interval `[a, b)`: //! //! ```rust //! #![feature(slicing_syntax)] //! fn main() { //! let numbers = [0i, 1i, 2i]; //! let last_numbers = numbers[1..3]; //! // last_numbers is now &[1i, 2i] //! } //! ``` //! //! ## Implementations of other traits //! //! There are several implementations of common traits for slices. Some examples //! include: //! //! * `Clone` //! * `Eq`, `Ord` - for immutable slices whose element type are `Eq` or `Ord`. //! * `Hash` - for slices whose element type is `Hash` //! //! ## Iteration //! //! The method `iter()` returns an iteration value for a slice. The iterator //! yields references to the slice's elements, so if the element //! type of the slice is `int`, the element type of the iterator is `&int`. //! //! ```rust //! let numbers = [0i, 1i, 2i]; //! for &x in numbers.iter() { //! println!("{} is a number!", x); //! } //! ``` //! //! * `.iter_mut()` returns an iterator that allows modifying each value. //! * Further iterators exist that split, chunk or permute the slice. #![doc(primitive = "slice")] use alloc::boxed::Box; use core::borrow::{BorrowFrom, BorrowFromMut, ToOwned}; use core::cmp; use core::iter::{range_step, MultiplicativeIterator}; use core::kinds::{Copy, Sized}; use core::mem::size_of; use core::mem; use core::ops::FnMut; use core::prelude::{Clone, Greater, Iterator, IteratorExt, Less, None, Option}; use core::prelude::{Ord, Ordering, RawPtr, Some, range}; use core::ptr; use core::slice as core_slice; use self::Direction::*; use vec::Vec; pub use core::slice::{Chunks, AsSlice, SplitsN, Windows}; pub use core::slice::{Items, MutItems, PartialEqSliceExt}; pub use core::slice::{ImmutableIntSlice, MutableIntSlice}; pub use core::slice::{MutSplits, MutChunks, Splits}; pub use core::slice::{bytes, mut_ref_slice, ref_slice}; pub use core::slice::{from_raw_buf, from_raw_mut_buf, BinarySearchResult}; // Functional utilities #[allow(missing_docs)] pub trait VectorVector for Sized? { // FIXME #5898: calling these .concat and .connect conflicts with // StrVector::con{cat,nect}, since they have generic contents. /// Flattens a vector of vectors of `T` into a single `Vec`. fn concat_vec(&self) -> Vec; /// Concatenate a vector of vectors, placing a given separator between each. fn connect_vec(&self, sep: &T) -> Vec; } impl<'a, T: Clone, V: AsSlice> VectorVector for [V] { fn concat_vec(&self) -> Vec { let size = self.iter().fold(0u, |acc, v| acc + v.as_slice().len()); let mut result = Vec::with_capacity(size); for v in self.iter() { result.push_all(v.as_slice()) } result } fn connect_vec(&self, sep: &T) -> Vec { let size = self.iter().fold(0u, |acc, v| acc + v.as_slice().len()); let mut result = Vec::with_capacity(size + self.len()); let mut first = true; for v in self.iter() { if first { first = false } else { result.push(sep.clone()) } result.push_all(v.as_slice()) } result } } /// An iterator that yields the element swaps needed to produce /// a sequence of all possible permutations for an indexed sequence of /// elements. Each permutation is only a single swap apart. /// /// The Steinhaus-Johnson-Trotter algorithm is used. /// /// Generates even and odd permutations alternately. /// /// The last generated swap is always (0, 1), and it returns the /// sequence to its initial order. pub struct ElementSwaps { sdir: Vec, /// If `true`, emit the last swap that returns the sequence to initial /// state. emit_reset: bool, swaps_made : uint, } impl ElementSwaps { /// Creates an `ElementSwaps` iterator for a sequence of `length` elements. pub fn new(length: uint) -> ElementSwaps { // Initialize `sdir` with a direction that position should move in // (all negative at the beginning) and the `size` of the // element (equal to the original index). ElementSwaps{ emit_reset: true, sdir: range(0, length).map(|i| SizeDirection{ size: i, dir: Neg }).collect(), swaps_made: 0 } } } enum Direction { Pos, Neg } impl Copy for Direction {} /// An `Index` and `Direction` together. struct SizeDirection { size: uint, dir: Direction, } impl Copy for SizeDirection {} impl Iterator<(uint, uint)> for ElementSwaps { #[inline] fn next(&mut self) -> Option<(uint, uint)> { fn new_pos(i: uint, s: Direction) -> uint { i + match s { Pos => 1, Neg => -1 } } // Find the index of the largest mobile element: // The direction should point into the vector, and the // swap should be with a smaller `size` element. let max = self.sdir.iter().map(|&x| x).enumerate() .filter(|&(i, sd)| new_pos(i, sd.dir) < self.sdir.len() && self.sdir[new_pos(i, sd.dir)].size < sd.size) .max_by(|&(_, sd)| sd.size); match max { Some((i, sd)) => { let j = new_pos(i, sd.dir); self.sdir.swap(i, j); // Swap the direction of each larger SizeDirection for x in self.sdir.iter_mut() { if x.size > sd.size { x.dir = match x.dir { Pos => Neg, Neg => Pos }; } } self.swaps_made += 1; Some((i, j)) }, None => if self.emit_reset { self.emit_reset = false; if self.sdir.len() > 1 { // The last swap self.swaps_made += 1; Some((0, 1)) } else { // Vector is of the form [] or [x], and the only permutation is itself self.swaps_made += 1; Some((0,0)) } } else { None } } } #[inline] fn size_hint(&self) -> (uint, Option) { // For a vector of size n, there are exactly n! permutations. let n = range(2, self.sdir.len() + 1).product(); (n - self.swaps_made, Some(n - self.swaps_made)) } } /// An iterator that uses `ElementSwaps` to iterate through /// all possible permutations of a vector. /// /// The first iteration yields a clone of the vector as it is, /// then each successive element is the vector with one /// swap applied. /// /// Generates even and odd permutations alternately. pub struct Permutations { swaps: ElementSwaps, v: Vec, } impl Iterator> for Permutations { #[inline] fn next(&mut self) -> Option> { match self.swaps.next() { None => None, Some((0,0)) => Some(self.v.clone()), Some((a, b)) => { let elt = self.v.clone(); self.v.swap(a, b); Some(elt) } } } #[inline] fn size_hint(&self) -> (uint, Option) { self.swaps.size_hint() } } /// Extension methods for boxed slices. pub trait BoxedSliceExt { /// Convert `self` into a vector without clones or allocation. fn into_vec(self) -> Vec; } impl BoxedSliceExt for Box<[T]> { #[experimental] fn into_vec(mut self) -> Vec { unsafe { let xs = Vec::from_raw_parts(self.as_mut_ptr(), self.len(), self.len()); mem::forget(self); xs } } } /// Allocating extension methods for slices containing `Clone` elements. pub trait CloneSliceExt for Sized? { /// Copies `self` into a new `Vec`. fn to_vec(&self) -> Vec; /// Partitions the vector into two vectors `(a, b)`, where all /// elements of `a` satisfy `f` and all elements of `b` do not. fn partitioned(&self, f: F) -> (Vec, Vec) where F: FnMut(&T) -> bool; /// Creates an iterator that yields every possible permutation of the /// vector in succession. /// /// # Examples /// /// ```rust /// let v = [1i, 2, 3]; /// let mut perms = v.permutations(); /// /// for p in perms { /// println!("{}", p); /// } /// ``` /// /// Iterating through permutations one by one. /// /// ```rust /// let v = [1i, 2, 3]; /// let mut perms = v.permutations(); /// /// assert_eq!(Some(vec![1i, 2, 3]), perms.next()); /// assert_eq!(Some(vec![1i, 3, 2]), perms.next()); /// assert_eq!(Some(vec![3i, 1, 2]), perms.next()); /// ``` fn permutations(&self) -> Permutations; /// Copies as many elements from `src` as it can into `self` (the /// shorter of `self.len()` and `src.len()`). Returns the number /// of elements copied. /// /// # Example /// /// ```rust /// let mut dst = [0i, 0, 0]; /// let src = [1i, 2]; /// /// assert!(dst.clone_from_slice(&src) == 2); /// assert!(dst == [1, 2, 0]); /// /// let src2 = [3i, 4, 5, 6]; /// assert!(dst.clone_from_slice(&src2) == 3); /// assert!