// Copyright 2013-2015 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. #![allow(deprecated)] use prelude::v1::*; use self::SocketStatus::*; use self::InAddr::*; use ffi::{CString, CStr}; use old_io::net::addrinfo; use old_io::net::ip::{SocketAddr, IpAddr, Ipv4Addr, Ipv6Addr}; use old_io::{IoResult, IoError}; use libc::{self, c_char, c_int}; use mem; use num::Int; use ptr::{self, null, null_mut}; use str; use sys::{self, retry, c, sock_t, last_error, last_net_error, last_gai_error, close_sock, wrlen, msglen_t, os, wouldblock, set_nonblocking, timer, ms_to_timeval, decode_error_detailed}; use sync::{Arc, Mutex}; #[cfg(not(target_os = "linux"))] use sync::MutexGuard; use sys_common::{self, keep_going, short_write, timeout}; use cmp; use old_io; // FIXME: move uses of Arc and deadline tracking to std::io #[derive(Debug)] pub enum SocketStatus { Readable, Writable, } //////////////////////////////////////////////////////////////////////////////// // sockaddr and misc bindings //////////////////////////////////////////////////////////////////////////////// pub fn htons(u: u16) -> u16 { u.to_be() } pub fn ntohs(u: u16) -> u16 { Int::from_be(u) } pub enum InAddr { In4Addr(libc::in_addr), In6Addr(libc::in6_addr), } pub fn ip_to_inaddr(ip: IpAddr) -> InAddr { match ip { Ipv4Addr(a, b, c, d) => { let ip = ((a as u32) << 24) | ((b as u32) << 16) | ((c as u32) << 8) | ((d as u32) << 0); In4Addr(libc::in_addr { s_addr: Int::from_be(ip) }) } Ipv6Addr(a, b, c, d, e, f, g, h) => { In6Addr(libc::in6_addr { s6_addr: [ htons(a), htons(b), htons(c), htons(d), htons(e), htons(f), htons(g), htons(h), ] }) } } } pub fn addr_to_sockaddr(addr: SocketAddr, storage: &mut libc::sockaddr_storage) -> libc::socklen_t { unsafe { let len = match ip_to_inaddr(addr.ip) { In4Addr(inaddr) => { let storage = storage as *mut _ as *mut libc::sockaddr_in; (*storage).sin_family = libc::AF_INET as libc::sa_family_t; (*storage).sin_port = htons(addr.port); (*storage).sin_addr = inaddr; mem::size_of::() } In6Addr(inaddr) => { let storage = storage as *mut _ as *mut libc::sockaddr_in6; (*storage).sin6_family = libc::AF_INET6 as libc::sa_family_t; (*storage).sin6_port = htons(addr.port); (*storage).sin6_addr = inaddr; mem::size_of::() } }; return len as libc::socklen_t; } } pub fn socket(addr: SocketAddr, ty: libc::c_int) -> IoResult { unsafe { let fam = match addr.ip { Ipv4Addr(..) => libc::AF_INET, Ipv6Addr(..) => libc::AF_INET6, }; match libc::socket(fam, ty, 0) { -1 => Err(last_net_error()), fd => Ok(fd), } } } pub fn setsockopt(fd: sock_t, opt: libc::c_int, val: libc::c_int, payload: T) -> IoResult<()> { unsafe { let payload = &payload as *const T as *const libc::c_void; let ret = libc::setsockopt(fd, opt, val, payload, mem::size_of::() as libc::socklen_t); if ret != 0 { Err(last_net_error()) } else { Ok(()) } } } pub fn getsockopt(fd: sock_t, opt: libc::c_int, val: libc::c_int) -> IoResult { unsafe { let mut slot: T = mem::zeroed(); let mut len = mem::size_of::() as libc::socklen_t; let ret = c::getsockopt(fd, opt, val, &mut slot as *mut _ as *mut _, &mut len); if ret != 0 { Err(last_net_error()) } else { assert!(len as uint == mem::size_of::()); Ok(slot) } } } pub fn sockname(fd: sock_t, f: unsafe extern "system" fn(sock_t, *mut libc::sockaddr, *mut libc::socklen_t) -> libc::c_int) -> IoResult { let mut storage: libc::sockaddr_storage = unsafe { mem::zeroed() }; let mut len = mem::size_of::() as libc::socklen_t; unsafe { let storage = &mut storage as *mut libc::sockaddr_storage; let ret = f(fd, storage as *mut libc::sockaddr, &mut len as *mut libc::socklen_t); if ret != 0 { return Err(last_net_error()) } } return sockaddr_to_addr(&storage, len as uint); } pub fn sockaddr_to_addr(storage: &libc::sockaddr_storage, len: uint) -> IoResult { match storage.ss_family as libc::c_int { libc::AF_INET => { assert!