// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Vectors #[warn(non_camel_case_types)]; use container::{Container, Mutable}; use cast; use cmp::{Eq, Equiv, Ord, TotalOrd, Ordering, Less, Equal, Greater}; use iter::BaseIter; use iter; use kinds::Copy; use libc; use libc::size_t; use option::{None, Option, Some}; use unstable::intrinsics; use ptr; use ptr::addr_of; use sys; use uint; use vec; #[abi = "cdecl"] pub extern mod rustrt { // These names are terrible. reserve_shared applies // to ~[] and reserve_shared_actual applies to @[]. unsafe fn vec_reserve_shared(++t: *sys::TypeDesc, ++v: **raw::VecRepr, ++n: libc::size_t); unsafe fn vec_reserve_shared_actual(++t: *sys::TypeDesc, ++v: **raw::VecRepr, ++n: libc::size_t); } /// Returns true if a vector contains no elements pub pure fn is_empty<T>(v: &[const T]) -> bool { as_const_buf(v, |_p, len| len == 0u) } /// Returns true if two vectors have the same length pub pure fn same_length<T, U>(xs: &[const T], ys: &[const U]) -> bool { len(xs) == len(ys) } /** * Reserves capacity for exactly `n` elements in the given vector. * * If the capacity for `v` is already equal to or greater than the requested * capacity, then no action is taken. * * # Arguments * * * v - A vector * * n - The number of elements to reserve space for */ pub fn reserve<T>(v: &mut ~[T], n: uint) { // Only make the (slow) call into the runtime if we have to use managed; if capacity(v) < n { unsafe { let ptr: **raw::VecRepr = cast::transmute(v); let td = sys::get_type_desc::<T>(); if ((**ptr).box_header.ref_count == managed::raw::RC_MANAGED_UNIQUE) { rustrt::vec_reserve_shared_actual(td, ptr, n as size_t); } else { rustrt::vec_reserve_shared(td, ptr, n as size_t); } } } } /** * Reserves capacity for at least `n` elements in the given vector. * * This function will over-allocate in order to amortize the allocation costs * in scenarios where the caller may need to repeatedly reserve additional * space. * * If the capacity for `v` is already equal to or greater than the requested * capacity, then no action is taken. * * # Arguments * * * v - A vector * * n - The number of elements to reserve space for */ pub fn reserve_at_least<T>(v: &mut ~[T], n: uint) { reserve(v, uint::next_power_of_two(n)); } /// Returns the number of elements the vector can hold without reallocating #[inline(always)] pub pure fn capacity<T>(v: &const ~[T]) -> uint { unsafe { let repr: **raw::VecRepr = ::cast::transmute(v); (**repr).unboxed.alloc / sys::nonzero_size_of::<T>() } } /// Returns the length of a vector #[inline(always)] pub pure fn len<T>(v: &[const T]) -> uint { as_const_buf(v, |_p, len| len) } /** * Creates and initializes an immutable vector. * * Creates an immutable vector of size `n_elts` and initializes the elements * to the value returned by the function `op`. */ pub pure fn from_fn<T>(n_elts: uint, op: iter::InitOp<T>) -> ~[T] { unsafe { let mut v = with_capacity(n_elts); do as_mut_buf(v) |p, _len| { let mut i: uint = 0u; while i < n_elts { intrinsics::move_val_init(&mut(*ptr::mut_offset(p, i)), op(i)); i += 1u; } } raw::set_len(&mut v, n_elts); return v; } } /** * Creates and initializes an immutable vector. * * Creates an immutable vector of size `n_elts` and initializes the elements * to the value `t`. */ pub pure fn from_elem<T:Copy>(n_elts: uint, t: T) -> ~[T] { from_fn(n_elts, |_i| copy t) } /// Creates a new unique vector with the same contents as the slice pub pure fn from_slice<T:Copy>(t: &[T]) -> ~[T] { from_fn(t.len(), |i| t[i]) } pub pure fn with_capacity<T>(capacity: uint) -> ~[T] { let mut vec = ~[]; unsafe { reserve(&mut vec, capacity); } return vec; } /** * Builds a vector by calling a provided function with an argument * function that pushes an element to the back of a vector. * This version takes an initial size for the vector. * * # Arguments * * * size - An initial size of the vector to reserve * * builder - A function that will construct the vector. It recieves * as an argument a function that will push an element * onto the vector being constructed. */ #[inline(always)] pub pure fn build_sized<A>(size: uint, builder: fn(push: pure fn(v: A))) -> ~[A] { let mut vec = with_capacity(size); builder(|x| unsafe { vec.push(x) }); vec } /** * Builds a vector by calling a provided function with an argument * function that pushes an element to the back of a vector. * * # Arguments * * * builder - A function that will construct the vector. It recieves * as an argument a function that will push an element * onto the vector being constructed. */ #[inline(always)] pub pure fn build<A>(builder: fn(push: pure fn(v: A))) -> ~[A] { build_sized(4, builder) } /** * Builds a vector by calling a provided function with an argument * function that pushes an element to the back of a vector. * This version takes an initial size for the vector. * * # Arguments * * * size - An option, maybe containing initial size of the vector to reserve * * builder - A function that will construct the vector. It recieves * as an argument a function that will push an element * onto the vector being constructed. */ #[inline(always)] pub pure fn build_sized_opt<A>(size: Option<uint>, builder: fn(push: pure fn(v: A))) -> ~[A] { build_sized(size.get_or_default(4), builder) } // Accessors /// Returns the first element of a vector pub pure fn head<T>(v: &r/[T]) -> &r/T { if v.len() == 0 { fail!(~"last_unsafe: empty vector") } &v[0] } /// Returns `Some(x)` where `x` is the first element of the slice `v`, /// or `None` if the vector is empty. pub pure fn head_opt<T>(v: &r/[T]) -> Option<&r/T> { if v.len() == 0 { None } else { Some(&v[0]) } } /// Returns a vector containing all but the first element of a slice pub pure fn tail<T>(v: &r/[T]) -> &r/[T] { slice(v, 1, v.len()) } /// Returns a vector containing all but the first `n` elements of a slice pub pure fn tailn<T>(v: &r/[T], n: uint) -> &r/[T] { slice(v, n, v.len()) } /// Returns a vector containing all but the last element of a slice pub pure fn init<T>(v: &r/[T]) -> &r/[T] { slice(v, 0, v.len() - 1) } /// Returns a vector containing all but the last `n' elements of a slice pub pure fn initn<T>(v: &r/[T], n: uint) -> &r/[T] { slice(v, 0, v.len() - n) } /// Returns the last element of the slice `v`, failing if the slice is empty. pub pure fn last<T:Copy>(v: &[const T]) -> T { if len(v) == 0u { fail!