(dst == [3i, 4, 5]); /// ``` fn clone_from_slice(&mut self, &[T]) -> uint; } impl CloneSliceExt for [T] { /// Returns a copy of `v`. #[inline] fn to_vec(&self) -> Vec { let mut vector = Vec::with_capacity(self.len()); vector.push_all(self); vector } #[inline] fn partitioned(&self, mut f: F) -> (Vec, Vec) where F: FnMut(&T) -> bool { let mut lefts = Vec::new(); let mut rights = Vec::new(); for elt in self.iter() { if f(elt) { lefts.push((*elt).clone()); } else { rights.push((*elt).clone()); } } (lefts, rights) } /// Returns an iterator over all permutations of a vector. fn permutations(&self) -> Permutations { Permutations{ swaps: ElementSwaps::new(self.len()), v: self.to_vec(), } } fn clone_from_slice(&mut self, src: &[T]) -> uint { core_slice::CloneSliceExt::clone_from_slice(self, src) } } fn insertion_sort(v: &mut [T], mut compare: F) where F: FnMut(&T, &T) -> Ordering { let len = v.len() as int; let buf_v = v.as_mut_ptr(); // 1 <= i < len; for i in range(1, len) { // j satisfies: 0 <= j <= i; let mut j = i; unsafe { // `i` is in bounds. let read_ptr = buf_v.offset(i) as *const T; // find where to insert, we need to do strict <, // rather than <=, to maintain stability. // 0 <= j - 1 < len, so .offset(j - 1) is in bounds. while j > 0 && compare(&*read_ptr, &*buf_v.offset(j - 1)) == Less { j -= 1; } // shift everything to the right, to make space to // insert this value. // j + 1 could be `len` (for the last `i`), but in // that case, `i == j` so we don't copy. The // `.offset(j)` is always in bounds. if i != j { let tmp = ptr::read(read_ptr); ptr::copy_memory(buf_v.offset(j + 1), &*buf_v.offset(j), (i - j) as uint); ptr::copy_nonoverlapping_memory(buf_v.offset(j), &tmp as *const T, 1); mem::forget(tmp); } } } } fn merge_sort(v: &mut [T], mut compare: F) where F: FnMut(&T, &T) -> Ordering { // warning: this wildly uses unsafe. static BASE_INSERTION: uint = 32; static LARGE_INSERTION: uint = 16; // FIXME #12092: smaller insertion runs seems to make sorting // vectors of large elements a little faster on some platforms, // but hasn't been tested/tuned extensively let insertion = if size_of::() <= 16 { BASE_INSERTION } else { LARGE_INSERTION }; let len = v.len(); // short vectors get sorted in-place via insertion sort to avoid allocations if len <= insertion { insertion_sort(v, compare); return; } // allocate some memory to use as scratch memory, we keep the // length 0 so we can keep shallow copies of the contents of `v` // without risking the dtors running on an object twice if // `compare` panics. let mut working_space = Vec::with_capacity(2 * len); // these both are buffers of length `len`. let mut buf_dat = working_space.as_mut_ptr(); let mut buf_tmp = unsafe {buf_dat.offset(len as int)}; // length `len`. let buf_v = v.as_ptr(); // step 1. sort short runs with insertion sort. This takes the // values from `v` and sorts them into `buf_dat`, leaving that // with sorted runs of length INSERTION. // We could hardcode the sorting comparisons here, and we could // manipulate/step the pointers themselves, rather than repeatedly // .offset-ing. for start in range_step(0, len, insertion) { // start <= i < len; for i in range(start, cmp::min(start + insertion, len)) { // j satisfies: start <= j <= i; let mut j = i as int; unsafe { // `i` is in bounds. let read_ptr = buf_v.offset(i as int); // find where to insert, we need to do strict <, // rather than <=, to maintain stability. // start <= j - 1 < len, so .offset(j - 1) is in // bounds. while j > start as int && compare(&*read_ptr, &*buf_dat.offset(j - 1)) == Less { j -= 1; } // shift everything to the right, to make space to // insert this value. // j + 1 could be `len` (for the last `i`), but in // that case, `i == j` so we don't copy. The // `.offset(j)` is always in bounds. ptr::copy_memory(buf_dat.offset(j + 1), &*buf_dat.offset(j), i - j as uint); ptr::copy_nonoverlapping_memory(buf_dat.offset(j), read_ptr, 1); } } } // step 2. merge the sorted runs. let mut width = insertion; while width < len { // merge the sorted runs of length `width` in `buf_dat` two at // a time, placing the result in `buf_tmp`. // 0 <= start <= len. for start in range_step(0, len, 2 * width) { // manipulate pointers directly for speed (rather than // using a `for` loop with `range` and `.offset` inside // that loop). unsafe { // the end of the first run & start of the // second. Offset of `len` is defined, since this is // precisely one byte past the end of the object. let right_start = buf_dat.offset(cmp::min(start + width, len) as int); // end of the second. Similar reasoning to the above re safety. let right_end_idx = cmp::min(start + 2 * width, len); let right_end = buf_dat.offset(right_end_idx as int); // the pointers to the elements under consideration // from the two runs. // both of these are in bounds. let mut left = buf_dat.offset(start as int); let mut right = right_start; // where we're putting the results, it is a run of // length `2*width`, so we step it once for each step // of either `left` or `right`. `buf_tmp` has length // `len`, so these are in bounds. let mut out = buf_tmp.offset(start as int); let out_end = buf_tmp.offset(right_end_idx as int); while out < out_end { // Either the left or the right run are exhausted, // so just copy the remainder from the other run // and move on; this gives a huge speed-up (order // of 25%) for mostly sorted vectors (the best // case). if left == right_start { // the number remaining in this run. let elems = (right_end as uint - right as uint) / mem::size_of::(); ptr::copy_nonoverlapping_memory(out, &*right, elems); break; } else if right == right_end { let elems = (right_start as uint - left as uint) / mem::size_of::(); ptr::copy_nonoverlapping_memory(out, &*left, elems); break; } // check which side is smaller, and that's the // next element for the new run. // `left < right_start` and `right < right_end`, // so these are valid. let to_copy = if compare(&*left, &*right) == Greater { step(&mut right) } else { step(&mut left) }; ptr::copy_nonoverlapping_memory(out, &*to_copy, 1); step(&mut out); } } } mem::swap(&mut buf_dat, &mut buf_tmp); width *= 2; } // write the result to `v` in one go, so that there are never two copies // of the same object in `v`. unsafe { ptr::copy_nonoverlapping_memory(v.as_mut_ptr(), &*buf_dat, len); } // increment the pointer, returning the old pointer. #[inline(always)] unsafe fn step(ptr: &mut *mut T) -> *mut T { let old = *ptr; *ptr = ptr.offset(1); old } } /// Allocating extension methods for slices on Ord values. #[experimental = "likely to merge with other traits"] pub trait OrdSliceExt for Sized? { /// Sorts the slice, in place. /// /// This is equivalent to `self.sort_by(|a, b| a.cmp(b))`. /// /// # Examples /// /// ```rust /// let mut v = [-5i, 4, 1, -3, 2]; /// /// v.sort(); /// assert!(v == [-5i, -3, 1, 2, 4]); /// ``` #[experimental] fn sort(&mut self); /// Binary search a sorted slice for a given element. /// /// If the value is found then `Found` is returned, containing the /// index of the matching element; if the value is not found then /// `NotFound` is returned, containing the index where a matching /// element could be inserted while maintaining sorted order. /// /// # Example /// /// Looks up a series of four elements. The first is found, with a /// uniquely determined position; the second and third are not /// found; the fourth could match any position in `[1,4]`. /// /// ```rust /// use std::slice::BinarySearchResult::{Found, NotFound}; /// let s = [0i, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; /// let s = s.as_slice(); /// /// assert_eq!(s.binary_search_elem(&13), Found(9)); /// assert_eq!(s.binary_search_elem(&4), NotFound(7)); /// assert_eq!(s.binary_search_elem(&100), NotFound(13)); /// let r = s.binary_search_elem(&1); /// assert!(match r { Found(1...4) => true, _ => false, }); /// ``` #[unstable = "name likely to change"] fn binary_search_elem(&self, x: &T) -> BinarySearchResult; /// Mutates the slice to the next lexicographic permutation. /// /// Returns `true` if successful and `false` if the slice is at the /// last-ordered permutation. /// /// # Example /// /// ```rust /// let v: &mut [_] = &mut [0i, 1, 2]; /// v.next_permutation(); /// let b: &mut [_] = &mut [0i, 2, 1]; /// assert!(v == b); /// v.next_permutation(); /// let b: &mut [_] = &mut [1i, 0, 2]; /// assert!(v == b); /// ``` #[experimental] fn next_permutation(&mut self) -> bool; /// Mutates the slice to the previous lexicographic permutation. /// /// Returns `true` if successful and `false` if the slice is at the /// first-ordered permutation. /// /// # Example /// /// ```rust /// let v: &mut [_] = &mut [1i, 0, 2]; /// v.prev_permutation(); /// let b: &mut [_] = &mut [0i, 2, 1]; /// assert!(v == b); /// v.prev_permutation(); /// let b: &mut [_] = &mut [0i, 1, 2]; /// assert!(v == b); /// ``` #[experimental] fn prev_permutation(&mut self) -> bool; } impl OrdSliceExt for [T] { #[inline] fn sort(&mut self) { self.sort_by(|a, b| a.cmp(b)) } fn binary_search_elem(&self, x: &T) -> BinarySearchResult { core_slice::OrdSliceExt::binary_search_elem(self, x) } fn next_permutation(&mut self) -> bool { core_slice::OrdSliceExt::next_permutation(self) } fn prev_permutation(&mut self) -> bool { core_slice::OrdSliceExt::prev_permutation(self) } } /// Allocating extension methods for slices. #[experimental = "likely to merge with other traits"] pub trait SliceExt for Sized? { /// Sorts the slice, in place, using `compare` to compare /// elements. /// /// This sort is `O(n log n)` worst-case and stable, but allocates /// approximately `2 * n`, where `n` is the length of `self`. /// /// # Examples /// /// ```rust /// let mut v = [5i, 4, 1, 3, 2]; /// v.sort_by(|a, b| a.cmp(b)); /// assert!(v == [1, 2, 3, 4, 5]); /// /// // reverse sorting /// v.sort_by(|a, b| b.cmp(a)); /// assert!(v == [5, 4, 3, 2, 1]); /// ``` fn sort_by(&mut self, compare: F) where F: FnMut(&T, &T) -> Ordering; /// Consumes `src` and moves as many elements as it can into `self` /// from the range [start,end). /// /// Returns the number of elements copied (the shorter of `self.len()` /// and `end - start`). /// /// # Arguments /// /// * src - A mutable vector of `T` /// * start - The index into `src` to start copying from /// * end - The index into `src` to stop copying from /// /// # Examples /// /// ```rust /// let mut a = [1i, 2, 3, 4, 5]; /// let b = vec![6i, 7, 8]; /// let num_moved = a.move_from(b, 0, 3); /// assert_eq!