(len as uint >= mem::size_of::()); let storage: &libc::sockaddr_in = unsafe { mem::transmute(storage) }; let ip = (storage.sin_addr.s_addr as u32).to_be(); let a = (ip >> 24) as u8; let b = (ip >> 16) as u8; let c = (ip >> 8) as u8; let d = (ip >> 0) as u8; Ok(SocketAddr { ip: Ipv4Addr(a, b, c, d), port: ntohs(storage.sin_port), }) } libc::AF_INET6 => { assert!(len as uint >= mem::size_of::()); let storage: &libc::sockaddr_in6 = unsafe { mem::transmute(storage) }; let a = ntohs(storage.sin6_addr.s6_addr[0]); let b = ntohs(storage.sin6_addr.s6_addr[1]); let c = ntohs(storage.sin6_addr.s6_addr[2]); let d = ntohs(storage.sin6_addr.s6_addr[3]); let e = ntohs(storage.sin6_addr.s6_addr[4]); let f = ntohs(storage.sin6_addr.s6_addr[5]); let g = ntohs(storage.sin6_addr.s6_addr[6]); let h = ntohs(storage.sin6_addr.s6_addr[7]); Ok(SocketAddr { ip: Ipv6Addr(a, b, c, d, e, f, g, h), port: ntohs(storage.sin6_port), }) } _ => { Err(IoError { kind: old_io::InvalidInput, desc: "invalid argument", detail: None, }) } } } //////////////////////////////////////////////////////////////////////////////// // get_host_addresses //////////////////////////////////////////////////////////////////////////////// extern "system" { fn getaddrinfo(node: *const c_char, service: *const c_char, hints: *const libc::addrinfo, res: *mut *mut libc::addrinfo) -> c_int; fn freeaddrinfo(res: *mut libc::addrinfo); } pub fn get_host_addresses(host: Option<&str>, servname: Option<&str>, hint: Option) -> Result, IoError> { sys::init_net(); assert!(host.is_some() || servname.is_some()); let c_host = match host { Some(x) => Some(try!(CString::new(x))), None => None, }; let c_host = c_host.as_ref().map(|x| x.as_ptr()).unwrap_or(null()); let c_serv = match servname { Some(x) => Some(try!(CString::new(x))), None => None, }; let c_serv = c_serv.as_ref().map(|x| x.as_ptr()).unwrap_or(null()); let hint = hint.map(|hint| { libc::addrinfo { ai_flags: hint.flags as c_int, ai_family: hint.family as c_int, ai_socktype: 0, ai_protocol: 0, ai_addrlen: 0, ai_canonname: null_mut(), ai_addr: null_mut(), ai_next: null_mut() } }); let hint_ptr = hint.as_ref().map_or(null(), |x| { x as *const libc::addrinfo }); let mut res = null_mut(); // Make the call let s = unsafe { getaddrinfo(c_host, c_serv, hint_ptr, &mut res) }; // Error? if s != 0 { return Err(last_gai_error(s)); } // Collect all the results we found let mut addrs = Vec::new(); let mut rp = res; while !rp.is_null() { unsafe { let addr = try!(sockaddr_to_addr(mem::transmute((*rp).ai_addr), (*rp).ai_addrlen as uint)); addrs.push(addrinfo::Info { address: addr, family: (*rp).ai_family as uint, socktype: None, protocol: None, flags: (*rp).ai_flags as uint }); rp = (*rp).ai_next as *mut libc::addrinfo; } } unsafe { freeaddrinfo(res); } Ok(addrs) } //////////////////////////////////////////////////////////////////////////////// // get_address_name //////////////////////////////////////////////////////////////////////////////// extern "system" { fn getnameinfo(sa: *const libc::sockaddr, salen: libc::socklen_t, host: *mut c_char, hostlen: libc::size_t, serv: *mut c_char, servlen: libc::size_t, flags: c_int) -> c_int; } const NI_MAXHOST: uint = 1025; pub fn get_address_name(addr: IpAddr) -> Result { let addr = SocketAddr{ip: addr, port: 0}; let mut storage: libc::sockaddr_storage = unsafe { mem::zeroed() }; let len = addr_to_sockaddr(addr, &mut storage); let mut hostbuf = [0 as c_char; NI_MAXHOST]; let res = unsafe { getnameinfo(&storage as *const _ as *const libc::sockaddr, len, hostbuf.as_mut_ptr(), NI_MAXHOST as libc::size_t, ptr::null_mut(), 0, 0) }; if res != 0 { return Err(last_gai_error(res)); } unsafe { let data = CStr::from_ptr(hostbuf.as_ptr()); Ok(str::from_utf8(data.to_bytes()).unwrap().to_string()) } } //////////////////////////////////////////////////////////////////////////////// // Timeout helpers // // The read/write functions below are the helpers for reading/writing a socket // with a possible deadline specified. This is generally viewed as a timed out // I/O operation. // // From the application's perspective, timeouts apply to the I/O object, not to // the underlying file descriptor (it's one timeout per object). This means that // we can't use the SO_RCVTIMEO and corresponding send timeout option. // // The next idea to implement timeouts would be to use nonblocking I/O. An // invocation of select() would wait (with a timeout) for a socket to be ready. // Once its ready, we can perform the operation. Note that the operation *must* // be nonblocking, even though select() says the socket is ready. This is // because some other thread could have come and stolen our data (handles can be // cloned). // // To implement nonblocking I/O, the first option we have is to use the // O_NONBLOCK flag. Remember though that this is a global setting, affecting all // I/O objects, so this was initially viewed as unwise. // // It turns out that there's this nifty MSG_DONTWAIT flag which can be passed to // send/recv, but the niftiness wears off once you realize it only works well on // Linux [1] [2]. This means that it's pretty easy to get a nonblocking // operation on Linux (no flag fiddling, no affecting other objects), but not on // other platforms. // // To work around this constraint on other platforms, we end up using the // original strategy of flipping the O_NONBLOCK flag. As mentioned before, this // could cause other objects' blocking operations to suddenly become // nonblocking. To get around this, a "blocking operation" which returns EAGAIN // falls back to using the same code path as nonblocking operations, but with an // infinite timeout (select + send/recv). This helps emulate blocking // reads/writes despite the underlying descriptor being nonblocking, as well as // optimizing the fast path of just hitting one syscall in the good case. // // As a final caveat, this implementation uses a mutex so only one thread is // doing a nonblocking operation at at time. This is the operation that comes // after the select() (at which point we think the socket is ready). This is // done for sanity to ensure that the state of the O_NONBLOCK flag is what we // expect (wouldn't want someone turning it on when it should be off!). All // operations performed in the lock are *nonblocking* to avoid holding the mutex // forever. // // So, in summary, Linux uses MSG_DONTWAIT and doesn't need mutexes, everyone // else uses O_NONBLOCK and mutexes with some trickery to make sure blocking // reads/writes are still blocking. // // Fun, fun! // // [1] http://twistedmatrix.com/pipermail/twisted-commits/2012-April/034692.html // [2] http://stackoverflow.com/questions/19819198/does-send-msg-dontwait pub fn read(fd: sock_t, deadline: u64, mut lock: L, mut read: R) -> IoResult where L: FnMut() -> T, R: FnMut(bool) -> libc::c_int, { let mut ret = -1; if deadline == 0 { ret = retry(|| read(false)); } if deadline != 0 || (ret == -1 && wouldblock()) { let deadline = match deadline { 0 => None, n => Some(n), }; loop { // With a timeout, first we wait for the socket to become // readable using select(), specifying the relevant timeout for // our previously set deadline. try!