(~"last_unsafe: empty vector") } v[len(v) - 1u] } /** * Returns `Some(x)` where `x` is the last element of the slice `v`, * or `none` if the vector is empty. */ pub pure fn last_opt<T:Copy>(v: &[const T]) -> Option<T> { if len(v) == 0u { return None; } Some(v[len(v) - 1u]) } /// Return a slice that points into another slice. #[inline(always)] pub pure fn slice<T>(v: &r/[T], start: uint, end: uint) -> &r/[T] { assert (start <= end); assert (end <= len(v)); do as_imm_buf(v) |p, _len| { unsafe { ::cast::reinterpret_cast( &(ptr::offset(p, start), (end - start) * sys::nonzero_size_of::<T>())) } } } /// Return a slice that points into another slice. #[inline(always)] pub pure fn mut_slice<T>(v: &r/mut [T], start: uint, end: uint) -> &r/mut [T] { assert (start <= end); assert (end <= len(v)); do as_mut_buf(v) |p, _len| { unsafe { ::cast::reinterpret_cast( &(ptr::mut_offset(p, start), (end - start) * sys::nonzero_size_of::<T>())) } } } /// Return a slice that points into another slice. #[inline(always)] pub pure fn const_slice<T>(v: &r/[const T], start: uint, end: uint) -> &r/[const T] { assert (start <= end); assert (end <= len(v)); do as_const_buf(v) |p, _len| { unsafe { ::cast::reinterpret_cast( &(ptr::const_offset(p, start), (end - start) * sys::nonzero_size_of::<T>())) } } } /// Copies /// Split the vector `v` by applying each element against the predicate `f`. pub fn split<T:Copy>(v: &[T], f: fn(t: &T) -> bool) -> ~[~[T]] { let ln = len(v); if (ln == 0u) { return ~[] } let mut start = 0u; let mut result = ~[]; while start < ln { match position_between(v, start, ln, f) { None => break, Some(i) => { result.push(slice(v, start, i).to_vec()); start = i + 1u; } } } result.push(slice(v, start, ln).to_vec()); result } /** * Split the vector `v` by applying each element against the predicate `f` up * to `n` times. */ pub fn splitn<T:Copy>(v: &[T], n: uint, f: fn(t: &T) -> bool) -> ~[~[T]] { let ln = len(v); if (ln == 0u) { return ~[] } let mut start = 0u; let mut count = n; let mut result = ~[]; while start < ln && count > 0u { match position_between(v, start, ln, f) { None => break, Some(i) => { result.push(slice(v, start, i).to_vec()); // Make sure to skip the separator. start = i + 1u; count -= 1u; } } } result.push(slice(v, start, ln).to_vec()); result } /** * Reverse split the vector `v` by applying each element against the predicate * `f`. */ pub fn rsplit<T:Copy>(v: &[T], f: fn(t: &T) -> bool) -> ~[~[T]] { let ln = len(v); if (ln == 0) { return ~[] } let mut end = ln; let mut result = ~[]; while end > 0 { match rposition_between(v, 0, end, f) { None => break, Some(i) => { result.push(slice(v, i + 1, end).to_vec()); end = i; } } } result.push(slice(v, 0u, end).to_vec()); reverse(result); return result; } /** * Reverse split the vector `v` by applying each element against the predicate * `f` up to `n times. */ pub fn rsplitn<T:Copy>(v: &[T], n: uint, f: fn(t: &T) -> bool) -> ~[~[T]] { let ln = len(v); if (ln == 0u) { return ~[] } let mut end = ln; let mut count = n; let mut result = ~[]; while end > 0u && count > 0u { match rposition_between(v, 0u, end, f) { None => break, Some(i) => { result.push(slice(v, i + 1u, end).to_vec()); // Make sure to skip the separator. end = i; count -= 1u; } } } result.push(slice(v, 0u, end).to_vec()); reverse(result); result } /** * Partitions a vector into two new vectors: those that satisfies the * predicate, and those that do not. */ pub fn partition<T>(v: ~[T], f: fn(&T) -> bool) -> (~[T], ~[T]) { let mut lefts = ~[]; let mut rights = ~[]; // FIXME (#4355 maybe): using v.consume here crashes // do v.consume |_, elt| { do consume(v) |_, elt| { if f(&elt) { lefts.push(elt); } else { rights.push(elt); } } (lefts, rights) } /** * Partitions a vector into two new vectors: those that satisfies the * predicate, and those that do not. */ pub pure fn partitioned<T:Copy>(v: &[T], f: fn(&T) -> bool) -> (~[T], ~[T]) { let mut lefts = ~[]; let mut rights = ~[]; for each(v) |elt| { unsafe { if f(elt) { lefts.push(*elt); } else { rights.push(*elt); } } } (lefts, rights) } // Mutators /// Removes the first element from a vector and return it pub fn shift<T>(v: &mut ~[T]) -> T { unsafe { assert !v.is_empty(); if v.len() == 1 { return v.pop() } if v.len() == 2 { let last = v.pop(); let first = v.pop(); v.push(last); return first; } let ln = v.len(); let next_ln = v.len() - 1; // Save the last element. We're going to overwrite its position let mut work_elt = v.pop(); // We still should have room to work where what last element was assert capacity(v) >= ln; // Pretend like we have the original length so we can use // the vector copy_memory to overwrite the hole we just made raw::set_len(&mut *v, ln); // Memcopy the head element (the one we want) to the location we just // popped. For the moment it unsafely exists at both the head and last // positions { let first_slice = slice(*v, 0, 1); let last_slice = slice(*v, next_ln, ln); raw::copy_memory(::cast::transmute(last_slice), first_slice, 1); } // Memcopy everything to the left one element { let init_slice = slice(*v, 0, next_ln); let tail_slice = slice(*v, 1, ln); raw::copy_memory(::cast::transmute(init_slice), tail_slice, next_ln); } // Set the new length. Now the vector is back to normal raw::set_len(&mut *v, next_ln); // Swap out the element we want from the end let vp = raw::to_mut_ptr(*v); let vp = ptr::mut_offset(vp, next_ln - 1); *vp <-> work_elt; return work_elt; } } /// Prepend an element to the vector pub fn unshift<T>(v: &mut ~[T], x: T) { let mut vv = ~[x]; *v <-> vv; v.push_all_move(vv); } /// Insert an element at position i within v, shifting all /// elements after position i one position to the right. pub fn insert<T>(v: &mut ~[T], i: uint, x: T) { let len = v.len(); assert i <= len; v.push(x); let mut j = len; while j > i { v[j] <-> v[j - 1]; j -= 1; } } /// Remove and return the element at position i within v, shifting /// all elements after position i one position to the left. pub fn remove<T>(v: &mut ~[T], i: uint) -> T { let len = v.len(); assert i < len; let mut j = i; while j < len - 1 { v[j] <-> v[j + 1]; j += 1; } v.pop() } pub fn consume<T>(mut v: ~[T], f: fn(uint, v: T)) { unsafe { do as_mut_buf(v) |p, ln| { for uint::range(0, ln) |i| { // NB: This unsafe operation counts on init writing 0s to the // holes we create in the vector. That ensures that, if the // iterator fails then we won't try to clean up the consumed // elements during unwinding let mut x = intrinsics::init(); let p = ptr::mut_offset(p, i); x <-> *p; f(i, x); } } raw::set_len(&mut v, 0); } } /// Remove the last element from a vector and return it pub fn pop<T>(v: &mut ~[T]) -> T { let ln = v.len(); if ln == 0 { fail!