(num_moved, 3); /// assert!(a == [6i, 7, 8, 4, 5]); /// ``` fn move_from(&mut self, src: Vec, start: uint, end: uint) -> uint; /// Returns a subslice spanning the interval [`start`, `end`). /// /// Panics when the end of the new slice lies beyond the end of the /// original slice (i.e. when `end > self.len()`) or when `start > end`. /// /// Slicing with `start` equal to `end` yields an empty slice. #[unstable = "waiting on final error conventions/slicing syntax"] fn slice(&self, start: uint, end: uint) -> &[T]; /// Returns a subslice from `start` to the end of the slice. /// /// Panics when `start` is strictly greater than the length of the original slice. /// /// Slicing from `self.len()` yields an empty slice. #[unstable = "waiting on final error conventions/slicing syntax"] fn slice_from(&self, start: uint) -> &[T]; /// Returns a subslice from the start of the slice to `end`. /// /// Panics when `end` is strictly greater than the length of the original slice. /// /// Slicing to `0` yields an empty slice. #[unstable = "waiting on final error conventions/slicing syntax"] fn slice_to(&self, end: uint) -> &[T]; /// Divides one slice into two at an index. /// /// The first will contain all indices from `[0, mid)` (excluding /// the index `mid` itself) and the second will contain all /// indices from `[mid, len)` (excluding the index `len` itself). /// /// Panics if `mid > len`. #[unstable = "waiting on final error conventions"] fn split_at(&self, mid: uint) -> (&[T], &[T]); /// Returns an iterator over the slice #[unstable = "iterator type may change"] fn iter(&self) -> Items; /// Returns an iterator over subslices separated by elements that match /// `pred`. The matched element is not contained in the subslices. #[unstable = "iterator type may change, waiting on unboxed closures"] fn split(&self, pred: F) -> Splits where F: FnMut(&T) -> bool; /// Returns an iterator over subslices separated by elements that match /// `pred`, limited to splitting at most `n` times. The matched element is /// not contained in the subslices. #[unstable = "iterator type may change"] fn splitn(&self, n: uint, pred: F) -> SplitsN> where F: FnMut(&T) -> bool; /// Returns an iterator over subslices separated by elements that match /// `pred` limited to splitting at most `n` times. This starts at the end of /// the slice and works backwards. The matched element is not contained in /// the subslices. #[unstable = "iterator type may change"] fn rsplitn(&self, n: uint, pred: F) -> SplitsN> where F: FnMut(&T) -> bool; /// Returns an iterator over all contiguous windows of length /// `size`. The windows overlap. If the slice is shorter than /// `size`, the iterator returns no values. /// /// # Panics /// /// Panics if `size` is 0. /// /// # Example /// /// Print the adjacent pairs of a slice (i.e. `[1,2]`, `[2,3]`, /// `[3,4]`): /// /// ```rust /// let v = &[1i, 2, 3, 4]; /// for win in v.windows(2) { /// println!("{}", win); /// } /// ``` #[unstable = "iterator type may change"] fn windows(&self, size: uint) -> Windows; /// Returns an iterator over `size` elements of the slice at a /// time. The chunks do not overlap. If `size` does not divide the /// length of the slice, then the last chunk will not have length /// `size`. /// /// # Panics /// /// Panics if `size` is 0. /// /// # Example /// /// Print the slice two elements at a time (i.e. `[1,2]`, /// `[3,4]`, `[5]`): /// /// ```rust /// let v = &[1i, 2, 3, 4, 5]; /// for win in v.chunks(2) { /// println!("{}", win); /// } /// ``` #[unstable = "iterator type may change"] fn chunks(&self, size: uint) -> Chunks; /// Returns the element of a slice at the given index, or `None` if the /// index is out of bounds. #[unstable = "waiting on final collection conventions"] fn get(&self, index: uint) -> Option<&T>; /// Returns the first element of a slice, or `None` if it is empty. #[unstable = "name may change"] fn head(&self) -> Option<&T>; /// Returns all but the first element of a slice. #[unstable = "name may change"] fn tail(&self) -> &[T]; /// Returns all but the last element of a slice. #[unstable = "name may change"] fn init(&self) -> &[T]; /// Returns the last element of a slice, or `None` if it is empty. #[unstable = "name may change"] fn last(&self) -> Option<&T>; /// Returns a pointer to the element at the given index, without doing /// bounds checking. #[unstable] unsafe fn unsafe_get(&self, index: uint) -> &T; /// Returns an unsafe pointer to the slice's buffer /// /// The caller must ensure that the slice outlives the pointer this /// function returns, or else it will end up pointing to garbage. /// /// Modifying the slice may cause its buffer to be reallocated, which /// would also make any pointers to it invalid. #[unstable] fn as_ptr(&self) -> *const T; /// Binary search a sorted slice with a comparator function. /// /// The comparator function should implement an order consistent /// with the sort order of the underlying slice, returning an /// order code that indicates whether its argument is `Less`, /// `Equal` or `Greater` the desired target. /// /// If a matching value is found then returns `Found`, containing /// the index for the matched element; if no match is found then /// `NotFound` is returned, containing the index where a matching /// element could be inserted while maintaining sorted order. /// /// # Example /// /// Looks up a series of four elements. The first is found, with a /// uniquely determined position; the second and third are not /// found; the fourth could match any position in `[1,4]`. /// /// ```rust /// use std::slice::BinarySearchResult::{Found, NotFound}; /// let s = [0i, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; /// let s = s.as_slice(); /// /// let seek = 13; /// assert_eq!(s.binary_search(|probe| probe.cmp(&seek)), Found(9)); /// let seek = 4; /// assert_eq!(s.binary_search(|probe| probe.cmp(&seek)), NotFound(7)); /// let seek = 100; /// assert_eq!(s.binary_search(|probe| probe.cmp(&seek)), NotFound(13)); /// let seek = 1; /// let r = s.binary_search(|probe| probe.cmp(&seek)); /// assert!(match r { Found(1...4) => true, _ => false, }); /// ``` #[unstable = "waiting on unboxed closures"] fn binary_search(&self, f: F) -> BinarySearchResult where F: FnMut(&T) -> Ordering; /// Return the number of elements in the slice /// /// # Example /// /// ``` /// let a = [1i, 2, 3]; /// assert_eq!(a.len(), 3); /// ``` #[experimental = "not triaged yet"] fn len(&self) -> uint; /// Returns true if the slice has a length of 0 /// /// # Example /// /// ``` /// let a = [1i, 2, 3]; /// assert!(!a.is_empty()); /// ``` #[inline] #[experimental = "not triaged yet"] fn is_empty(&self) -> bool { self.len() == 0 } /// Returns a mutable reference to the element at the given index, /// or `None` if the index is out of bounds #[unstable = "waiting on final error conventions"] fn get_mut(&mut self, index: uint) -> Option<&mut T>; /// Work with `self` as a mut slice. /// Primarily intended for getting a &mut [T] from a [T, ..N]. fn as_mut_slice(&mut self) -> &mut [T]; /// Returns a mutable subslice spanning the interval [`start`, `end`). /// /// Panics when the end of the new slice lies beyond the end of the /// original slice (i.e. when `end > self.len()`) or when `start > end`. /// /// Slicing with `start` equal to `end` yields an empty slice. #[unstable = "waiting on final error conventions"] fn slice_mut(&mut self, start: uint, end: uint) -> &mut [T]; /// Returns a mutable subslice from `start` to the end of the slice. /// /// Panics when `start` is strictly greater than the length of the original slice. /// /// Slicing from `self.len()` yields an empty slice. #[unstable = "waiting on final error conventions"] fn slice_from_mut(&mut self, start: uint) -> &mut [T]; /// Returns a mutable subslice from the start of the slice to `end`. /// /// Panics when `end` is strictly greater than the length of the original slice. /// /// Slicing to `0` yields an empty slice. #[unstable = "waiting on final error conventions"] fn slice_to_mut(&mut self, end: uint) -> &mut [T]; /// Returns an iterator that allows modifying each value #[unstable = "waiting on iterator type name conventions"] fn iter_mut(&mut self) -> MutItems; /// Returns a mutable pointer to the first element of a slice, or `None` if it is empty #[unstable = "name may change"] fn head_mut(&mut self) -> Option<&mut T>; /// Returns all but the first element of a mutable slice #[unstable = "name may change"] fn tail_mut(&mut self) -> &mut [T]; /// Returns all but the last element of a mutable slice #[unstable = "name may change"] fn init_mut(&mut self) -> &mut [T]; /// Returns a mutable pointer to the last item in the slice. #[unstable = "name may change"] fn last_mut(&mut self) -> Option<&mut T>; /// Returns an iterator over mutable