(await(&[fd], deadline, Readable)); // At this point, we're still within the timeout, and we've // determined that the socket is readable (as returned by // select). We must still read the socket in *nonblocking* mode // because some other thread could come steal our data. If we // fail to read some data, we retry (hence the outer loop) and // wait for the socket to become readable again. let _guard = lock(); match retry(|| read(deadline.is_some())) { -1 if wouldblock() => {} -1 => return Err(last_net_error()), n => { ret = n; break } } } } match ret { 0 => Err(sys_common::eof()), n if n < 0 => Err(last_net_error()), n => Ok(n as uint) } } pub fn write(fd: sock_t, deadline: u64, buf: &[u8], write_everything: bool, mut lock: L, mut write: W) -> IoResult where L: FnMut() -> T, W: FnMut(bool, *const u8, uint) -> i64, { let mut ret = -1; let mut written = 0; if deadline == 0 { if write_everything { ret = keep_going(buf, |inner, len| { written = buf.len() - len; write(false, inner, len) }); } else { ret = retry(|| { write(false, buf.as_ptr(), buf.len()) }); if ret > 0 { written = ret as uint; } } } if deadline != 0 || (ret == -1 && wouldblock()) { let deadline = match deadline { 0 => None, n => Some(n), }; while written < buf.len() && (write_everything || written == 0) { // As with read(), first wait for the socket to be ready for // the I/O operation. match await(&[fd], deadline, Writable) { Err(ref e) if e.kind == old_io::EndOfFile && written > 0 => { assert!(deadline.is_some()); return Err(short_write(written, "short write")) } Err(e) => return Err(e), Ok(()) => {} } // Also as with read(), we use MSG_DONTWAIT to guard ourselves // against unforeseen circumstances. let _guard = lock(); let ptr = buf[written..].as_ptr(); let len = buf.len() - written; match retry(|| write(deadline.is_some(), ptr, len)) { -1 if wouldblock() => {} -1 => return Err(last_net_error()), n => { written += n as uint; } } } ret = 0; } if ret < 0 { Err(last_net_error()) } else { Ok(written) } } // See http://developerweb.net/viewtopic.php?id=3196 for where this is // derived from. pub fn connect_timeout(fd: sock_t, addrp: *const libc::sockaddr, len: libc::socklen_t, timeout_ms: u64) -> IoResult<()> { #[cfg(unix)] use libc::EINPROGRESS as INPROGRESS; #[cfg(windows)] use libc::WSAEINPROGRESS as INPROGRESS; #[cfg(unix)] use libc::EWOULDBLOCK as WOULDBLOCK; #[cfg(windows)] use libc::WSAEWOULDBLOCK as WOULDBLOCK; // Make sure the call to connect() doesn't block set_nonblocking(fd, true); let ret = match unsafe { libc::connect(fd, addrp, len) } { // If the connection is in progress, then we need to wait for it to // finish (with a timeout). The current strategy for doing this is // to use select() with a timeout. -1 if os::errno() as int == INPROGRESS as int || os::errno() as int == WOULDBLOCK as int => { let mut set: c::fd_set = unsafe { mem::zeroed() }; c::fd_set(&mut set, fd); match await(fd, &mut set, timeout_ms) { 0 => Err(timeout("connection timed out")), -1 => Err(last_net_error()), _ => { let err: libc::c_int = try!