(~"sorry, cannot vec::pop an empty vector") } let valptr = ptr::to_mut_unsafe_ptr(&mut v[ln - 1u]); unsafe { // FIXME #4204: Should be uninit() - we don't need this zeroed let mut val = intrinsics::init(); val <-> *valptr; raw::set_len(v, ln - 1u); val } } /** * Remove an element from anywhere in the vector and return it, replacing it * with the last element. This does not preserve ordering, but is O(1). * * Fails if index >= length. */ pub fn swap_remove<T>(v: &mut ~[T], index: uint) -> T { let ln = v.len(); if index >= ln { fail!(fmt!("vec::swap_remove - index %u >= length %u", index, ln)); } if index < ln - 1 { v[index] <-> v[ln - 1]; } vec::pop(v) } /// Append an element to a vector #[inline(always)] pub fn push<T>(v: &mut ~[T], initval: T) { unsafe { let repr: **raw::VecRepr = ::cast::transmute(&mut *v); let fill = (**repr).unboxed.fill; if (**repr).unboxed.alloc > fill { push_fast(v, initval); } else { push_slow(v, initval); } } } // This doesn't bother to make sure we have space. #[inline(always)] // really pretty please unsafe fn push_fast<T>(v: &mut ~[T], initval: T) { let repr: **raw::VecRepr = ::cast::transmute(v); let fill = (**repr).unboxed.fill; (**repr).unboxed.fill += sys::nonzero_size_of::<T>(); let p = addr_of(&((**repr).unboxed.data)); let p = ptr::offset(p, fill) as *mut T; intrinsics::move_val_init(&mut(*p), initval); } #[inline(never)] fn push_slow<T>(v: &mut ~[T], initval: T) { let new_len = v.len() + 1; reserve_at_least(&mut *v, new_len); unsafe { push_fast(v, initval) } } #[inline(always)] pub fn push_all<T:Copy>(v: &mut ~[T], rhs: &[const T]) { let new_len = v.len() + rhs.len(); reserve(&mut *v, new_len); for uint::range(0u, rhs.len()) |i| { push(&mut *v, unsafe { raw::get(rhs, i) }) } } #[inline(always)] pub fn push_all_move<T>(v: &mut ~[T], mut rhs: ~[T]) { let new_len = v.len() + rhs.len(); reserve(&mut *v, new_len); unsafe { do as_mut_buf(rhs) |p, len| { for uint::range(0, len) |i| { // FIXME #4204 Should be uninit() - don't need to zero let mut x = intrinsics::init(); x <-> *ptr::mut_offset(p, i); push(&mut *v, x); } } raw::set_len(&mut rhs, 0); } } /// Shorten a vector, dropping excess elements. pub fn truncate<T>(v: &mut ~[T], newlen: uint) { do as_mut_buf(*v) |p, oldlen| { assert(newlen <= oldlen); unsafe { // This loop is optimized out for non-drop types. for uint::range(newlen, oldlen) |i| { // FIXME #4204 Should be uninit() - don't need to zero let mut dropped = intrinsics::init(); dropped <-> *ptr::mut_offset(p, i); } } } unsafe { raw::set_len(&mut *v, newlen); } } /** * Remove consecutive repeated elements from a vector; if the vector is * sorted, this removes all duplicates. */ pub fn dedup<T:Eq>(v: &mut ~[T]) { unsafe { if v.len() < 1 { return; } let mut last_written = 0, next_to_read = 1; do as_const_buf(*v) |p, ln| { // We have a mutable reference to v, so we can make arbitrary // changes. (cf. push and pop) let p = p as *mut T; // last_written < next_to_read <= ln while next_to_read < ln { // last_written < next_to_read < ln if *ptr::mut_offset(p, next_to_read) == *ptr::mut_offset(p, last_written) { // FIXME #4204 Should be uninit() - don't need to // zero let mut dropped = intrinsics::init(); dropped <-> *ptr::mut_offset(p, next_to_read); } else { last_written += 1; // last_written <= next_to_read < ln if next_to_read != last_written { *ptr::mut_offset(p, last_written) <-> *ptr::mut_offset(p, next_to_read); } } // last_written <= next_to_read < ln next_to_read += 1; // last_written < next_to_read <= ln } } // last_written < next_to_read == ln raw::set_len(v, last_written + 1); } } // Appending #[inline(always)] pub pure fn append<T:Copy>(lhs: ~[T], rhs: &[const T]) -> ~[T] { let mut v = lhs; unsafe { v.push_all(rhs); } v } #[inline(always)] pub pure fn append_one<T>(lhs: ~[T], x: T) -> ~[T] { let mut v = lhs; unsafe { v.push(x); } v } /** * Expands a vector in place, initializing the new elements to a given value * * # Arguments * * * v - The vector to grow * * n - The number of elements to add * * initval - The value for the new elements */ pub fn grow<T:Copy>(v: &mut ~[T], n: uint, initval: &T) { let new_len = v.len() + n; reserve_at_least(&mut *v, new_len); let mut i: uint = 0u; while i < n { v.push(*initval); i += 1u; } } /** * Expands a vector in place, initializing the new elements to the result of * a function * * Function `init_op` is called `n` times with the values [0..