subslices separated by elements that /// match `pred`. The matched element is not contained in the subslices. #[unstable = "waiting on unboxed closures, iterator type name conventions"] fn split_mut(&mut self, pred: F) -> MutSplits where F: FnMut(&T) -> bool; /// Returns an iterator over subslices separated by elements that match /// `pred`, limited to splitting at most `n` times. The matched element is /// not contained in the subslices. #[unstable = "waiting on unboxed closures, iterator type name conventions"] fn splitn_mut(&mut self, n: uint, pred: F) -> SplitsN> where F: FnMut(&T) -> bool; /// Returns an iterator over subslices separated by elements that match /// `pred` limited to splitting at most `n` times. This starts at the end of /// the slice and works backwards. The matched element is not contained in /// the subslices. #[unstable = "waiting on unboxed closures, iterator type name conventions"] fn rsplitn_mut(&mut self, n: uint, pred: F) -> SplitsN> where F: FnMut(&T) -> bool; /// Returns an iterator over `chunk_size` elements of the slice at a time. /// The chunks are mutable and do not overlap. If `chunk_size` does /// not divide the length of the slice, then the last chunk will not /// have length `chunk_size`. /// /// # Panics /// /// Panics if `chunk_size` is 0. #[unstable = "waiting on iterator type name conventions"] fn chunks_mut(&mut self, chunk_size: uint) -> MutChunks; /// Swaps two elements in a slice. /// /// Panics if `a` or `b` are out of bounds. /// /// # Arguments /// /// * a - The index of the first element /// * b - The index of the second element /// /// # Example /// /// ```rust /// let mut v = ["a", "b", "c", "d"]; /// v.swap(1, 3); /// assert!(v == ["a", "d", "c", "b"]); /// ``` #[unstable = "waiting on final error conventions"] fn swap(&mut self, a: uint, b: uint); /// Divides one `&mut` into two at an index. /// /// The first will contain all indices from `[0, mid)` (excluding /// the index `mid` itself) and the second will contain all /// indices from `[mid, len)` (excluding the index `len` itself). /// /// Panics if `mid > len`. /// /// # Example /// /// ```rust /// let mut v = [1i, 2, 3, 4, 5, 6]; /// /// // scoped to restrict the lifetime of the borrows /// { /// let (left, right) = v.split_at_mut(0); /// assert!(left == []); /// assert!(right == [1i, 2, 3, 4, 5, 6]); /// } /// /// { /// let (left, right) = v.split_at_mut(2); /// assert!(left == [1i, 2]); /// assert!(right == [3i, 4, 5, 6]); /// } /// /// { /// let (left, right) = v.split_at_mut(6); /// assert!(left == [1i, 2, 3, 4, 5, 6]); /// assert!(right == []); /// } /// ``` #[unstable = "waiting on final error conventions"] fn split_at_mut(&mut self, mid: uint) -> (&mut [T], &mut [T]); /// Reverse the order of elements in a slice, in place. /// /// # Example /// /// ```rust /// let mut v = [1i, 2, 3]; /// v.reverse(); /// assert!(v == [3i, 2, 1]); /// ``` #[experimental = "may be moved to iterators instead"] fn reverse(&mut self); /// Returns an unsafe mutable pointer to the element in index #[experimental = "waiting on unsafe conventions"] unsafe fn unsafe_mut(&mut self, index: uint) -> &mut T; /// Return an unsafe mutable pointer to the slice's buffer. /// /// The caller must ensure that the slice outlives the pointer this /// function returns, or else it will end up pointing to garbage. /// /// Modifying the slice may cause its buffer to be reallocated, which /// would also make any pointers to it invalid. #[inline] #[unstable] fn as_mut_ptr(&mut self) -> *mut T; } impl SliceExt for [T] { #[inline] fn sort_by(&mut self, compare: F) where F: FnMut(&T, &T) -> Ordering { merge_sort(self, compare) } #[inline] fn move_from(&mut self, mut src: Vec, start: uint, end: uint) -> uint { for (a, b) in self.iter_mut().zip(src[mut start..end].iter_mut()) { mem::swap(a, b); } cmp::min(self.len(), end-start) } #[inline] fn slice<'a>(&'a self, start: uint, end: uint) -> &'a [T] { core_slice::SliceExt::slice(self, start, end) } #[inline] fn slice_from<'a>(&'a self, start: uint) -> &'a [T] { core_slice::SliceExt::slice_from(self, start) } #[inline] fn slice_to<'a>(&'a self, end: uint) -> &'a [T] { core_slice::SliceExt::slice_to(self, end) } #[inline] fn split_at<'a>(&'a self, mid: uint) -> (&'a [T], &'a [T]) { core_slice::SliceExt::split_at(self, mid) } #[inline] fn iter<'a>(&'a self) -> Items<'a, T> { core_slice::SliceExt::iter(self) } #[inline] fn split(&self, pred: F) -> Splits where F: FnMut(&T) -> bool { core_slice::SliceExt::split(self, pred) } #[inline] fn splitn(&self, n: uint, pred: F) -> SplitsN> where F: FnMut(&T) -> bool { core_slice::SliceExt::splitn(self, n, pred) } #[inline] fn rsplitn(&self, n: uint, pred: F) -> SplitsN> where F: FnMut(&T) -> bool { core_slice::SliceExt::rsplitn(self, n, pred) } #[inline] fn windows<'a>(&'a self, size: uint) -> Windows<'a, T> { core_slice::SliceExt::windows(self, size) } #[inline] fn chunks<'a>(&'a self, size: uint) -> Chunks<'a, T> { core_slice::SliceExt::chunks(self, size) } #[inline] fn get<'a>(&'a self, index: uint) -> Option<&'a T> { core_slice::SliceExt::get(self, index) } #[inline] fn head<'a>(&'a self) -> Option<&'a T> { core_slice::SliceExt::head(self) } #[inline] fn tail<'a>(&'a self) -> &'a [T] { core_slice::SliceExt::tail(self) } #[inline] fn init<'a>(&'a self) -> &'a [T] { core_slice::SliceExt::init(self) } #[inline] fn last<'a>(&'a self) -> Option<&'a T> { core_slice::SliceExt::last(self) } #[inline] unsafe fn unsafe_get<'a>(&'a self, index: uint) -> &'a T { core_slice::SliceExt::unsafe_get(self, index) } #[inline] fn as_ptr(&self) -> *const T { core_slice::SliceExt::as_ptr(self) } #[inline] fn binary_search(&self, f: F) -> BinarySearchResult where F: FnMut(&T) -> Ordering { core_slice::SliceExt::binary_search(self, f) } #[inline] fn len(&self) -> uint { core_slice::SliceExt::len(self) } #[inline] fn is_empty(&self) -> bool { core_slice::SliceExt::is_empty(self) } #[inline] fn get_mut<'a>(&'a mut self, index: uint) -> Option<&'a mut T> { core_slice::SliceExt::get_mut(self, index) } #[inline] fn as_mut_slice<'a>(&'a mut self) -> &'a mut [T] { core_slice::SliceExt::as_mut_slice(self) } #[inline] fn slice_mut<'a>(&'a mut self, start: uint, end: uint) -> &'a mut [T] { core_slice::SliceExt::slice_mut(self, start, end) } #[inline] fn slice_from_mut<'a>(&'a mut self, start: uint) -> &'a mut [T] { core_slice::SliceExt::slice_from_mut(self, start) } #[inline] fn slice_to_mut<'a>(&'a mut self, end: uint) -> &'a mut [T] { core_slice::SliceExt::slice_to_mut(self, end) } #[inline] fn iter_mut<'a>(&'a mut self) -> MutItems<'a, T> { core_slice::SliceExt::iter_mut(self) } #[inline] fn head_mut<'a>(&'a mut self) -> Option<&'a mut T> { core_slice::SliceExt::head_mut(self) } #[inline] fn tail_mut<'a>(&'a mut self) -> &'a mut [T] { core_slice::SliceExt::tail_mut(self) } #[inline] fn init_mut<'a>(&'a mut self) -> &'a mut [T] { core_slice::SliceExt::init_mut(self) } #[inline] fn last_mut<'a>(&'a mut self) -> Option<&'a mut T> { core_slice::SliceExt::last_mut(self) } #[inline] fn split_mut(&mut self, pred: F) -> MutSplits where F: FnMut(&T) -> bool { core_slice::SliceExt::split_mut(self, pred) } #[inline] fn splitn_mut(&mut self, n: uint, pred: F) -> SplitsN> where F: FnMut(&T) -> bool { core_slice::SliceExt::splitn_mut(self, n, pred) } #[inline] fn rsplitn_mut(&mut self, n: uint, pred: F) -> SplitsN> where F: FnMut(&T) -> bool { core_slice::SliceExt::rsplitn_mut(self, n, pred) } #[inline] fn chunks_mut<'a>(&'a mut self, chunk_size: uint) -> MutChunks<'a, T> { core_slice::SliceExt::chunks_mut(self, chunk_size) } #[inline] fn swap(&mut self, a: uint, b: uint) { core_slice::SliceExt::swap(self, a, b) } #[inline] fn split_at_mut<'a>(&'a mut self, mid: uint) -> (&'a mut [T], &'a mut [T]) { core_slice::SliceExt::split_at_mut(self, mid) } #[inline] fn reverse(&mut self) { core_slice::SliceExt::reverse(self) } #[inline] unsafe fn unsafe_mut<'a>(&'a mut self, index: uint) -> &'a mut T { core_slice::SliceExt::unsafe_mut(self, index) } #[inline] fn as_mut_ptr(&mut self) -> *mut T { core_slice::SliceExt::as_mut_ptr(self) } } #[unstable = "trait is unstable"] impl BorrowFrom> for [T] { fn borrow_from(owned: &Vec) -> &[T] { owned[] } } #[unstable = "trait is unstable"] impl BorrowFromMut> for [T] { fn borrow_from_mut(owned: &mut Vec) -> &mut [T] { owned[mut] } } #[unstable = "trait is unstable"] impl ToOwned> for [T] { fn to_owned(&self) -> Vec { self.to_vec() } } /// Unsafe operations pub mod raw { pub use core::slice::raw::{buf_as_slice, mut_buf_as_slice}; pub use core::slice::raw::{shift_ptr, pop_ptr}; } #[cfg(test)] mod tests { use std::boxed::Box; use std::cell::Cell; use std::default::Default; use std::mem; use std::prelude::*; use std::rand::{Rng, task_rng}; use std::rc::Rc; use std::rt; use slice::*; use vec::Vec; fn square(n: uint) -> uint { n * n } fn is_odd(n: &uint) -> bool { *n % 2u == 1u } #[test] fn test_from_fn() { // Test on-stack from_fn. let mut v = Vec::from_fn(3u, square); { let v = v.as_slice(); assert_eq!