( getsockopt(fd, libc::SOL_SOCKET, libc::SO_ERROR)); if err == 0 { Ok(()) } else { Err(decode_error_detailed(err)) } } } } -1 => Err(last_net_error()), _ => Ok(()), }; // be sure to turn blocking I/O back on set_nonblocking(fd, false); return ret; #[cfg(unix)] fn await(fd: sock_t, set: &mut c::fd_set, timeout: u64) -> libc::c_int { let start = timer::now(); retry(|| unsafe { // Recalculate the timeout each iteration (it is generally // undefined what the value of the 'tv' is after select // returns EINTR). let mut tv = ms_to_timeval(timeout - (timer::now() - start)); c::select(fd + 1, ptr::null_mut(), set as *mut _, ptr::null_mut(), &mut tv) }) } #[cfg(windows)] fn await(_fd: sock_t, set: &mut c::fd_set, timeout: u64) -> libc::c_int { let mut tv = ms_to_timeval(timeout); unsafe { c::select(1, ptr::null_mut(), set, ptr::null_mut(), &mut tv) } } } pub fn await(fds: &[sock_t], deadline: Option, status: SocketStatus) -> IoResult<()> { let mut set: c::fd_set = unsafe { mem::zeroed() }; let mut max = 0; for &fd in fds { c::fd_set(&mut set, fd); max = cmp::max(max, fd + 1); } if cfg!(windows) { max = fds.len() as sock_t; } let (read, write) = match status { Readable => (&mut set as *mut _, ptr::null_mut()), Writable => (ptr::null_mut(), &mut set as *mut _), }; let mut tv: libc::timeval = unsafe { mem::zeroed() }; match retry(|| { let now = timer::now(); let tvp = match deadline { None => ptr::null_mut(), Some(deadline) => { // If we're past the deadline, then pass a 0 timeout to // select() so we can poll the status let ms = if deadline < now {0} else {deadline - now}; tv = ms_to_timeval(ms); &mut tv as *mut _ } }; let r = unsafe { c::select(max as libc::c_int, read, write, ptr::null_mut(), tvp) }; r }) { -1 => Err(last_net_error()), 0 => Err(timeout("timed out")), _ => Ok(()), } } //////////////////////////////////////////////////////////////////////////////// // Basic socket representation //////////////////////////////////////////////////////////////////////////////// struct Inner { fd: sock_t, // Unused on Linux, where this lock is not necessary. #[allow(dead_code)] lock: Mutex<()>, } impl Inner { fn new(fd: sock_t) -> Inner { Inner { fd: fd, lock: Mutex::new(()) } } } impl Drop for Inner { fn drop(&mut self) { unsafe { close_sock(self.fd); } } } #[cfg(not(target_os = "linux"))] pub struct Guard<'a> { pub fd: sock_t, pub guard: MutexGuard<'a, ()>, } #[cfg(not(target_os = "linux"))] #[unsafe_destructor] impl<'a> Drop for Guard<'a> { fn drop(&mut self) { set_nonblocking(self.fd, false); } } //////////////////////////////////////////////////////////////////////////////// // TCP streams //////////////////////////////////////////////////////////////////////////////// pub struct TcpStream { inner: Arc, read_deadline: u64, write_deadline: u64, } impl TcpStream { pub fn connect(addr: SocketAddr, timeout: Option) -> IoResult { sys::init_net(); let fd = try!(socket(addr, libc::SOCK_STREAM)); let ret = TcpStream::new(fd); let mut storage = unsafe { mem::zeroed() }; let len = addr_to_sockaddr(addr, &mut storage); let addrp = &storage as *const _ as *const libc::sockaddr; match timeout { Some(timeout) => { try!(connect_timeout(fd, addrp, len, timeout)); Ok(ret) }, None => { match retry(|| unsafe { libc::connect(fd, addrp, len) }) { -1 => Err(last_error()), _ => Ok(ret), } } } } pub fn new(fd: sock_t) -> TcpStream { TcpStream { inner: Arc::new(Inner::new(fd)), read_deadline: 0, write_deadline: 0, } } pub fn fd(&self) -> sock_t { self.inner.fd } pub fn set_nodelay(&mut self, nodelay: bool) -> IoResult<()> { setsockopt(self.fd(), libc::IPPROTO_TCP, libc::TCP_NODELAY, nodelay as libc::c_int) } pub fn set_keepalive(&mut self, seconds: Option) -> IoResult<()> { let ret = setsockopt(self.fd(), libc::SOL_SOCKET, libc::SO_KEEPALIVE, seconds.is_some() as libc::c_int); match seconds { Some(n) => ret.and_then(|()| self.set_tcp_keepalive(n)), None => ret, } } #[cfg(any(target_os = "macos", target_os = "ios"))] fn set_tcp_keepalive(&mut self, seconds: uint) -> IoResult<()> { setsockopt(self.fd(), libc::IPPROTO_TCP, libc::TCP_KEEPALIVE, seconds as libc::c_int) } #[cfg(any(target_os = "freebsd", target_os = "dragonfly"))] fn set_tcp_keepalive(&mut self, seconds: uint) -> IoResult<()> { setsockopt(self.fd(), libc::IPPROTO_TCP, libc::TCP_KEEPIDLE, seconds as libc::c_int) } #[cfg(target_os = "openbsd")] fn set_tcp_keepalive(&mut self, seconds: uint) -> IoResult<()> { setsockopt(self.fd(), libc::IPPROTO_TCP, libc::SO_KEEPALIVE, seconds as libc::c_int) } #[cfg(not(any(target_os = "macos", target_os = "ios", target_os = "freebsd", target_os = "dragonfly", target_os = "openbsd")))] fn set_tcp_keepalive(&mut self, _seconds: uint) -> IoResult<()> { Ok(()) } #[cfg(target_os = "linux")] fn lock_nonblocking(&self) {} #[cfg(not(target_os = "linux"))] fn lock_nonblocking<'a>(&'a self) -> Guard<'a> { let ret = Guard { fd: self.fd(), guard: self.inner.lock.lock().unwrap(), }; set_nonblocking(self.fd(), true); ret } pub fn read(&mut self, buf: &mut [u8]) -> IoResult { let fd = self.fd(); let dolock = || self.lock_nonblocking(); let doread = |nb| unsafe { let flags = if nb {c::MSG_DONTWAIT} else {0}; libc::recv(fd, buf.as_mut_ptr() as *mut libc::c_void, buf.len() as wrlen, flags) as libc::c_int }; read(fd, self.read_deadline, dolock, doread) } pub fn write(&mut self, buf: &[u8]) -> IoResult<()> { let fd = self.fd(); let dolock = || self.lock_nonblocking(); let dowrite = |nb: bool, buf: *const u8, len: uint| unsafe { let flags = if nb {c::MSG_DONTWAIT} else {0}; libc::send(fd, buf as *const _, len as wrlen, flags) as i64 }; write(fd, self.write_deadline, buf, true, dolock, dowrite).map(|_| ()) } pub fn peer_name(&mut self) -> IoResult { sockname(self.fd(), libc::getpeername) } pub fn close_write(&mut self) -> IoResult<()> { super::mkerr_libc(unsafe { libc::shutdown(self.fd(), libc::SHUT_WR) }) } pub fn close_read(&mut self) -> IoResult<()> { super::mkerr_libc(unsafe { libc::shutdown(self.fd(), libc::SHUT_RD) }) } pub fn set_timeout(&mut self, timeout: Option) { let deadline = timeout.map(|a| timer::now() + a).unwrap_or(0); self.read_deadline = deadline; self.write_deadline = deadline; } pub fn set_read_timeout(&mut self, timeout: Option) { self.read_deadline = timeout.map(|a| timer::now() + a).unwrap_or(0); } pub fn set_write_timeout(&mut self, timeout: Option) { self.write_deadline = timeout.map(|a| timer::now() + a).unwrap_or(0); } pub fn socket_name(&mut self) -> IoResult { sockname(self.fd(), libc::getsockname) } } impl Clone for TcpStream { fn clone(&self) -> TcpStream { TcpStream { inner: self.inner.clone(), read_deadline: 0, write_deadline: 0, } } } //////////////////////////////////////////////////////////////////////////////// // UDP //////////////////////////////////////////////////////////////////////////////// pub struct UdpSocket { inner: Arc, read_deadline: u64, write_deadline: u64, } impl UdpSocket { pub fn bind(addr: SocketAddr) -> IoResult { sys::init_net(); let fd = try!