`n`) * * # Arguments * * * v - The vector to grow * * n - The number of elements to add * * init_op - A function to call to retreive each appended element's * value */ pub fn grow_fn<T>(v: &mut ~[T], n: uint, op: iter::InitOp<T>) { let new_len = v.len() + n; reserve_at_least(&mut *v, new_len); let mut i: uint = 0u; while i < n { v.push(op(i)); i += 1u; } } /** * Sets the value of a vector element at a given index, growing the vector as * needed * * Sets the element at position `index` to `val`. If `index` is past the end * of the vector, expands the vector by replicating `initval` to fill the * intervening space. */ pub fn grow_set<T:Copy>(v: &mut ~[T], index: uint, initval: &T, val: T) { let l = v.len(); if index >= l { grow(&mut *v, index - l + 1u, initval); } v[index] = val; } // Functional utilities /// Apply a function to each element of a vector and return the results pub pure fn map<T, U>(v: &[T], f: fn(t: &T) -> U) -> ~[U] { let mut result = with_capacity(len(v)); for each(v) |elem| { unsafe { result.push(f(elem)); } } result } pub fn map_consume<T, U>(v: ~[T], f: fn(v: T) -> U) -> ~[U] { let mut result = ~[]; do consume(v) |_i, x| { result.push(f(x)); } result } /// Apply a function to each element of a vector and return the results pub pure fn mapi<T, U>(v: &[T], f: fn(uint, t: &T) -> U) -> ~[U] { let mut i = 0; do map(v) |e| { i += 1; f(i - 1, e) } } /** * Apply a function to each element of a vector and return a concatenation * of each result vector */ pub pure fn flat_map<T, U>(v: &[T], f: fn(t: &T) -> ~[U]) -> ~[U] { let mut result = ~[]; for each(v) |elem| { unsafe{ result.push_all_move(f(elem)); } } result } /// Apply a function to each pair of elements and return the results pub pure fn map2<T:Copy,U:Copy,V>(v0: &[T], v1: &[U], f: fn(t: &T, v: &U) -> V) -> ~[V] { let v0_len = len(v0); if v0_len != len(v1) { fail!(); } let mut u: ~[V] = ~[]; let mut i = 0u; while i < v0_len { unsafe { u.push(f(&v0[i], &v1[i])) }; i += 1u; } u } pub fn filter_map<T, U>( v: ~[T], f: fn(t: T) -> Option<U>) -> ~[U] { /*! * * Apply a function to each element of a vector and return the results. * Consumes the input vector. If function `f` returns `None` then that * element is excluded from the resulting vector. */ let mut result = ~[]; do consume(v) |_, elem| { match f(elem) { None => {} Some(result_elem) => { result.push(result_elem); } } } result } pub pure fn filter_mapped<T, U: Copy>( v: &[T], f: fn(t: &T) -> Option<U>) -> ~[U] { /*! * * Like `filter_map()`, but operates on a borrowed slice * and does not consume the input. */ let mut result = ~[]; for each(v) |elem| { match f(elem) { None => {/* no-op */ } Some(result_elem) => unsafe { result.push(result_elem); } } } result } /** * Construct a new vector from the elements of a vector for which some * predicate holds. * * Apply function `f` to each element of `v` and return a vector containing * only those elements for which `f` returned true. */ pub fn filter<T>(v: ~[T], f: fn(t: &T) -> bool) -> ~[T] { let mut result = ~[]; // FIXME (#4355 maybe): using v.consume here crashes // do v.consume |_, elem| { do consume(v) |_, elem| { if f(&elem) { result.push(elem); } } result } /** * Construct a new vector from the elements of a vector for which some * predicate holds. * * Apply function `f` to each element of `v` and return a vector containing * only those elements for which `f` returned true. */ pub pure fn filtered<T:Copy>(v: &[T], f: fn(t: &T) -> bool) -> ~[T] { let mut result = ~[]; for each(v) |elem| { if f(elem) { unsafe { result.push(*elem); } } } result } /** * Like `filter()`, but in place. Preserves order of `v`. Linear time. */ pub fn retain<T>(v: &mut ~[T], f: pure fn(t: &T) -> bool) { let len = v.len(); let mut deleted: uint = 0; for uint::range(0, len) |i| { if !f(&v[i]) { deleted += 1; } else if deleted > 0 { v[i - deleted] <-> v[i]; } } if deleted > 0 { v.truncate(len - deleted); } } /** * Concatenate a vector of vectors. * * Flattens a vector of vectors of T into a single vector of T. */ pub pure fn concat<T:Copy>(v: &[~[T]]) -> ~[T] { let mut r = ~[]; for each(v) |inner| { unsafe { r.push_all(*inner); } } r } /// Concatenate a vector of vectors, placing a given separator between each pub pure fn connect<T:Copy>(v: &[~[T]], sep: &T) -> ~[T] { let mut r: ~[T] = ~[]; let mut first = true; for each(v) |inner| { if first { first = false; } else { unsafe { r.push(*sep); } } unsafe { r.push_all(*inner) }; } r } /** * Reduces a vector from left to right. * * # Arguments * * `z` - initial accumulator value * * `v` - vector to iterate over * * `p` - a closure to operate on vector elements * * # Examples * * Sum all values in the vector [1, 2, 3]: * * ~~~ * vec::foldl(0, [1, 2, 3], |a, b| a + *b); * ~~~ * */ pub pure fn foldl<T, U>(z: T, v: &[U], p: fn(t: T, u: &U) -> T) -> T { let mut accum = z; let mut i = 0; let l = v.len(); while i < l { // Use a while loop so that liveness analysis can handle moving // the accumulator. accum = p(accum, &v[i]); i += 1; } return accum; } /** * Reduces a vector from right to left. Note that the argument order is * reversed compared to `foldl` to reflect the order they are provided to * the closure. * * # Arguments * * `v` - vector to iterate over * * `z` - initial accumulator value * * `p` - a closure to do operate on vector elements * * # Examples * * Sum all values in the vector [1, 2, 3]: * * ~~~ * vec::foldr([1, 2, 3], 0, |a, b| a + *b); * ~~~ * */ pub pure fn foldr<T, U: Copy>(v: &[T], z: U, p: fn(t: &T, u: U) -> U) -> U { let mut accum = z; for rev_each(v) |elt| { accum = p(elt, accum); } return accum; } /** * Return true if a predicate matches any elements * * If the vector contains no elements then false is returned. */ pub pure fn any<T>(v: &[T], f: fn(t: &T) -> bool) -> bool { for each(v) |elem| { if f(elem) { return true; } } return false; } /** * Return true if a predicate matches any elements in both vectors. * * If the vectors contains no elements then false is returned. */ pub pure fn any2<T, U>(v0: &[T], v1: &[U], f: fn(a: &T, b: &U) -> bool) -> bool { let v0_len = len(v0); let v1_len = len(v1); let mut i = 0u; while i < v0_len && i < v1_len { if f(&v0[i], &v1[i]) { return true; }; i += 1u; } return false; } /** * Return true if a predicate matches all elements * * If the vector contains no elements then true is returned. */ pub pure fn all<T>(v: &[T], f: fn(t: &T) -> bool) -> bool { for each(v) |elem| { if !f(elem) { return false; } } return true; } /** * Return true if a predicate matches all elements * * If the vector contains no elements then true is returned. */ pub pure fn alli<T>(v: &[T], f: fn(uint, t: &T) -> bool) -> bool { for eachi(v) |i, elem| { if !f(i, elem) { return false; } } return true; } /** * Return true if a predicate matches all elements in both vectors. * * If the vectors are not the same size then false is returned. */ pub pure fn all2<T, U>(v0: &[T], v1: &[U], f: fn(t: &T, u: &U) -> bool) -> bool { let v0_len = len(v0); if v0_len != len(v1) { return false; } let