(v.len(), 3u); assert_eq!(v[0], 0u); assert_eq!(v[1], 1u); assert_eq!(v[2], 4u); } // Test on-heap from_fn. v = Vec::from_fn(5u, square); { let v = v.as_slice(); assert_eq!(v.len(), 5u); assert_eq!(v[0], 0u); assert_eq!(v[1], 1u); assert_eq!(v[2], 4u); assert_eq!(v[3], 9u); assert_eq!(v[4], 16u); } } #[test] fn test_from_elem() { // Test on-stack from_elem. let mut v = Vec::from_elem(2u, 10u); { let v = v.as_slice(); assert_eq!(v.len(), 2u); assert_eq!(v[0], 10u); assert_eq!(v[1], 10u); } // Test on-heap from_elem. v = Vec::from_elem(6u, 20u); { let v = v.as_slice(); assert_eq!(v[0], 20u); assert_eq!(v[1], 20u); assert_eq!(v[2], 20u); assert_eq!(v[3], 20u); assert_eq!(v[4], 20u); assert_eq!(v[5], 20u); } } #[test] fn test_is_empty() { let xs: [int, ..0] = []; assert!(xs.is_empty()); assert!(![0i].is_empty()); } #[test] fn test_len_divzero() { type Z = [i8, ..0]; let v0 : &[Z] = &[]; let v1 : &[Z] = &[[]]; let v2 : &[Z] = &[[], []]; assert_eq!(mem::size_of::(), 0); assert_eq!(v0.len(), 0); assert_eq!(v1.len(), 1); assert_eq!(v2.len(), 2); } #[test] fn test_get() { let mut a = vec![11i]; assert_eq!(a.as_slice().get(1), None); a = vec![11i, 12]; assert_eq!(a.as_slice().get(1).unwrap(), &12); a = vec![11i, 12, 13]; assert_eq!(a.as_slice().get(1).unwrap(), &12); } #[test] fn test_head() { let mut a = vec![]; assert_eq!(a.as_slice().head(), None); a = vec![11i]; assert_eq!(a.as_slice().head().unwrap(), &11); a = vec![11i, 12]; assert_eq!(a.as_slice().head().unwrap(), &11); } #[test] fn test_head_mut() { let mut a = vec![]; assert_eq!(a.head_mut(), None); a = vec![11i]; assert_eq!(*a.head_mut().unwrap(), 11); a = vec![11i, 12]; assert_eq!(*a.head_mut().unwrap(), 11); } #[test] fn test_tail() { let mut a = vec![11i]; let b: &[int] = &[]; assert_eq!(a.tail(), b); a = vec![11i, 12]; let b: &[int] = &[12]; assert_eq!(a.tail(), b); } #[test] fn test_tail_mut() { let mut a = vec![11i]; let b: &mut [int] = &mut []; assert!(a.tail_mut() == b); a = vec![11i, 12]; let b: &mut [int] = &mut [12]; assert!(a.tail_mut() == b); } #[test] #[should_fail] fn test_tail_empty() { let a: Vec = vec![]; a.tail(); } #[test] #[should_fail] fn test_tail_mut_empty() { let mut a: Vec = vec![]; a.tail_mut(); } #[test] fn test_init() { let mut a = vec![11i]; let b: &[int] = &[]; assert_eq!(a.init(), b); a = vec![11i, 12]; let b: &[int] = &[11]; assert_eq!(a.init(), b); } #[test] fn test_init_mut() { let mut a = vec![11i]; let b: &mut [int] = &mut []; assert!(a.init_mut() == b); a = vec![11i, 12]; let b: &mut [int] = &mut [11]; assert!(a.init_mut() == b); } #[test] #[should_fail] fn test_init_empty() { let a: Vec = vec![]; a.init(); } #[test] #[should_fail] fn test_init_mut_empty() { let mut a: Vec = vec![]; a.init_mut(); } #[test] fn test_last() { let mut a = vec![]; assert_eq!(a.as_slice().last(), None); a = vec![11i]; assert_eq!(a.as_slice().last().unwrap(), &11); a = vec![11i, 12]; assert_eq!(a.as_slice().last().unwrap(), &12); } #[test] fn test_last_mut() { let mut a = vec![]; assert_eq!(a.last_mut(), None); a = vec![11i]; assert_eq!(*a.last_mut().unwrap(), 11); a = vec![11i, 12]; assert_eq!(*a.last_mut().unwrap(), 12); } #[test] fn test_slice() { // Test fixed length vector. let vec_fixed = [1i, 2, 3, 4]; let v_a = vec_fixed[1u..vec_fixed.len()].to_vec(); assert_eq!(v_a.len(), 3u); let v_a = v_a.as_slice(); assert_eq!(v_a[0], 2); assert_eq!(v_a[1], 3); assert_eq!(v_a[2], 4); // Test on stack. let vec_stack: &[_] = &[1i, 2, 3]; let v_b = vec_stack[1u..3u].to_vec(); assert_eq!(v_b.len(), 2u); let v_b = v_b.as_slice(); assert_eq!(v_b[0], 2); assert_eq!(v_b[1], 3); // Test `Box<[T]>` let vec_unique = vec![1i, 2, 3, 4, 5, 6]; let v_d = vec_unique[1u..6u].to_vec(); assert_eq!(v_d.len(), 5u); let v_d = v_d.as_slice(); assert_eq!(v_d[0], 2); assert_eq!(v_d[1], 3); assert_eq!(v_d[2], 4); assert_eq!(v_d[3], 5); assert_eq!(v_d[4], 6); } #[test] fn test_slice_from() { let vec: &[int] = &[1, 2, 3, 4]; assert_eq!(vec[0..], vec); let b: &[int] = &[3, 4]; assert_eq!(vec[2..], b); let b: &[int] = &[]; assert_eq!(vec[4..], b); } #[test] fn test_slice_to() { let vec: &[int] = &[1, 2, 3, 4]; assert_eq!(vec[..4], vec); let b: &[int] = &[1, 2]; assert_eq!(vec[..2], b); let b: &[int] = &[]; assert_eq!(vec[..0], b); } #[test] fn test_pop() { let mut v = vec![5i]; let e = v.pop(); assert_eq!(v.len(), 0); assert_eq!(e, Some(5)); let f = v.pop(); assert_eq!(f, None); let g = v.pop(); assert_eq!(g, None); } #[test] fn test_swap_remove() { let mut v = vec![1i, 2, 3, 4, 5]; let mut e = v.swap_remove(0); assert_eq!(e, Some(1)); assert_eq!(v, vec![5i, 2, 3, 4]); e = v.swap_remove(3); assert_eq!(e, Some(4)); assert_eq!(v, vec![5i, 2, 3]); e = v.swap_remove(3); assert_eq!(e, None); assert_eq!(v, vec![5i, 2, 3]); } #[test] fn test_swap_remove_noncopyable() { // Tests that we don't accidentally run destructors twice. let mut v = Vec::new(); v.push(box 0u8); v.push(box 0u8); v.push(box 0u8); let mut _e = v.swap_remove(0); assert_eq!(v.len(), 2); _e = v.swap_remove(1); assert_eq!(v.len(), 1); _e = v.swap_remove(0); assert_eq!(v.len(), 0); } #[test] fn test_push() { // Test on-stack push(). let mut v = vec![]; v.push(1i); assert_eq!(v.len(), 1u); assert_eq!(v.as_slice()[0], 1); // Test on-heap push(). v.push(2i); assert_eq!(v.len(), 2u); assert_eq!(v.as_slice()[0], 1); assert_eq!(v.as_slice()[1], 2); } #[test] fn test_grow() { // Test on-stack grow(). let mut v = vec![]; v.grow(2u, 1i); { let v = v.as_slice(); assert_eq!(v.len(), 2u); assert_eq!(v[0], 1); assert_eq!(v[1], 1); } // Test on-heap grow(). v.grow(3u, 2i); { let v = v.as_slice(); assert_eq!(v.len(), 5u); assert_eq!(v[0], 1); assert_eq!(v[1], 1); assert_eq!(v[2], 2); assert_eq!(v[3], 2); assert_eq!(v[4], 2); } } #[test] fn test_grow_fn() { let mut v = vec![]; v.grow_fn(3u, square); let v = v.as_slice(); assert_eq!(v.len(), 3u); assert_eq!(v[0], 0u); assert_eq!(v[1], 1u); assert_eq!(v[2], 4u); } #[test] fn test_truncate() { let mut v = vec![box 6i,box 5,box 4]; v.truncate(1); let v = v.as_slice(); assert_eq!(v.len(), 1); assert_eq!(*(v[0]), 6); // If the unsafe block didn't drop things properly, we blow up here. } #[test] fn test_clear() { let mut v = vec![box 6i,box 5,box 4]; v.clear(); assert_eq!(v.len(), 0); // If the unsafe block didn't drop things properly, we blow up here. } #[test] fn test_dedup() { fn case(a: Vec, b: Vec) { let mut v = a; v.dedup(); assert_eq!(v, b); } case(vec![], vec![]); case(vec![1u], vec![1]); case(vec![1u,1], vec![1]); case(vec![1u,2,3], vec![1,2,3]); case(vec![1u,1,2,3], vec![1,2,3]); case(vec![1u,2,2,3], vec![1,2,3]); case(vec![1u,2,3,3], vec![1,2,3]); case(vec![1u,1,2,2,2,3,3], vec![1,2,3]); } #[test] fn test_dedup_unique() { let mut v0 = vec![box 1i, box 1, box 2, box 3]; v0.dedup(); let mut v1 = vec![box 1i, box 2, box 2, box 3]; v1.dedup(); let mut v2 = vec![box 1i, box 2, box 3, box 3]; v2.dedup(); /* * If the boxed pointers were leaked or otherwise misused, valgrind * and/or rt should raise errors. */ } #[test] fn test_dedup_shared() { let mut v0 = vec![box 1i, box 1, box 2, box 3]; v0.dedup(); let mut v1 = vec![box 1i, box 2, box 2, box 3]; v1.dedup(); let mut v2 = vec![box 1i, box 2, box 3, box 3]; v2.dedup(); /* * If the pointers were leaked or otherwise misused, valgrind and/or * rt should raise errors. */ } #[test] fn test_retain() { let mut v = vec![1u, 2, 3, 4, 5]; v.retain(is_odd); assert_eq!(v, vec![1u, 3, 5]); } #[test] fn test_element_swaps() { let mut v = [1i, 2, 3]; for (i, (a, b)) in ElementSwaps::new(v.len()).enumerate() { v.swap(a, b); match i { 0 => assert!(v == [1, 3, 2]), 1 => assert!(v == [3, 1, 2]), 2 => assert!(v == [3, 2, 1]), 3 => assert!(v == [2, 3, 1]), 4 => assert!(v == [2, 1, 3]), 5 => assert!(v == [1, 2, 3]), _ => panic!(), } } } #[test] fn test_permutations() { { let v: [int, ..0] = []; let mut it = v.permutations(); let (min_size, max_opt) = it.size_hint(); assert_eq!(min_size, 1); assert_eq!(max_opt.unwrap(), 1); assert_eq!(it.next(), Some(v.as_slice().to_vec())); assert_eq!(it.next(), None); } { let v = ["Hello".to_string()]; let mut it = v.permutations(); let (min_size, max_opt) = it.size_hint(); assert_eq!(min_size, 1); assert_eq!(max_opt.unwrap(), 1); assert_eq!(it.next(), Some(v.as_slice().to_vec())); assert_eq!(it.next(), None); } { let v = [1i, 2, 3]; let mut it = v.permutations(); let (min_size, max_opt) = it.size_hint(); assert_eq!(min_size, 3*2); assert_eq!(max_opt.unwrap(), 3*2); assert_eq!(it.next(), Some(vec![1,2,3])); assert_eq!(it.next(), Some(vec![1,3,2])); assert_eq!(it.next(), Some(vec![3,1,2])); let (min_size, max_opt) = it.size_hint(); assert_eq!(min_size, 3); assert_eq!(max_opt.unwrap(), 3); assert_eq!(it.next(), Some(vec![3,2,1])); assert_eq!(it.next(), Some(vec![2,3,1])); assert_eq!(it.next(), Some(vec![2,1,3])); assert_eq!(it.next(), None); } { // check that we have N! permutations let v = ['A', 'B', 'C', 'D', 'E', 'F']; let mut amt = 0; let mut it = v.permutations(); let (min_size, max_opt) = it.size_hint(); for _perm in it { amt += 1; } assert_eq!