//! Lints concerned with the grouping of digits with underscores in integral or //! floating-point literal expressions. use clippy_utils::diagnostics::span_lint_and_sugg; use clippy_utils::numeric_literal::{NumericLiteral, Radix}; use clippy_utils::source::snippet_opt; use rustc_ast::ast::{Expr, ExprKind, LitKind}; use rustc_ast::token; use rustc_errors::Applicability; use rustc_lint::{EarlyContext, EarlyLintPass, LintContext}; use rustc_middle::lint::in_external_macro; use rustc_session::impl_lint_pass; use rustc_span::Span; use std::iter; declare_clippy_lint! { /// ### What it does /// Warns if a long integral or floating-point constant does /// not contain underscores. /// /// ### Why is this bad? /// Reading long numbers is difficult without separators. /// /// ### Example /// ```no_run /// # let _: u64 = /// 61864918973511 /// # ; /// ``` /// /// Use instead: /// ```no_run /// # let _: u64 = /// 61_864_918_973_511 /// # ; /// ``` #[clippy::version = "pre 1.29.0"] pub UNREADABLE_LITERAL, pedantic, "long literal without underscores" } declare_clippy_lint! { /// ### What it does /// Warns for mistyped suffix in literals /// /// ### Why is this bad? /// This is most probably a typo /// /// ### Known problems /// - Does not match on integers too large to fit in the corresponding unsigned type /// - Does not match on `_127` since that is a valid grouping for decimal and octal numbers /// /// ### Example /// ```ignore /// `2_32` => `2_i32` /// `250_8 => `250_u8` /// ``` #[clippy::version = "1.30.0"] pub MISTYPED_LITERAL_SUFFIXES, correctness, "mistyped literal suffix" } declare_clippy_lint! { /// ### What it does /// Warns if an integral or floating-point constant is /// grouped inconsistently with underscores. /// /// ### Why is this bad? /// Readers may incorrectly interpret inconsistently /// grouped digits. /// /// ### Example /// ```no_run /// # let _: u64 = /// 618_64_9189_73_511 /// # ; /// ``` /// /// Use instead: /// ```no_run /// # let _: u64 = /// 61_864_918_973_511 /// # ; /// ``` #[clippy::version = "pre 1.29.0"] pub INCONSISTENT_DIGIT_GROUPING, style, "integer literals with digits grouped inconsistently" } declare_clippy_lint! { /// ### What it does /// Warns if hexadecimal or binary literals are not grouped /// by nibble or byte. /// /// ### Why is this bad? /// Negatively impacts readability. /// /// ### Example /// ```no_run /// let x: u32 = 0xFFF_FFF; /// let y: u8 = 0b01_011_101; /// ``` #[clippy::version = "1.49.0"] pub UNUSUAL_BYTE_GROUPINGS, style, "binary or hex literals that aren't grouped by four" } declare_clippy_lint! { /// ### What it does /// Warns if the digits of an integral or floating-point /// constant are grouped into groups that /// are too large. /// /// ### Why is this bad? /// Negatively impacts readability. /// /// ### Example /// ```no_run /// let x: u64 = 6186491_8973511; /// ``` #[clippy::version = "pre 1.29.0"] pub LARGE_DIGIT_GROUPS, pedantic, "grouping digits into groups that are too large" } declare_clippy_lint! { /// ### What it does /// Warns if there is a better representation for a numeric literal. /// /// ### Why is this bad? /// Especially for big powers of 2 a hexadecimal representation is more /// readable than a decimal representation. /// /// ### Example /// ```text /// `255` => `0xFF` /// `65_535` => `0xFFFF` /// `4_042_322_160` => `0xF0F0_F0F0` /// ``` #[clippy::version = "pre 1.29.0"] pub DECIMAL_LITERAL_REPRESENTATION, restriction, "using decimal representation when hexadecimal would be better" } enum WarningType { UnreadableLiteral, InconsistentDigitGrouping, LargeDigitGroups, DecimalRepresentation, MistypedLiteralSuffix, UnusualByteGroupings, } impl WarningType { fn display(&self, suggested_format: String, cx: &EarlyContext<'_>, span: Span) { match self { Self::MistypedLiteralSuffix => span_lint_and_sugg( cx, MISTYPED_LITERAL_SUFFIXES, span, "mistyped literal suffix", "did you mean to write", suggested_format, Applicability::MaybeIncorrect, ), Self::UnreadableLiteral => span_lint_and_sugg( cx, UNREADABLE_LITERAL, span, "long literal lacking separators", "consider", suggested_format, Applicability::MachineApplicable, ), Self::LargeDigitGroups => span_lint_and_sugg( cx, LARGE_DIGIT_GROUPS, span, "digit groups should be smaller", "consider", suggested_format, Applicability::MachineApplicable, ), Self::InconsistentDigitGrouping => span_lint_and_sugg( cx, INCONSISTENT_DIGIT_GROUPING, span, "digits grouped inconsistently by underscores", "consider", suggested_format, Applicability::MachineApplicable, ), Self::DecimalRepresentation => span_lint_and_sugg( cx, DECIMAL_LITERAL_REPRESENTATION, span, "integer literal has a better hexadecimal representation", "consider", suggested_format, Applicability::MachineApplicable, ), Self::UnusualByteGroupings => span_lint_and_sugg( cx, UNUSUAL_BYTE_GROUPINGS, span, "digits of hex, binary or octal literal not in groups of equal size", "consider", suggested_format, Applicability::MachineApplicable, ), }; } } #[derive(Copy, Clone)] pub struct LiteralDigitGrouping { lint_fraction_readability: bool, } impl_lint_pass!