mut i = 0u; while i < v0_len { if !f(&v0[i], &v1[i]) { return false; }; i += 1u; } return true; } /// Return true if a vector contains an element with the given value pub pure fn contains<T:Eq>(v: &[T], x: &T) -> bool { for each(v) |elt| { if *x == *elt { return true; } } return false; } /// Returns the number of elements that are equal to a given value pub pure fn count<T:Eq>(v: &[T], x: &T) -> uint { let mut cnt = 0u; for each(v) |elt| { if *x == *elt { cnt += 1u; } } return cnt; } /** * Search for the first element that matches a given predicate * * Apply function `f` to each element of `v`, starting from the first. * When function `f` returns true then an option containing the element * is returned. If `f` matches no elements then none is returned. */ pub pure fn find<T:Copy>(v: &[T], f: fn(t: &T) -> bool) -> Option<T> { find_between(v, 0u, len(v), f) } /** * Search for the first element that matches a given predicate within a range * * Apply function `f` to each element of `v` within the range * [`start`, `end`). When function `f` returns true then an option containing * the element is returned. If `f` matches no elements then none is returned. */ pub pure fn find_between<T:Copy>(v: &[T], start: uint, end: uint, f: fn(t: &T) -> bool) -> Option<T> { position_between(v, start, end, f).map(|i| v[*i]) } /** * Search for the last element that matches a given predicate * * Apply function `f` to each element of `v` in reverse order. When function * `f` returns true then an option containing the element is returned. If `f` * matches no elements then none is returned. */ pub pure fn rfind<T:Copy>(v: &[T], f: fn(t: &T) -> bool) -> Option<T> { rfind_between(v, 0u, len(v), f) } /** * Search for the last element that matches a given predicate within a range * * Apply function `f` to each element of `v` in reverse order within the range * [`start`, `end`). When function `f` returns true then an option containing * the element is returned. If `f` matches no elements then none is return. */ pub pure fn rfind_between<T:Copy>(v: &[T], start: uint, end: uint, f: fn(t: &T) -> bool) -> Option<T> { rposition_between(v, start, end, f).map(|i| v[*i]) } /// Find the first index containing a matching value pub pure fn position_elem<T:Eq>(v: &[T], x: &T) -> Option<uint> { position(v, |y| *x == *y) } /** * Find the first index matching some predicate * * Apply function `f` to each element of `v`. When function `f` returns true * then an option containing the index is returned. If `f` matches no elements * then none is returned. */ pub pure fn position<T>(v: &[T], f: fn(t: &T) -> bool) -> Option<uint> { position_between(v, 0u, len(v), f) } /** * Find the first index matching some predicate within a range * * Apply function `f` to each element of `v` between the range * [`start`, `end`). When function `f` returns true then an option containing * the index is returned. If `f` matches no elements then none is returned. */ pub pure fn position_between<T>(v: &[T], start: uint, end: uint, f: fn(t: &T) -> bool) -> Option<uint> { assert start <= end; assert end <= len(v); let mut i = start; while i < end { if f(&v[i]) { return Some::<uint>(i); } i += 1u; } return None; } /// Find the last index containing a matching value pure fn rposition_elem<T:Eq>(v: &[T], x: &T) -> Option<uint> { rposition(v, |y| *x == *y) } /** * Find the last index matching some predicate * * Apply function `f` to each element of `v` in reverse order. When function * `f` returns true then an option containing the index is returned. If `f` * matches no elements then none is returned. */ pub pure fn rposition<T>(v: &[T], f: fn(t: &T) -> bool) -> Option<uint> { rposition_between(v, 0u, len(v), f) } /** * Find the last index matching some predicate within a range * * Apply function `f` to each element of `v` in reverse order between the * range [`start`, `end`). When function `f` returns true then an option * containing the index is returned. If `f` matches no elements then none is * returned. */ pub pure fn rposition_between<T>(v: &[T], start: uint, end: uint, f: fn(t: &T) -> bool) -> Option<uint> { assert start <= end; assert end <= len(v); let mut i = end; while i > start { if f(&v[i - 1u]) { return Some::<uint>(i - 1u); } i -= 1u; } return None; } // FIXME: if issue #586 gets implemented, could have a postcondition // saying the two result lists have the same length -- or, could // return a nominal record with a constraint saying that, instead of // returning a tuple (contingent on issue #869) /** * Convert a vector of pairs into a pair of vectors, by reference. As unzip(). */ pure fn unzip_slice<T:Copy,U:Copy>(v: &[(T, U)]) -> (~[T], ~[U]) { let mut ts = ~[], us = ~[]; for each(v) |p| { let (t, u) = *p; unsafe { ts.push(t); us.push(u); } } return (ts, us); } /** * Convert a vector of pairs into a pair of vectors. * * Returns a tuple containing two vectors where the i-th element of the first * vector contains the first element of the i-th tuple of the input vector, * and the i-th element of the second vector contains the second element * of the i-th tuple of the input vector. */ pub pure fn unzip<T,U>(v: ~[(T, U)]) -> (~[T], ~[U]) { let mut ts = ~[], us = ~[]; unsafe { do consume(v) |_i, p| { let (t, u) = p; ts.push(t); us.push(u); } } (ts, us) } /** * Convert two vectors to a vector of pairs, by reference. As zip(). */ pub pure fn zip_slice<T:Copy,U:Copy>(v: &[const T], u: &[const U]) -> ~[(T, U)] { let mut zipped = ~[]; let sz = len(v); let mut i = 0u; assert sz == len(u); while i < sz { unsafe { zipped.push((v[i], u[i])); i += 1u; } } zipped } /** * Convert two vectors to a vector of pairs. * * Returns a vector of tuples, where the i-th tuple contains contains the * i-th elements from each of the input vectors. */ pub pure fn zip<T, U>(mut v: ~[T], mut u: ~[U]) -> ~[(T, U)] { let mut i = len(v); assert i == len(u); let mut w = with_capacity(i); while i > 0 { unsafe { w.push((v.pop(),u.pop())); } i -= 1; } unsafe { reverse(w); } w } /** * Swaps two elements in a vector * * # Arguments * * * v The input vector * * a - The index of the first element * * b - The index of the second element */ pub fn swap<T>(v: &mut [T], a: uint, b: uint) { v[a] <-> v[b]; } /// Reverse the order of elements in a vector, in place pub fn reverse<T>(v: &mut [T]) { let mut i: uint = 0; let ln = len::<T>(v); while i < ln / 2 { v[i] <-> v[ln - i - 1]; i += 1; } } /// Returns a vector with the order of elements reversed pub pure fn reversed<T:Copy>(v: &[const T]) -> ~[T] { let mut rs: ~[T] = ~[]; let mut i = len::<T>(v); if i == 0 { return (rs); } else { i -= 1; } unsafe { while i != 0 { rs.push(v[i]); i -= 1; } rs.push(v[0]); } rs } /** * Iterates over a vector, yielding each element to a closure. * * # Arguments * * * `v` - A vector, to be iterated over * * `f` - A closure to do the iterating. Within this closure, return true to * * continue iterating, false to break. * * # Examples * ~~~ * [1,2,3].each(|&i| { * io::println(int::str(i)); * true * }); * ~~~ * * ~~~ * [1,2,3,4,5].each(|&i| { * if i < 4 { * io::println(int::str(i)); * true * } * else { * false * } * }); * ~~~ * * You probably will want to use each with a `for`/`do` expression, depending * on your iteration needs: * * ~~~ * for [1,2,3].each |&i| { * io::println(int::str(i)); * } * ~~~ */ #[inline(always)] pub pure fn each<T>(v: &r/[T], f: fn(&r/T) -> bool) { // ^^^^ // NB---this CANNOT be &[const T]! The reason // is that you are passing it to `f()` using // an immutable. do vec::as_imm_buf(v) |p, n| { let mut n = n; let mut p = p; while n > 0u { unsafe { let q = cast::copy_lifetime_vec(v, &*p); if !f(q) { break; } p = ptr::offset(p, 1u); } n -= 1u; } } } /// Like `each()`, but for the case where you have /// a vector with mutable contents and you would like /// to mutate the contents as you iterate. #[inline(always)] pub fn each_mut<T>(v: &mut [T], f: fn(elem: &mut T) -> bool) { let mut i = 0; let n = v.len(); while i < n { if !f(&mut v[i]) { return; } i += 1; } } /// Like `each()`, but for the case where you have a vector that *may or may /// not* have mutable contents. #[inline(always)] pub pure fn each_const<T>(v: &[const T], f: fn(elem: &const T) -> bool) { let mut i = 0; let n = v.len(); while i < n { if !f(&const v[i]) { return; } i += 1; } } /** * Iterates over a vector's elements and indices * * Return true to continue, false to break. */ #[inline(always)] pub pure fn eachi<T>(v: &r/[T], f: fn(uint, v: &r/T) -> bool) { let mut i = 0; for each(v) |p| { if !f(i, p) { return; } i += 1; } } /** * Iterates over a vector's elements in reverse * * Return true to continue, false to break. */ #[inline(always)] pub pure fn rev_each<T>(v: &r/[T], blk: fn(v: &r/T) -> bool) { rev_eachi(v, |_i, v| blk(v)) } /** * Iterates over a vector's elements and indices in reverse * * Return true to continue, false to break. */ #[inline(always)] pub pure fn rev_eachi<T>(v: &r/[T], blk: fn(i: uint, v: &r/T) -> bool) { let mut i = v.len(); while i > 0 { i -= 1; if !blk(i, &v[i]) { return; } } } /** * Iterates over two vectors simultaneously * * # Failure * * Both vectors must have the same length */ #[inline] pub pure fn each2<U, T>(v1: &[U], v2: &[T], f: fn(u: &U, t: &T) -> bool) { assert len(v1) == len(v2); for uint::range(0u, len(v1)) |i| { if !f(&v1[i], &v2[i]) { return; } } } /** * Iterate over all permutations of vector `v`. * * Permutations are produced in lexicographic order with respect to the order * of elements in `v` (so if `v` is sorted then the permutations are * lexicographically sorted). * * The total number of permutations produced is `len(v)!`. If `v` contains * repeated elements, then some permutations are repeated. */ pub pure fn each_permutation<T:Copy>(v: &[T], put: fn(ts: &[T]) -> bool) { let ln = len(v); if ln <= 1 { put(v); } else { // This does not seem like the most efficient implementation. You // could make far fewer copies if you put your mind to it. let mut i = 0u; while i < ln { let elt = v[i]; let mut rest = slice(v, 0u, i).to_vec(); unsafe { rest.push_all(const_slice(v, i+1u, ln)); for each_permutation(rest) |permutation| { if !put(append(~[elt], permutation)) { return; } } } i += 1u; } } } pub pure fn windowed<TT:Copy>(nn: uint, xx: &[TT]) -> ~[~[TT]] { let mut ww = ~[]; assert 1u <= nn; for vec::eachi (xx) |ii, _x| { let len = vec::len(xx); if ii+nn <= len { unsafe { ww.push(slice(xx, ii, ii+nn).to_vec()); } } } ww } /** * Work with the buffer of a vector. * * Allows for unsafe manipulation of vector contents, which is useful for * foreign interop. */ #[inline(always)] pub pure fn as_imm_buf<T,U>(s: &[T], /* NB---this CANNOT be const, see below */ f: fn(*T, uint) -> U) -> U { // NB---Do not change the type of s to `&[const T]`. This is // unsound. The reason is that we are going to create immutable pointers // into `s` and pass them to `f()`, but in fact they are potentially // pointing at *mutable memory*. Use `as_const_buf` or `as_mut_buf` // instead! unsafe { let v : *(*T,uint) = ::cast::reinterpret_cast(&addr_of(&s)); let (buf,len) = *v; f(buf, len / sys::nonzero_size_of::<T>()) } } /// Similar to `as_imm_buf` but passing a `*const T` #[inline(always)] pub pure fn as_const_buf<T,U>(s: &[const T], f: fn(*const T, uint) -> U) -> U { unsafe { let v : *(*const T,uint) = ::cast::reinterpret_cast(&addr_of(&s)); let (buf,len) = *v; f(buf, len / sys::nonzero_size_of::<T>()) } } /// Similar to `as_imm_buf` but passing a `*mut T` #[inline(always)] pub pure fn as_mut_buf<T,U>(s: &mut [T], f: fn(*mut T, uint) -> U) -> U { unsafe { let v : *(*mut T,uint) = ::cast::reinterpret_cast(&addr_of(&s)); let (buf,len) = *v; f(buf, len / sys::nonzero_size_of::<T>()) } } // Equality pure fn eq<T:Eq>(a: &[T], b: &[T]) -> bool { let (a_len, b_len) = (a.len(), b.len()); if a_len != b_len { return false; } let mut i = 0; while i < a_len { if a[i] != b[i] { return false; } i += 1; } return true; } #[cfg(notest)] impl<T:Eq> Eq for &[T] { #[inline(always)] pure fn eq(&self, other: & &self/[T]) -> bool { eq((*self), (*other)) } #[inline(always)] pure fn ne(&self, other: & &self/[T]) -> bool { !(*self).eq(other) } } #[cfg(notest)] impl<T:Eq> Eq for ~[T] { #[inline(always)] pure fn eq(&self, other: &~[T]) -> bool { eq((*self), (*other)) } #[inline(always)] pure fn ne(&self, other: &~[T]) -> bool { !