(amt, it.swaps.swaps_made); assert_eq!(amt, min_size); assert_eq!(amt, 2 * 3 * 4 * 5 * 6); assert_eq!(amt, max_opt.unwrap()); } } #[test] fn test_lexicographic_permutations() { let v : &mut[int] = &mut[1i, 2, 3, 4, 5]; assert!(v.prev_permutation() == false); assert!(v.next_permutation()); let b: &mut[int] = &mut[1, 2, 3, 5, 4]; assert!(v == b); assert!(v.prev_permutation()); let b: &mut[int] = &mut[1, 2, 3, 4, 5]; assert!(v == b); assert!(v.next_permutation()); assert!(v.next_permutation()); let b: &mut[int] = &mut[1, 2, 4, 3, 5]; assert!(v == b); assert!(v.next_permutation()); let b: &mut[int] = &mut[1, 2, 4, 5, 3]; assert!(v == b); let v : &mut[int] = &mut[1i, 0, 0, 0]; assert!(v.next_permutation() == false); assert!(v.prev_permutation()); let b: &mut[int] = &mut[0, 1, 0, 0]; assert!(v == b); assert!(v.prev_permutation()); let b: &mut[int] = &mut[0, 0, 1, 0]; assert!(v == b); assert!(v.prev_permutation()); let b: &mut[int] = &mut[0, 0, 0, 1]; assert!(v == b); assert!(v.prev_permutation() == false); } #[test] fn test_lexicographic_permutations_empty_and_short() { let empty : &mut[int] = &mut[]; assert!(empty.next_permutation() == false); let b: &mut[int] = &mut[]; assert!(empty == b); assert!(empty.prev_permutation() == false); assert!(empty == b); let one_elem : &mut[int] = &mut[4i]; assert!(one_elem.prev_permutation() == false); let b: &mut[int] = &mut[4]; assert!(one_elem == b); assert!(one_elem.next_permutation() == false); assert!(one_elem == b); let two_elem : &mut[int] = &mut[1i, 2]; assert!(two_elem.prev_permutation() == false); let b : &mut[int] = &mut[1, 2]; let c : &mut[int] = &mut[2, 1]; assert!(two_elem == b); assert!(two_elem.next_permutation()); assert!(two_elem == c); assert!(two_elem.next_permutation() == false); assert!(two_elem == c); assert!(two_elem.prev_permutation()); assert!(two_elem == b); assert!(two_elem.prev_permutation() == false); assert!(two_elem == b); } #[test] fn test_position_elem() { assert!([].position_elem(&1i).is_none()); let v1 = vec![1i, 2, 3, 3, 2, 5]; assert_eq!(v1.as_slice().position_elem(&1), Some(0u)); assert_eq!(v1.as_slice().position_elem(&2), Some(1u)); assert_eq!(v1.as_slice().position_elem(&5), Some(5u)); assert!(v1.as_slice().position_elem(&4).is_none()); } #[test] fn test_binary_search_elem() { assert_eq!([1i,2,3,4,5].binary_search_elem(&5).found(), Some(4)); assert_eq!([1i,2,3,4,5].binary_search_elem(&4).found(), Some(3)); assert_eq!([1i,2,3,4,5].binary_search_elem(&3).found(), Some(2)); assert_eq!([1i,2,3,4,5].binary_search_elem(&2).found(), Some(1)); assert_eq!([1i,2,3,4,5].binary_search_elem(&1).found(), Some(0)); assert_eq!([2i,4,6,8,10].binary_search_elem(&1).found(), None); assert_eq!([2i,4,6,8,10].binary_search_elem(&5).found(), None); assert_eq!([2i,4,6,8,10].binary_search_elem(&4).found(), Some(1)); assert_eq!([2i,4,6,8,10].binary_search_elem(&10).found(), Some(4)); assert_eq!([2i,4,6,8].binary_search_elem(&1).found(), None); assert_eq!([2i,4,6,8].binary_search_elem(&5).found(), None); assert_eq!([2i,4,6,8].binary_search_elem(&4).found(), Some(1)); assert_eq!([2i,4,6,8].binary_search_elem(&8).found(), Some(3)); assert_eq!([2i,4,6].binary_search_elem(&1).found(), None); assert_eq!([2i,4,6].binary_search_elem(&5).found(), None); assert_eq!([2i,4,6].binary_search_elem(&4).found(), Some(1)); assert_eq!([2i,4,6].binary_search_elem(&6).found(), Some(2)); assert_eq!([2i,4].binary_search_elem(&1).found(), None); assert_eq!([2i,4].binary_search_elem(&5).found(), None); assert_eq!([2i,4].binary_search_elem(&2).found(), Some(0)); assert_eq!([2i,4].binary_search_elem(&4).found(), Some(1)); assert_eq!([2i].binary_search_elem(&1).found(), None); assert_eq!([2i].binary_search_elem(&5).found(), None); assert_eq!([2i].binary_search_elem(&2).found(), Some(0)); assert_eq!([].binary_search_elem(&1i).found(), None); assert_eq!([].binary_search_elem(&5i).found(), None); assert!([1i,1,1,1,1].binary_search_elem(&1).found() != None); assert!([1i,1,1,1,2].binary_search_elem(&1).found() != None); assert!([1i,1,1,2,2].binary_search_elem(&1).found() != None); assert!([1i,1,2,2,2].binary_search_elem(&1).found() != None); assert_eq!([1i,2,2,2,2].binary_search_elem(&1).found(), Some(0)); assert_eq!([1i,2,3,4,5].binary_search_elem(&6).found(), None); assert_eq!([1i,2,3,4,5].binary_search_elem(&0).found(), None); } #[test] fn test_reverse() { let mut v: Vec = vec![10i, 20]; assert_eq!(v[0], 10); assert_eq!(v[1], 20); v.reverse(); assert_eq!(v[0], 20); assert_eq!(v[1], 10); let mut v3: Vec = vec![]; v3.reverse(); assert!(v3.is_empty()); } #[test] fn test_sort() { for len in range(4u, 25) { for _ in range(0i, 100) { let mut v = task_rng().gen_iter::().take(len) .collect::>(); let mut v1 = v.clone(); v.sort(); assert!(v.as_slice().windows(2).all(|w| w[0] <= w[1])); v1.sort_by(|a, b| a.cmp(b)); assert!(v1.as_slice().windows(2).all(|w| w[0] <= w[1])); v1.sort_by(|a, b| b.cmp(a)); assert!(v1.as_slice().windows(2).all(|w| w[0] >= w[1])); } } // shouldn't panic let mut v: [uint, .. 0] = []; v.sort(); let mut v = [0xDEADBEEFu]; v.sort(); assert!(v == [0xDEADBEEF]); } #[test] fn test_sort_stability() { for len in range(4i, 25) { for _ in range(0u, 10) { let mut counts = [0i, .. 10]; // create a vector like [(6, 1), (5, 1), (6, 2), ...], // where the first item of each tuple is random, but // the second item represents which occurrence of that // number this element is, i.e. the second elements // will occur in sorted order. let mut v = range(0, len).map(|_| { let n = task_rng().gen::() % 10; counts[n] += 1; (n, counts[n]) }).collect::>(); // only sort on the first element, so an unstable sort // may mix up the counts. v.sort_by(|&(a,_), &(b,_)| a.cmp(&b)); // this comparison includes the count (the second item // of the tuple), so elements with equal first items // will need to be ordered with increasing // counts... i.e. exactly asserting that this sort is // stable. assert!(v.as_slice().windows(2).all(|w| w[0] <= w[1])); } } } #[test] fn test_partition() { assert_eq!((vec![]).partition(|x: &int| *x < 3), (vec![], vec![])); assert_eq!((vec![1i, 2, 3]).partition(|x: &int| *x < 4), (vec![1, 2, 3], vec![])); assert_eq!((vec![1i, 2, 3]).partition(|x: &int| *x < 2), (vec![1], vec![2, 3])); assert_eq!((vec![1i, 2, 3]).partition(|x: &int| *x < 0), (vec![], vec![1, 2, 3])); } #[test] fn test_partitioned() { assert_eq!(([]).partitioned(|x: &int| *x < 3), (vec![], vec![])); assert_eq!(([1i, 2, 3]).partitioned(|x: &int| *x < 4), (vec![1, 2, 3], vec![])); assert_eq!(([1i, 2, 3]).partitioned(|x: &int| *x < 2), (vec![1], vec![2, 3])); assert_eq!(([1i, 2, 3]).partitioned(|x: &int| *x < 0), (vec![], vec![1, 2, 3])); } #[test] fn test_concat() { let v: [Vec, ..0] = []; assert_eq!(v.concat_vec(), vec![]); assert_eq!([vec![1i], vec![2i,3i]].concat_vec(), vec![1, 2, 3]); let v: [&[int], ..2] = [&[1], &[2, 3]]; assert_eq!(v.connect_vec(&0), vec![1, 0, 2, 3]); let v: [&[int], ..3] = [&[1], &[2], &[3]]; assert_eq!(v.connect_vec(&0), vec![1, 0, 2, 0, 3]); } #[test] fn test_connect() { let v: [Vec, ..0] = []; assert_eq!(v.connect_vec(&0), vec![]); assert_eq!([vec![1i], vec![2i, 3]].connect_vec(&0), vec![1, 0, 2, 3]); assert_eq!([vec![1i], vec![2i], vec![3i]].connect_vec(&0), vec![1, 0, 2, 0, 3]); let v: [&[int], ..2] = [&[1], &[2, 3]]; assert_eq!(v.connect_vec(&0), vec![1, 0, 2, 3]); let v: [&[int], ..3] = [&[1], &[2], &[3]]; assert_eq!(v.connect_vec(&0), vec![1, 0, 2, 0, 3]); } #[test] fn test_insert() { let mut a = vec![1i, 2, 4]; a.insert(2, 3); assert_eq!(a, vec![1, 2, 3, 4]); let mut a = vec![1i, 2, 3]; a.insert(0, 0); assert_eq!(a, vec![0, 1, 2, 3]); let mut a = vec![1i, 2, 3]; a.insert(3, 4); assert_eq!(a, vec![1, 2, 3, 4]); let mut a = vec![]; a.insert(0, 1i); assert_eq!(a, vec![1]); } #[test] #[should_fail] fn test_insert_oob() { let mut a = vec![1i, 2, 3]; a.insert(4, 5); } #[test] fn test_remove() { let mut a = vec![1i,2,3,4]; assert_eq!(a.remove(2), Some(3)); assert_eq!(a, vec![1i,2,4]); assert_eq!(a.remove(2), Some(4)); assert_eq!(a, vec![1i,2]); assert_eq!(a.remove(2), None); assert_eq!(a, vec![1i,2]); assert_eq!(a.remove(0), Some(1)); assert_eq!(a, vec![2i]); assert_eq!(a.remove(0), Some(2)); assert_eq!(a, vec![]); assert_eq!(a.remove(0), None); assert_eq!(a.remove(10), None); } #[test] fn test_capacity() { let mut v = vec![0u64]; v.reserve_exact(10u); assert!(v.capacity() >= 11u); let mut v = vec![0u32]; v.reserve_exact(10u); assert!(v.capacity() >= 11u); } #[test] fn test_slice_2() { let v = vec![1i, 2, 3, 4, 5]; let v = v.slice(1u, 3u); assert_eq!(v.len(), 2u); assert_eq!(v[0], 2); assert_eq!(v[1], 3); } #[test] #[should_fail] fn test_from_fn_fail() { Vec::from_fn(100, |v| { if v == 50 { panic!() } box 0i }); } #[test] #[should_fail] fn test_from_elem_fail() { struct S { f: Cell, boxes: (Box, Rc) } impl Clone for S { fn clone(&self) -> S { self.f.set(self.f.get() + 1); if self.f.get() == 10 { panic!