(LiteralDigitGrouping => [ UNREADABLE_LITERAL, INCONSISTENT_DIGIT_GROUPING, LARGE_DIGIT_GROUPS, MISTYPED_LITERAL_SUFFIXES, UNUSUAL_BYTE_GROUPINGS, ]); impl EarlyLintPass for LiteralDigitGrouping { fn check_expr(&mut self, cx: &EarlyContext<'_>, expr: &Expr) { if in_external_macro(cx.sess(), expr.span) { return; } if let ExprKind::Lit(lit) = expr.kind { self.check_lit(cx, lit, expr.span); } } } // Length of each UUID hyphenated group in hex digits. const UUID_GROUP_LENS: [usize; 5] = [8, 4, 4, 4, 12]; impl LiteralDigitGrouping { pub fn new(lint_fraction_readability: bool) -> Self { Self { lint_fraction_readability, } } fn check_lit(self, cx: &EarlyContext<'_>, lit: token::Lit, span: Span) { if let Some(src) = snippet_opt(cx, span) && let Ok(lit_kind) = LitKind::from_token_lit(lit) && let Some(mut num_lit) = NumericLiteral::from_lit_kind(&src, &lit_kind) { if !Self::check_for_mistyped_suffix(cx, span, &mut num_lit) { return; } if Self::is_literal_uuid_formatted(&num_lit) { return; } let result = (|| { let integral_group_size = Self::get_group_size(num_lit.integer.split('_'), num_lit.radix, true)?; if let Some(fraction) = num_lit.fraction { let fractional_group_size = Self::get_group_size(fraction.rsplit('_'), num_lit.radix, self.lint_fraction_readability)?; let consistent = Self::parts_consistent( integral_group_size, fractional_group_size, num_lit.integer.len(), fraction.len(), ); if !consistent { return Err(WarningType::InconsistentDigitGrouping); }; } Ok(()) })(); if let Err(warning_type) = result { let should_warn = match warning_type { WarningType::UnreadableLiteral | WarningType::InconsistentDigitGrouping | WarningType::UnusualByteGroupings | WarningType::LargeDigitGroups => !span.from_expansion(), WarningType::DecimalRepresentation | WarningType::MistypedLiteralSuffix => true, }; if should_warn { warning_type.display(num_lit.format(), cx, span); } } } } // Returns `false` if the check fails fn check_for_mistyped_suffix(cx: &EarlyContext<'_>, span: Span, num_lit: &mut NumericLiteral<'_>) -> bool { if num_lit.suffix.is_some() { return true; } let (part, mistyped_suffixes, is_float) = if let Some((_, exponent)) = &mut num_lit.exponent { (exponent, &["32", "64"][..], true) } else if num_lit.fraction.is_some() { return true; } else { (&mut num_lit.integer, &["8", "16", "32", "64"][..], false) }; let mut split = part.rsplit('_'); let last_group = split.next().expect("At least one group"); if split.next().is_some() && mistyped_suffixes.contains(&last_group) { let main_part = &part[..part.len() - last_group.len()]; let missing_char; if is_float { missing_char = 'f'; } else { let radix = match num_lit.radix { Radix::Binary => 2, Radix::Octal => 8, Radix::Decimal => 10, Radix::Hexadecimal => 16, }; if let Ok(int) = u64::from_str_radix(&main_part.replace('_', ""), radix) { missing_char = match (last_group, int) { ("8", i) if i8::try_from(i).is_ok() => 'i', ("16", i) if i16::try_from(i).is_ok() => 'i', ("32", i) if i32::try_from(i).is_ok() => 'i', ("64", i) if i64::try_from(i).is_ok() => 'i', ("8", u) if u8::try_from(u).is_ok() => 'u', ("16", u) if u16::try_from(u).is_ok() => 'u', ("32", u) if u32::try_from(u).is_ok() => 'u', ("64", _) => 'u', _ => { return true; }, } } else { return true; } } *part = main_part; let mut sugg = num_lit.format(); sugg.push('_'); sugg.push(missing_char); sugg.push_str(last_group); WarningType::MistypedLiteralSuffix.display(sugg, cx, span); false } else { true } } /// Checks whether the numeric literal matches the formatting of a UUID. /// /// Returns `true` if the radix is hexadecimal, and the groups match the /// UUID format of 8-4-4-4-12. fn is_literal_uuid_formatted(num_lit: &NumericLiteral<'_>) -> bool { if num_lit.radix != Radix::Hexadecimal { return false; } // UUIDs should not have a fraction if num_lit.fraction.is_some() { return false; } let group_sizes: Vec = num_lit.integer.split('_').map(str::len).collect(); if UUID_GROUP_LENS.len() == group_sizes.len() { iter::zip(&UUID_GROUP_LENS, &group_sizes).all(|(&a, &b)| a == b) } else { false } } /// Given the sizes of the digit groups of both integral and fractional /// parts, and the length /// of both parts, determine if the digits have been grouped consistently. #[must_use] fn parts_consistent( int_group_size: Option, frac_group_size: Option, int_size: usize, frac_size: usize, ) -> bool { match (int_group_size, frac_group_size) { // No groups on either side of decimal point - trivially consistent. (None, None) => true, // Integral part has grouped digits, fractional part does not. (Some(int_group_size), None) => frac_size <= int_group_size, // Fractional part has grouped digits, integral part does not. (None, Some(frac_group_size)) => int_size <= frac_group_size, // Both parts have grouped digits. Groups should be the same size. (Some(int_group_size), Some(frac_group_size)) => int_group_size == frac_group_size, } } /// Returns the size of the digit groups (or None if ungrouped) if successful, /// otherwise returns a `WarningType` for linting. fn get_group_size<'a>( groups: impl Iterator, radix: Radix, lint_unreadable: bool, ) -> Result, WarningType> { let mut groups = groups.map(str::len); let first = groups.next().expect("At least one group"); if radix == Radix::Binary || radix == Radix::Octal || radix == Radix::Hexadecimal { if let Some(second_size) = groups.next() { if !groups.all(|i| i == second_size) || first > second_size { return Err(WarningType::UnusualByteGroupings); } } } if let Some(second) = groups.next() { if !groups.all(|x| x == second) || first > second { Err(WarningType::InconsistentDigitGrouping) } else if second > 4 { Err(WarningType::LargeDigitGroups) } else { Ok(Some(second)) } } else if first > 5 && lint_unreadable { Err(WarningType::UnreadableLiteral) } else { Ok(None) } } } #[expect(clippy::module_name_repetitions)] #[derive(Copy, Clone)] pub struct DecimalLiteralRepresentation { threshold: u64, } impl_lint_pass!(DecimalLiteralRepresentation => [DECIMAL_LITERAL_REPRESENTATION]); impl EarlyLintPass for DecimalLiteralRepresentation { fn check_expr(&mut self, cx: &EarlyContext<'_>, expr: &Expr) { if in_external_macro(cx.sess(), expr.span) { return; } if let ExprKind::Lit(lit) = expr.kind { self.check_lit(cx, lit, expr.span); } } } impl DecimalLiteralRepresentation { #[must_use] pub fn new(threshold: u64) -> Self { Self { threshold } } fn check_lit(self, cx: &EarlyContext<'_>, lit: token::Lit, span: Span) { // Lint integral literals. if let Ok(lit_kind) = LitKind::from_token_lit(lit) && let LitKind::Int(val, _) = lit_kind && let Some(src) = snippet_opt(cx, span) && let Some(num_lit) = NumericLiteral::from_lit_kind(&src, &lit_kind) && num_lit.radix == Radix::Decimal && val >= u128::from(self.threshold) { let hex = format!("{val:#X}"); let num_lit = NumericLiteral::new(&hex, num_lit.suffix, false); let _: Result<(), ()> = Self::do_lint(num_lit.integer).map_err(|warning_type| { warning_type.display(num_lit.format(), cx, span); }); } } fn do_lint(digits: &str) -> Result<(), WarningType> { if digits.len() == 1 { // Lint for 1 digit literals, if someone really sets the threshold that low if digits == "1" || digits == "2" || digits == "4" || digits == "8" || digits == "3" || digits == "7" || digits == "F" { return Err(WarningType::DecimalRepresentation); } } else if digits.len() < 4 { // Lint for Literals with a hex-representation of 2 or 3 digits let f = &digits[0..1]; // first digit let s = &digits[1..]; // suffix // Powers of 2 if ((f.eq("1") || f.eq("2") || f.eq("4") || f.eq("8")) && s.chars().all(|c| c == '0')) // Powers of 2 minus 1 || ((f.eq("1") || f.eq("3") || f.eq("7") || f.eq("F")) && s.chars().all(|c| c == 'F')) { return Err(WarningType::DecimalRepresentation); } } else { // Lint for Literals with a hex-representation of 4 digits or more let f = &digits[0..1]; // first digit let m = &digits[1..digits.len() - 1]; // middle digits, except last let s = &digits[1..]; // suffix // Powers of 2 with a margin of +15/-16 if ((f.eq("1") || f.eq("2") || f.eq("4") || f.eq("8")) && m.chars().all(|c| c == '0')) || ((f.eq("1") || f.eq("3") || f.eq("7") || f.eq("F")) && m.chars().all(|c| c == 'F')) // Lint for representations with only 0s and Fs, while allowing 7 as the first // digit || ((f.eq("7") || f.eq("F")) && s.chars().all(|c| c == '0' || c == 'F')) { return Err(WarningType::DecimalRepresentation); } } Ok(()) } }