(socket(addr, libc::SOCK_DGRAM)); let ret = UdpSocket { inner: Arc::new(Inner::new(fd)), read_deadline: 0, write_deadline: 0, }; let mut storage = unsafe { mem::zeroed() }; let len = addr_to_sockaddr(addr, &mut storage); let addrp = &storage as *const _ as *const libc::sockaddr; match unsafe { libc::bind(fd, addrp, len) } { -1 => Err(last_error()), _ => Ok(ret), } } pub fn fd(&self) -> sock_t { self.inner.fd } pub fn set_broadcast(&mut self, on: bool) -> IoResult<()> { setsockopt(self.fd(), libc::SOL_SOCKET, libc::SO_BROADCAST, on as libc::c_int) } pub fn set_multicast_loop(&mut self, on: bool) -> IoResult<()> { setsockopt(self.fd(), libc::IPPROTO_IP, libc::IP_MULTICAST_LOOP, on as libc::c_int) } pub fn set_membership(&mut self, addr: IpAddr, opt: libc::c_int) -> IoResult<()> { match ip_to_inaddr(addr) { In4Addr(addr) => { let mreq = libc::ip_mreq { imr_multiaddr: addr, // interface == INADDR_ANY imr_interface: libc::in_addr { s_addr: 0x0 }, }; setsockopt(self.fd(), libc::IPPROTO_IP, opt, mreq) } In6Addr(addr) => { let mreq = libc::ip6_mreq { ipv6mr_multiaddr: addr, ipv6mr_interface: 0, }; setsockopt(self.fd(), libc::IPPROTO_IPV6, opt, mreq) } } } #[cfg(target_os = "linux")] fn lock_nonblocking(&self) {} #[cfg(not(target_os = "linux"))] fn lock_nonblocking<'a>(&'a self) -> Guard<'a> { let ret = Guard { fd: self.fd(), guard: self.inner.lock.lock().unwrap(), }; set_nonblocking(self.fd(), true); ret } pub fn socket_name(&mut self) -> IoResult { sockname(self.fd(), libc::getsockname) } pub fn recv_from(&mut self, buf: &mut [u8]) -> IoResult<(uint, SocketAddr)> { let fd = self.fd(); let mut storage: libc::sockaddr_storage = unsafe { mem::zeroed() }; let storagep = &mut storage as *mut _ as *mut libc::sockaddr; let mut addrlen: libc::socklen_t = mem::size_of::() as libc::socklen_t; let dolock = || self.lock_nonblocking(); let n = try!(read(fd, self.read_deadline, dolock, |nb| unsafe { let flags = if nb {c::MSG_DONTWAIT} else {0}; libc::recvfrom(fd, buf.as_mut_ptr() as *mut libc::c_void, buf.len() as msglen_t, flags, storagep, &mut addrlen) as libc::c_int })); Ok((n as uint, sockaddr_to_addr(&storage, addrlen as uint).unwrap())) } pub fn send_to(&mut self, buf: &[u8], dst: SocketAddr) -> IoResult<()> { let mut storage = unsafe { mem::zeroed() }; let dstlen = addr_to_sockaddr(dst, &mut storage); let dstp = &storage as *const _ as *const libc::sockaddr; let fd = self.fd(); let dolock = || self.lock_nonblocking(); let dowrite = |nb, buf: *const u8, len: uint| unsafe { let flags = if nb {c::MSG_DONTWAIT} else {0}; libc::sendto(fd, buf as *const libc::c_void, len as msglen_t, flags, dstp, dstlen) as i64 }; let n = try!(write(fd, self.write_deadline, buf, false, dolock, dowrite)); assert!(n == buf.len(), "UDP packet not completely written."); Ok(()) } pub fn join_multicast(&mut self, multi: IpAddr) -> IoResult<()> { match multi { Ipv4Addr(..) => { self.set_membership(multi, libc::IP_ADD_MEMBERSHIP) } Ipv6Addr(..) => { self.set_membership(multi, libc::IPV6_ADD_MEMBERSHIP) } } } pub fn leave_multicast(&mut self, multi: IpAddr) -> IoResult<()> { match multi { Ipv4Addr(..) => { self.set_membership(multi, libc::IP_DROP_MEMBERSHIP) } Ipv6Addr(..) => { self.set_membership(multi, libc::IPV6_DROP_MEMBERSHIP) } } } pub fn multicast_time_to_live(&mut self, ttl: int) -> IoResult<()> { setsockopt(self.fd(), libc::IPPROTO_IP, libc::IP_MULTICAST_TTL, ttl as libc::c_int) } pub fn time_to_live(&mut self, ttl: int) -> IoResult<()> { setsockopt(self.fd(), libc::IPPROTO_IP, libc::IP_TTL, ttl as libc::c_int) } pub fn set_timeout(&mut self, timeout: Option) { let deadline = timeout.map(|a| timer::now() + a).unwrap_or(0); self.read_deadline = deadline; self.write_deadline = deadline; } pub fn set_read_timeout(&mut self, timeout: Option) { self.read_deadline = timeout.map(|a| timer::now() + a).unwrap_or(0); } pub fn set_write_timeout(&mut self, timeout: Option) { self.write_deadline = timeout.map(|a| timer::now() + a).unwrap_or(0); } } impl Clone for UdpSocket { fn clone(&self) -> UdpSocket { UdpSocket { inner: self.inner.clone(), read_deadline: 0, write_deadline: 0, } } }