() } S { f: self.f.clone(), boxes: self.boxes.clone(), } } } let s = S { f: Cell::new(0), boxes: (box 0, Rc::new(0)), }; let _ = Vec::from_elem(100, s); } #[test] #[should_fail] fn test_grow_fn_fail() { let mut v = vec![]; v.grow_fn(100, |i| { if i == 50 { panic!() } (box 0i, Rc::new(0i)) }) } #[test] #[should_fail] fn test_permute_fail() { let v = [(box 0i, Rc::new(0i)), (box 0i, Rc::new(0i)), (box 0i, Rc::new(0i)), (box 0i, Rc::new(0i))]; let mut i = 0u; for _ in v.permutations() { if i == 2 { panic!() } i += 1; } } #[test] fn test_total_ord() { let c: &[int] = &[1, 2, 3]; [1, 2, 3, 4][].cmp(c) == Greater; let c: &[int] = &[1, 2, 3, 4]; [1, 2, 3][].cmp(c) == Less; let c: &[int] = &[1, 2, 3, 6]; [1, 2, 3, 4][].cmp(c) == Equal; let c: &[int] = &[1, 2, 3, 4, 5, 6]; [1, 2, 3, 4, 5, 5, 5, 5][].cmp(c) == Less; let c: &[int] = &[1, 2, 3, 4]; [2, 2][].cmp(c) == Greater; } #[test] fn test_iterator() { let xs = [1i, 2, 5, 10, 11]; let mut it = xs.iter(); assert_eq!(it.size_hint(), (5, Some(5))); assert_eq!(it.next().unwrap(), &1); assert_eq!(it.size_hint(), (4, Some(4))); assert_eq!(it.next().unwrap(), &2); assert_eq!(it.size_hint(), (3, Some(3))); assert_eq!(it.next().unwrap(), &5); assert_eq!(it.size_hint(), (2, Some(2))); assert_eq!(it.next().unwrap(), &10); assert_eq!(it.size_hint(), (1, Some(1))); assert_eq!(it.next().unwrap(), &11); assert_eq!(it.size_hint(), (0, Some(0))); assert!(it.next().is_none()); } #[test] fn test_random_access_iterator() { let xs = [1i, 2, 5, 10, 11]; let mut it = xs.iter(); assert_eq!(it.indexable(), 5); assert_eq!(it.idx(0).unwrap(), &1); assert_eq!(it.idx(2).unwrap(), &5); assert_eq!(it.idx(4).unwrap(), &11); assert!(it.idx(5).is_none()); assert_eq!(it.next().unwrap(), &1); assert_eq!(it.indexable(), 4); assert_eq!(it.idx(0).unwrap(), &2); assert_eq!(it.idx(3).unwrap(), &11); assert!(it.idx(4).is_none()); assert_eq!(it.next().unwrap(), &2); assert_eq!(it.indexable(), 3); assert_eq!(it.idx(1).unwrap(), &10); assert!(it.idx(3).is_none()); assert_eq!(it.next().unwrap(), &5); assert_eq!(it.indexable(), 2); assert_eq!(it.idx(1).unwrap(), &11); assert_eq!(it.next().unwrap(), &10); assert_eq!(it.indexable(), 1); assert_eq!(it.idx(0).unwrap(), &11); assert!(it.idx(1).is_none()); assert_eq!(it.next().unwrap(), &11); assert_eq!(it.indexable(), 0); assert!(it.idx(0).is_none()); assert!(it.next().is_none()); } #[test] fn test_iter_size_hints() { let mut xs = [1i, 2, 5, 10, 11]; assert_eq!(xs.iter().size_hint(), (5, Some(5))); assert_eq!(xs.iter_mut().size_hint(), (5, Some(5))); } #[test] fn test_iter_clone() { let xs = [1i, 2, 5]; let mut it = xs.iter(); it.next(); let mut jt = it.clone(); assert_eq!(it.next(), jt.next()); assert_eq!(it.next(), jt.next()); assert_eq!(it.next(), jt.next()); } #[test] fn test_mut_iterator() { let mut xs = [1i, 2, 3, 4, 5]; for x in xs.iter_mut() { *x += 1; } assert!(xs == [2, 3, 4, 5, 6]) } #[test] fn test_rev_iterator() { let xs = [1i, 2, 5, 10, 11]; let ys = [11, 10, 5, 2, 1]; let mut i = 0; for &x in xs.iter().rev() { assert_eq!(x, ys[i]); i += 1; } assert_eq!(i, 5); } #[test] fn test_mut_rev_iterator() { let mut xs = [1u, 2, 3, 4, 5]; for (i,x) in xs.iter_mut().rev().enumerate() { *x += i; } assert!(xs == [5, 5, 5, 5, 5]) } #[test] fn test_move_iterator() { let xs = vec![1u,2,3,4,5]; assert_eq!(xs.into_iter().fold(0, |a: uint, b: uint| 10*a + b), 12345); } #[test] fn test_move_rev_iterator() { let xs = vec![1u,2,3,4,5]; assert_eq!(xs.into_iter().rev().fold(0, |a: uint, b: uint| 10*a + b), 54321); } #[test] fn test_splitator() { let xs = &[1i,2,3,4,5]; let splits: &[&[int]] = &[&[1], &[3], &[5]]; assert_eq!(xs.split(|x| *x % 2 == 0).collect::>(), splits); let splits: &[&[int]] = &[&[], &[2,3,4,5]]; assert_eq!(xs.split(|x| *x == 1).collect::>(), splits); let splits: &[&[int]] = &[&[1,2,3,4], &[]]; assert_eq!(xs.split(|x| *x == 5).collect::>(), splits); let splits: &[&[int]] = &[&[1,2,3,4,5]]; assert_eq!(xs.split(|x| *x == 10).collect::>(), splits); let splits: &[&[int]] = &[&[], &[], &[], &[], &[], &[]]; assert_eq!(xs.split(|_| true).collect::>(), splits); let xs: &[int] = &[]; let splits: &[&[int]] = &[&[]]; assert_eq!(xs.split(|x| *x == 5).collect::>(), splits); } #[test] fn test_splitnator() { let xs = &[1i,2,3,4,5]; let splits: &[&[int]] = &[&[1,2,3,4,5]]; assert_eq!(xs.splitn(0, |x| *x % 2 == 0).collect::>(), splits); let splits: &[&[int]] = &[&[1], &[3,4,5]]; assert_eq!(xs.splitn(1, |x| *x % 2 == 0).collect::>(), splits); let splits: &[&[int]] = &[&[], &[], &[], &[4,5]]; assert_eq!(xs.splitn(3, |_| true).collect::>(), splits); let xs: &[int] = &[]; let splits: &[&[int]] = &[&[]]; assert_eq!(xs.splitn(1, |x| *x == 5).collect::>(), splits); } #[test] fn test_splitnator_mut() { let xs = &mut [1i,2,3,4,5]; let splits: &[&mut [int]] = &[&mut [1,2,3,4,5]]; assert_eq!(xs.splitn_mut(0, |x| *x % 2 == 0).collect::>(), splits); let splits: &[&mut [int]] = &[&mut [1], &mut [3,4,5]]; assert_eq!(xs.splitn_mut(1, |x| *x % 2 == 0).collect::>(), splits); let splits: &[&mut [int]] = &[&mut [], &mut [], &mut [], &mut [4,5]]; assert_eq!(xs.splitn_mut(3, |_| true).collect::>(), splits); let xs: &mut [int] = &mut []; let splits: &[&mut [int]] = &[&mut []]; assert_eq!(xs.splitn_mut(1, |x| *x == 5).collect::>(), splits); } #[test] fn test_rsplitator() { let xs = &[1i,2,3,4,5]; let splits: &[&[int]] = &[&[5], &[3], &[1]]; assert_eq!(xs.split(|x| *x % 2 == 0).rev().collect::>(), splits); let splits: &[&[int]] = &[&[2,3,4,5], &[]]; assert_eq!(xs.split(|x| *x == 1).rev().collect::>(), splits); let splits: &[&[int]] = &[&[], &[1,2,3,4]]; assert_eq!(xs.split(|x| *x == 5).rev().collect::>(), splits); let splits: &[&[int]] = &[&[1,2,3,4,5]]; assert_eq!(xs.split(|x| *x == 10).rev().collect::>(), splits); let xs: &[int] = &[]; let splits: &[&[int]] = &[&[]]; assert_eq!(xs.split(|x| *x == 5).rev().collect::>(), splits); } #[test] fn test_rsplitnator() { let xs = &[1,2,3,4,5]; let splits: &[&[int]] = &[&[1,2,3,4,5]]; assert_eq!(xs.rsplitn(0, |x| *x % 2 == 0).collect::>(), splits); let splits: &[&[int]] = &[&[5], &[1,2,3]]; assert_eq!(xs.rsplitn(1, |x| *x % 2 == 0).collect::>(), splits); let splits: &[&[int]] = &[&[], &[], &[], &[1,2]]; assert_eq!(xs.rsplitn(3, |_| true).collect::>(), splits); let xs: &[int] = &[]; let splits: &[&[int]] = &[&[]]; assert_eq!(xs.rsplitn(1, |x| *x == 5).collect::>(), splits); } #[test] fn test_windowsator() { let v = &[1i,2,3,4]; let wins: &[&[int]] = &[&[1,2], &[2,3], &[3,4]]; assert_eq!(v.windows(2).collect::>(), wins); let wins: &[&[int]] = &[&[1i,2,3], &[2,3,4]]; assert_eq!(v.windows(3).collect::>(), wins); assert!(v.windows(6).next().is_none()); } #[test] #[should_fail] fn test_windowsator_0() { let v = &[1i,2,3,4]; let _it = v.windows(0); } #[test] fn test_chunksator() { let v = &[1i,2,3,4,5]; let chunks: &[&[int]] = &[&[1i,2], &[3,4], &[5]]; assert_eq!(v.chunks(2).collect::>(), chunks); let chunks: &[&[int]] = &[&[1i,2,3], &[4,5]]; assert_eq!(v.chunks(3).collect::>(), chunks); let chunks: &[&[int]] = &[&[1i,2,3,4,5]]; assert_eq!(v.chunks(6).collect::>(), chunks); let chunks: &[&[int]] = &[&[5i], &[3,4], &[1,2]]; assert_eq!(v.chunks(2).rev().collect::>(), chunks); let mut it = v.chunks(2); assert_eq!(it.indexable(), 3); let chunk: &[int] = &[1,2]; assert_eq!(it.idx(0).unwrap(), chunk); let chunk: &[int] = &[3,4]; assert_eq!(it.idx(1).unwrap(), chunk); let chunk: &[int] = &[5]; assert_eq!(it.idx(2).unwrap(), chunk); assert_eq!(it.idx(3), None); } #[test] #[should_fail] fn test_chunksator_0() { let v = &[1i,2,3,4]; let _it = v.chunks(0); } #[test] fn test_move_from() { let mut a = [1i,2,3,4,5]; let b = vec![6i,7,8]; assert_eq!(a.move_from(b, 0, 3), 3); assert!(a == [6i,7,8,4,5]); let mut a = [7i,2,8,1]; let b = vec![3i,1,4,1,5,9]; assert_eq!(a.move_from(b, 0, 6), 4); assert!(a == [3i,1,4,1]); let mut a = [1i,2,3,4]; let b = vec![5i,6,7,8,9,0]; assert_eq!(a.move_from(b, 2, 3), 1); assert!(a == [7i,2,3,4]); let mut a = [1i,2,3,4,5]; let b = vec![5i,6,7,8,9,0]; assert_eq!(a[mut 2..4].move_from(b,1,6), 2); assert!(a == [1i,2,6,7,5]); } #[test] fn test_reverse_part() { let mut values = [1i,2,3,4,5]; values[mut 1..4].reverse(); assert!(values == [1,4,3,2,5]); } #[test] fn test_show() { macro_rules! test_show_vec( ($x:expr, $x_str:expr) => ({ let (x, x_str) = ($x, $x_str); assert_eq!(format!("{}", x), x_str); assert_eq!(format!("{}", x.as_slice()), x_str); }) ); let empty: Vec = vec![]; test_show_vec!(empty, "[]"); test_show_vec!(vec![1i], "[1]"); test_show_vec!(vec![1i, 2, 3], "[1, 2, 3]"); test_show_vec!(vec![vec![], vec![1u], vec![1u, 1u]], "[[], [1], [1, 1]]"); let empty_mut: &mut [int] = &mut[]; test_show_vec!(empty_mut, "[]"); let v: &mut[int] = &mut[1]; test_show_vec!(v, "[1]"); let v: &mut[int] = &mut[1, 2, 3]; test_show_vec!(v, "[1, 2, 3]"); let v: &mut [&mut[uint]] = &mut[&mut[], &mut[1u], &mut[1u, 1u]]; test_show_vec!(v, "[[], [1], [1, 1]]"); } #[test] fn test_vec_default() { macro_rules! t ( ($ty:ty) => {{ let v: $ty = Default::default(); assert!(v.is_empty()); }} ); t!(&[int]); t!(Vec); } #[test] fn test_bytes_set_memory() { use slice::bytes::MutableByteVector; let mut values = [1u8,2,3,4,5]; values[mut 0..5].set_memory(0xAB); assert!(values == [0xAB, 0xAB, 0xAB, 0xAB, 0xAB]); values[mut 2..4].set_memory(0xFF); assert!(values == [0xAB, 0xAB, 0xFF, 0xFF, 0xAB]); } #[test] #[should_fail] fn test_overflow_does_not_cause_segfault() { let mut v = vec![]; v.reserve_exact(-1); v.push(1i); v.push(2); } #[test] #[should_fail] fn test_overflow_does_not_cause_segfault_managed() { let mut v = vec![Rc::new(1i)]; v.reserve_exact(-1); v.push(Rc::new(2i)); } #[test] fn test_mut_split_at() { let mut values = [1u8,2,3,4,5]; { let (left, right) = values.split_at_mut(2); { let left: &[_] = left; assert!(left[0..left.len()] == [1, 2][]); } for p in left.iter_mut() { *p += 1; } { let right: &[_] = right; assert!(right[0..right.len()] == [3, 4, 5][]); } for p in right.iter_mut() { *p += 2; } } assert!(values == [2, 3, 5, 6, 7]); } #[deriving(Clone, PartialEq)] struct Foo; #[test] fn test_iter_zero_sized() { let mut v = vec![Foo, Foo, Foo]; assert_eq!(v.len(), 3); let mut cnt = 0u; for f in v.iter() { assert!(*f == Foo); cnt += 1; } assert_eq!(cnt, 3); for f in v[1..3].iter() { assert!(*f == Foo); cnt += 1; } assert_eq!(cnt, 5); for f in v.iter_mut() { assert!(*f == Foo); cnt += 1; } assert_eq!(cnt, 8); for f in v.into_iter() { assert!(f == Foo); cnt += 1; } assert_eq!(cnt, 11); let xs: [Foo, ..3] = [Foo, Foo, Foo]; cnt = 0; for f in xs.iter() { assert!(*f == Foo); cnt += 1; } assert!(cnt == 3); } #[test] fn test_shrink_to_fit() { let mut xs = vec![0, 1, 2, 3]; for i in range(4i, 100) { xs.push(i) } assert_eq!(xs.capacity(), 128); xs.shrink_to_fit(); assert_eq!(xs.capacity(), 100); assert_eq!(xs, range(0i, 100i).collect::>()); } #[test] fn test_starts_with() { assert!(b"foobar".starts_with(b"foo")); assert!(!b"foobar".starts_with(b"oob")); assert!(!b"foobar".starts_with(b"bar")); assert!(!b"foo".starts_with(b"foobar")); assert!(!b"bar".starts_with(b"foobar")); assert!(b"foobar".starts_with(b"foobar")); let empty: &[u8] = &[]; assert!(empty.starts_with(empty)); assert!(!empty.starts_with(b"foo")); assert!(b"foobar".starts_with(empty)); } #[test] fn test_ends_with() { assert!(b"foobar".ends_with(b"bar")); assert!(!b"foobar".ends_with(b"oba")); assert!(!b"foobar".ends_with(b"foo")); assert!(!b"foo".ends_with(b"foobar")); assert!(!b"bar".ends_with(b"foobar")); assert!(b"foobar".ends_with(b"foobar")); let empty: &[u8] = &[]; assert!(empty.ends_with(empty)); assert!(!empty.ends_with(b"foo")); assert!(b"foobar".ends_with(empty)); } #[test] fn test_mut_splitator() { let mut xs = [0i,1,0,2,3,0,0,4,5,0]; assert_eq!(xs.split_mut(|x| *x == 0).count(), 6); for slice in xs.split_mut(|x| *x == 0) { slice.reverse(); } assert!(xs == [0,1,0,3,2,0,0,5,4,0]); let mut xs = [0i,1,0,2,3,0,0,4,5,0,6,7]; for slice in xs.split_mut(|x| *x == 0).take(5) { slice.reverse(); } assert!(xs == [0,1,0,3,2,0,0,5,4,0,6,7]); } #[test] fn test_mut_splitator_rev() { let mut xs = [1i,2,0,3,4,0,0,5,6,0]; for slice in xs.split_mut(|x| *x == 0).rev().take(4) { slice.reverse(); } assert!(xs == [1,2,0,4,3,0,0,6,5,0]); } #[test] fn test_get_mut() { let mut v = [0i,1,2]; assert_eq!(v.get_mut(3), None); v.get_mut(1).map(|e| *e = 7); assert_eq!(v[1], 7); let mut x = 2; assert_eq!(v.get_mut(2), Some(&mut x)); } #[test] fn test_mut_chunks() { let mut v = [0u8, 1, 2, 3, 4, 5, 6]; for (i, chunk) in v.chunks_mut(3).enumerate() { for x in chunk.iter_mut() { *x = i as u8; } } let result = [0u8, 0, 0, 1, 1, 1, 2]; assert!(v == result); } #[test] fn test_mut_chunks_rev() { let mut v = [0u8, 1, 2, 3, 4, 5, 6]; for (i, chunk) in v.chunks_mut(3).rev().enumerate() { for x in chunk.iter_mut() { *x = i as u8; } } let result = [2u8, 2, 2, 1, 1, 1, 0]; assert!(v == result); } #[test] #[should_fail] fn test_mut_chunks_0() { let mut v = [1i, 2, 3, 4]; let _it = v.chunks_mut(0); } #[test] fn test_mut_last() { let mut x = [1i, 2, 3, 4, 5]; let h = x.last_mut(); assert_eq!(*h.unwrap(), 5); let y: &mut [int] = &mut []; assert!(y.last_mut().is_none()); } #[test] fn test_to_vec() { let xs = box [1u, 2, 3]; let ys = xs.to_vec(); assert_eq!(ys, [1u, 2, 3]); } } #[cfg(test)] mod bench { use std::prelude::*; use std::rand::{weak_rng, Rng}; use std::mem; use std::ptr; use test::{Bencher, black_box}; use vec::Vec; #[bench] fn iterator(b: &mut Bencher) { // peculiar numbers to stop LLVM from optimising the summation // out. let v = Vec::from_fn(100, |i| i ^ (i << 1) ^ (i >> 1)); b.iter(|| { let mut sum = 0; for x in v.iter() { sum += *x; } // sum == 11806, to stop dead code elimination. if sum == 0 {panic!()} }) } #[bench] fn mut_iterator(b: &mut Bencher) { let mut v = Vec::from_elem(100, 0i); b.iter(|| { let mut i = 0i; for x in v.iter_mut() { *x = i; i += 1; } }) } #[bench] fn concat(b: &mut Bencher) { let xss: Vec> = Vec::from_fn(100, |i| range(0u, i).collect()); b.iter(|| { xss.as_slice().concat_vec() }); } #[bench] fn connect(b: &mut Bencher) { let xss: Vec> = Vec::from_fn(100, |i| range(0u, i).collect()); b.iter(|| { xss.as_slice().connect_vec(&0) }); } #[bench] fn push(b: &mut Bencher) { let mut vec: Vec = vec![]; b.iter(|| { vec.push(0); black_box(&vec); }); } #[bench] fn starts_with_same_vector(b: &mut Bencher) { let vec: Vec = Vec::from_fn(100, |i| i); b.iter(|| { vec.as_slice().starts_with(vec.as_slice()) }) } #[bench] fn starts_with_single_element(b: &mut Bencher) { let vec: Vec = vec![0]; b.iter(|| { vec.as_slice().starts_with(vec.as_slice()) }) } #[bench] fn starts_with_diff_one_element_at_end(b: &mut Bencher) { let vec: Vec = Vec::from_fn(100, |i| i); let mut match_vec: Vec = Vec::from_fn(99, |i| i); match_vec.push(0); b.iter(|| { vec.as_slice().starts_with(match_vec.as_slice()) }) } #[bench] fn ends_with_same_vector(b: &mut Bencher) { let vec: Vec = Vec::from_fn(100, |i| i); b.iter(|| { vec.as_slice().ends_with(vec.as_slice()) }) } #[bench] fn ends_with_single_element(b: &mut Bencher) { let vec: Vec = vec![0]; b.iter(|| { vec.as_slice().ends_with(vec.as_slice()) }) } #[bench] fn ends_with_diff_one_element_at_beginning(b: &mut Bencher) { let vec: Vec = Vec::from_fn(100, |i| i); let mut match_vec: Vec = Vec::from_fn(100, |i| i); match_vec.as_mut_slice()[0] = 200; b.iter(|| { vec.as_slice().starts_with(match_vec.as_slice()) }) } #[bench] fn contains_last_element(b: &mut Bencher) { let vec: Vec = Vec::from_fn(100, |i| i); b.iter(|| { vec.contains(&99u) }) } #[bench] fn zero_1kb_from_elem(b: &mut Bencher) { b.iter(|| { Vec::from_elem(1024, 0u8) }); } #[bench] fn zero_1kb_set_memory(b: &mut Bencher) { b.iter(|| { let mut v: Vec = Vec::with_capacity(1024); unsafe { let vp = v.as_mut_ptr(); ptr::set_memory(vp, 0, 1024); v.set_len(1024); } v }); } #[bench] fn zero_1kb_loop_set(b: &mut Bencher) { b.iter(|| { let mut v: Vec = Vec::with_capacity(1024); unsafe { v.set_len(1024); } for i in range(0u, 1024) { v[i] = 0; } }); } #[bench] fn zero_1kb_mut_iter(b: &mut Bencher) { b.iter(|| { let mut v = Vec::with_capacity(1024); unsafe { v.set_len(1024); } for x in v.iter_mut() { *x = 0i; } v }); } #[bench] fn random_inserts(b: &mut Bencher) { let mut rng = weak_rng(); b.iter(|| { let mut v = Vec::from_elem(30, (0u, 0u)); for _ in range(0u, 100) { let l = v.len(); v.insert(rng.gen::() % (l + 1), (1, 1)); } }) } #[bench] fn random_removes(b: &mut Bencher) { let mut rng = weak_rng(); b.iter(|| { let mut v = Vec::from_elem(130, (0u, 0u)); for _ in range(0u, 100) { let l = v.len(); v.remove(rng.gen::() % l); } }) } #[bench] fn sort_random_small(b: &mut Bencher) { let mut rng = weak_rng(); b.iter(|| { let mut v = rng.gen_iter::().take(5).collect::>(); v.as_mut_slice().sort(); }); b.bytes = 5 * mem::size_of::() as u64; } #[bench] fn sort_random_medium(b: &mut Bencher) { let mut rng = weak_rng(); b.iter(|| { let mut v = rng.gen_iter::().take(100).collect::>(); v.as_mut_slice().sort(); }); b.bytes = 100 * mem::size_of::() as u64; } #[bench] fn sort_random_large(b: &mut Bencher) { let mut rng = weak_rng(); b.iter(|| { let mut v = rng.gen_iter::().take(10000).collect::>(); v.as_mut_slice().sort(); }); b.bytes = 10000 * mem::size_of::() as u64; } #[bench] fn sort_sorted(b: &mut Bencher) { let mut v = Vec::from_fn(10000, |i| i); b.iter(|| { v.sort(); }); b.bytes = (v.len() * mem::size_of_val(&v[0])) as u64; } type BigSortable = (u64,u64,u64,u64); #[bench] fn sort_big_random_small(b: &mut Bencher) { let mut rng = weak_rng(); b.iter(|| { let mut v = rng.gen_iter::().take(5) .collect::>(); v.sort(); }); b.bytes = 5 * mem::size_of::() as u64; } #[bench] fn sort_big_random_medium(b: &mut Bencher) { let mut rng = weak_rng(); b.iter(|| { let mut v = rng.gen_iter::().take(100) .collect::>(); v.sort(); }); b.bytes = 100 * mem::size_of::() as u64; } #[bench] fn sort_big_random_large(b: &mut Bencher) { let mut rng = weak_rng(); b.iter(|| { let mut v = rng.gen_iter::().take(10000) .collect::>(); v.sort(); }); b.bytes = 10000 * mem::size_of::() as u64; } #[bench] fn sort_big_sorted(b: &mut Bencher) { let mut v = Vec::from_fn(10000u, |i| (i, i, i, i)); b.iter(|| { v.sort(); }); b.bytes = (v.len() * mem::size_of_val(&v[0])) as u64; } }