(*self).eq(other) } } #[cfg(notest)] impl<T:Eq> Eq for @[T] { #[inline(always)] pure fn eq(&self, other: &@[T]) -> bool { eq((*self), (*other)) } #[inline(always)] pure fn ne(&self, other: &@[T]) -> bool { !(*self).eq(other) } } #[cfg(notest)] impl<T:Eq> Equiv<~[T]> for &[T] { #[inline(always)] pure fn equiv(&self, other: &~[T]) -> bool { eq(*self, *other) } } // Lexicographical comparison pure fn cmp<T: TotalOrd>(a: &[T], b: &[T]) -> Ordering { let low = uint::min(a.len(), b.len()); for uint::range(0, low) |idx| { match a[idx].cmp(&b[idx]) { Greater => return Greater, Less => return Less, Equal => () } } a.len().cmp(&b.len()) } #[cfg(notest)] impl<T: TotalOrd> TotalOrd for &[T] { #[inline(always)] pure fn cmp(&self, other: & &self/[T]) -> Ordering { cmp(*self, *other) } } #[cfg(notest)] impl<T: TotalOrd> TotalOrd for ~[T] { #[inline(always)] pure fn cmp(&self, other: &~[T]) -> Ordering { cmp(*self, *other) } } #[cfg(notest)] impl<T: TotalOrd> TotalOrd for @[T] { #[inline(always)] pure fn cmp(&self, other: &@[T]) -> Ordering { cmp(*self, *other) } } pure fn lt<T:Ord>(a: &[T], b: &[T]) -> bool { let (a_len, b_len) = (a.len(), b.len()); let mut end = uint::min(a_len, b_len); let mut i = 0; while i < end { let (c_a, c_b) = (&a[i], &b[i]); if *c_a < *c_b { return true; } if *c_a > *c_b { return false; } i += 1; } return a_len < b_len; } pure fn le<T:Ord>(a: &[T], b: &[T]) -> bool { !lt(b, a) } pure fn ge<T:Ord>(a: &[T], b: &[T]) -> bool { !lt(a, b) } pure fn gt<T:Ord>(a: &[T], b: &[T]) -> bool { lt(b, a) } #[cfg(notest)] impl<T:Ord> Ord for &[T] { #[inline(always)] pure fn lt(&self, other: & &self/[T]) -> bool { lt((*self), (*other)) } #[inline(always)] pure fn le(&self, other: & &self/[T]) -> bool { le((*self), (*other)) } #[inline(always)] pure fn ge(&self, other: & &self/[T]) -> bool { ge((*self), (*other)) } #[inline(always)] pure fn gt(&self, other: & &self/[T]) -> bool { gt((*self), (*other)) } } #[cfg(notest)] impl<T:Ord> Ord for ~[T] { #[inline(always)] pure fn lt(&self, other: &~[T]) -> bool { lt((*self), (*other)) } #[inline(always)] pure fn le(&self, other: &~[T]) -> bool { le((*self), (*other)) } #[inline(always)] pure fn ge(&self, other: &~[T]) -> bool { ge((*self), (*other)) } #[inline(always)] pure fn gt(&self, other: &~[T]) -> bool { gt((*self), (*other)) } } #[cfg(notest)] impl<T:Ord> Ord for @[T] { #[inline(always)] pure fn lt(&self, other: &@[T]) -> bool { lt((*self), (*other)) } #[inline(always)] pure fn le(&self, other: &@[T]) -> bool { le((*self), (*other)) } #[inline(always)] pure fn ge(&self, other: &@[T]) -> bool { ge((*self), (*other)) } #[inline(always)] pure fn gt(&self, other: &@[T]) -> bool { gt((*self), (*other)) } } #[cfg(notest)] pub mod traits { use kinds::Copy; use ops::Add; use vec::append; impl<T:Copy> Add<&[const T],~[T]> for ~[T] { #[inline(always)] pure fn add(&self, rhs: & &self/[const T]) -> ~[T] { append(copy *self, (*rhs)) } } } impl<T> Container for &[const T] { /// Returns true if a vector contains no elements #[inline] pure fn is_empty(&self) -> bool { is_empty(*self) } /// Returns the length of a vector #[inline] pure fn len(&self) -> uint { len(*self) } } pub trait CopyableVector<T> { pure fn last(&self) -> T; pure fn slice(&self, start: uint, end: uint) -> ~[T]; } /// Extension methods for vectors impl<T: Copy> CopyableVector<T> for &[const T] { /// Returns the last element of a `v`, failing if the vector is empty. #[inline] pure fn last(&self) -> T { last(*self) } /// Returns a copy of the elements from [`start`..`end`) from `v`. #[inline] pure fn slice(&self, start: uint, end: uint) -> ~[T] { slice(*self, start, end).to_vec() } } pub trait ImmutableVector<T> { pure fn view(&self, start: uint, end: uint) -> &self/[T]; pure fn head(&self) -> &self/T; pure fn head_opt(&self) -> Option<&self/T>; pure fn tail(&self) -> &self/[T]; pure fn tailn(&self, n: uint) -> &self/[T]; pure fn init(&self) -> &self/[T]; pure fn initn(&self, n: uint) -> &self/[T]; pure fn foldr<U: Copy>(&self, z: U, p: fn(t: &T, u: U) -> U) -> U; pure fn map<U>(&self, f: fn(t: &T) -> U) -> ~[U]; pure fn mapi<U>(&self, f: fn(uint, t: &T) -> U) -> ~[U]; fn map_r<U>(&self, f: fn(x: &T) -> U) -> ~[U]; pure fn alli(&self, f: fn(uint, t: &T) -> bool) -> bool; pure fn flat_map<U>(&self, f: fn(t: &T) -> ~[U]) -> ~[U]; pure fn filter_mapped<U:Copy>(&self, f: fn(t: &T) -> Option<U>) -> ~[U]; } /// Extension methods for vectors impl<T> ImmutableVector<T> for &[T] { /// Return a slice that points into another slice. #[inline] pure fn view(&self, start: uint, end: uint) -> &self/[T] { slice(*self, start, end) } /// Returns the first element of a vector, failing if the vector is empty. #[inline] pure fn head(&self) -> &self/T { head(*self) } /// Returns the first element of a vector #[inline] pure fn head_opt(&self) -> Option<&self/T> { head_opt(*self) } /// Returns all but the first element of a vector #[inline] pure fn tail(&self) -> &self/[T] { tail(*self) } /// Returns all but the first `n' elements of a vector #[inline] pure fn tailn(&self, n: uint) -> &self/[T] { tailn(*self, n) } /// Returns all but the last elemnt of a vector #[inline] pure fn init(&self) -> &self/[T] { init(*self) } /// Returns all but the last `n' elemnts of a vector #[inline] pure fn initn(&self, n: uint) -> &self/[T] { initn(*self, n) } /// Reduce a vector from right to left #[inline] pure fn foldr<U:Copy>(&self, z: U, p: fn(t: &T, u: U) -> U) -> U { foldr(*self, z, p) } /// Apply a function to each element of a vector and return the results #[inline] pure fn map<U>(&self, f: fn(t: &T) -> U) -> ~[U] { map(*self, f) } /** * Apply a function to the index and value of each element in the vector * and return the results */ pure fn mapi<U>(&self, f: fn(uint, t: &T) -> U) -> ~[U] { mapi(*self, f) } #[inline] fn map_r<U>(&self, f: fn(x: &T) -> U) -> ~[U] { let mut r = ~[]; let mut i = 0; while i < self.len() { r.push(f(&self[i])); i += 1; } r } /** * Returns true if the function returns true for all elements. * * If the vector is empty, true is returned. */ pure fn alli(&self, f: fn(uint, t: &T) -> bool) -> bool { alli(*self, f) } /** * Apply a function to each element of a vector and return a concatenation * of each result vector */ #[inline] pure fn flat_map<U>(&self, f: fn(t: &T) -> ~[U]) -> ~[U] { flat_map(*self, f) } /** * Apply a function to each element of a vector and return the results * * If function `f` returns `none` then that element is excluded from * the resulting vector. */ #[inline] pure fn filter_mapped<U:Copy>(&self, f: fn(t: &T) -> Option<U>) -> ~[U] { filter_mapped(*self, f) } } pub trait ImmutableEqVector<T:Eq> { pure fn position(&self, f: fn(t: &T) -> bool) -> Option<uint>; pure fn position_elem(&self, t: &T) -> Option<uint>; pure fn rposition(&self, f: fn(t: &T) -> bool) -> Option<uint>; pure fn rposition_elem(&self, t: &T) -> Option<uint>; } impl<T:Eq> ImmutableEqVector<T> for &[T] { /** * Find the first index matching some predicate * * Apply function `f` to each element of `v`. When function `f` returns * true then an option containing the index is returned. If `f` matches no * elements then none is returned. */ #[inline] pure fn position(&self, f: fn(t: &T) -> bool) -> Option<uint> { position(*self, f) } /// Find the first index containing a matching value #[inline] pure fn position_elem(&self, x: &T) -> Option<uint> { position_elem(*self, x) } /** * Find the last index matching some predicate * * Apply function `f` to each element of `v` in reverse order. When * function `f` returns true then an option containing the index is * returned. If `f` matches no elements then none is returned. */ #[inline] pure fn rposition(&self, f: fn(t: &T) -> bool) -> Option<uint> { rposition(*self, f) } /// Find the last index containing a matching value #[inline] pure fn rposition_elem(&self, t: &T) -> Option<uint> { rposition_elem(*self, t) } } pub trait ImmutableCopyableVector<T> { pure fn filtered(&self, f: fn(&T) -> bool) -> ~[T]; pure fn rfind(&self, f: fn(t: &T) -> bool) -> Option<T>; pure fn partitioned(&self, f: fn(&T) -> bool) -> (~[T], ~[T]); } /// Extension methods for vectors impl<T:Copy> ImmutableCopyableVector<T> for &[T] { /** * Construct a new vector from the elements of a vector for which some * predicate holds. * * Apply function `f` to each element of `v` and return a vector * containing only those elements for which `f` returned true. */ #[inline] pure fn filtered(&self, f: fn(t: &T) -> bool) -> ~[T] { filtered(*self, f) } /** * Search for the last element that matches a given predicate * * Apply function `f` to each element of `v` in reverse order. When * function `f` returns true then an option containing the element is * returned. If `f` matches no elements then none is returned. */ #[inline] pure fn rfind(&self, f: fn(t: &T) -> bool) -> Option<T> { rfind(*self, f) } /** * Partitions the vector into those that satisfies the predicate, and * those that do not. */ #[inline] pure fn partitioned(&self, f: fn(&T) -> bool) -> (~[T], ~[T]) { partitioned(*self, f) } } pub trait OwnedVector<T> { fn push(&mut self, t: T); fn push_all_move(&mut self, rhs: ~[T]); fn pop(&mut self) -> T; fn shift(&mut self) -> T; fn unshift(&mut self, x: T); fn insert(&mut self, i: uint, x:T); fn remove(&mut self, i: uint) -> T; fn swap_remove(&mut self, index: uint) -> T; fn truncate(&mut self, newlen: uint); fn retain(&mut self, f: pure fn(t: &T) -> bool); fn consume(self, f: fn(uint, v: T)); fn filter(self, f: fn(t: &T) -> bool) -> ~[T]; fn partition(self, f: pure fn(&T) -> bool) -> (~[T], ~[T]); fn grow_fn(&mut self, n: uint, op: iter::InitOp<T>); } impl<T> OwnedVector<T> for ~[T] { #[inline] fn push(&mut self, t: T) { push(self, t); } #[inline] fn push_all_move(&mut self, rhs: ~[T]) { push_all_move(self, rhs); } #[inline] fn pop(&mut self) -> T { pop(self) } #[inline] fn shift(&mut self) -> T { shift(self) } #[inline] fn unshift(&mut self, x: T) { unshift(self, x) } #[inline] fn insert(&mut self, i: uint, x:T) { insert(self, i, x) } #[inline] fn remove(&mut self, i: uint) -> T { remove(self, i) } #[inline] fn swap_remove(&mut self, index: uint) -> T { swap_remove(self, index) } #[inline] fn truncate(&mut self, newlen: uint) { truncate(self, newlen); } #[inline] fn retain(&mut self, f: pure fn(t: &T) -> bool) { retain(self, f); } #[inline] fn consume(self, f: fn(uint, v: T)) { consume(self, f) } #[inline] fn filter(self, f: fn(&T) -> bool) -> ~[T] { filter(self, f) } /** * Partitions the vector into those that satisfies the predicate, and * those that do not. */ #[inline] fn partition(self, f: fn(&T) -> bool) -> (~[T], ~[T]) { partition(self, f) } #[inline] fn grow_fn(&mut self, n: uint, op: iter::InitOp<T>) { grow_fn(self, n, op); } } impl<T> Mutable for ~[T] { /// Clear the vector, removing all values. fn clear(&mut self) { self.truncate(0) } } pub trait OwnedCopyableVector<T:Copy> { fn push_all(&mut self, rhs: &[const T]); fn grow(&mut self, n: uint, initval: &T); fn grow_set(&mut self, index: uint, initval: &T, val: T); } impl<T:Copy> OwnedCopyableVector<T> for ~[T] { #[inline] fn push_all(&mut self, rhs: &[const T]) { push_all(self, rhs); } #[inline] fn grow(&mut self, n: uint, initval: &T) { grow(self, n, initval); } #[inline] fn grow_set(&mut self, index: uint, initval: &T, val: T) { grow_set(self, index, initval, val); } } trait OwnedEqVector<T:Eq> { fn dedup(&mut self); } impl<T:Eq> OwnedEqVector<T> for ~[T] { #[inline] fn dedup(&mut self) { dedup(self) } } /** * Constructs a vector from an unsafe pointer to a buffer * * # Arguments * * * ptr - An unsafe pointer to a buffer of `T` * * elts - The number of elements in the buffer */ // Wrapper for fn in raw: needs to be called by net_tcp::on_tcp_read_cb pub unsafe fn from_buf<T>(ptr: *T, elts: uint) -> ~[T] { raw::from_buf_raw(ptr, elts) } /// The internal 'unboxed' representation of a vector pub struct UnboxedVecRepr { mut fill: uint, mut alloc: uint, data: u8 } /// Unsafe operations pub mod raw { use kinds::Copy; use managed; use option::{None, Some}; use option; use unstable::intrinsics; use ptr::addr_of; use ptr; use sys; use vec::{UnboxedVecRepr, as_const_buf, as_mut_buf, len, with_capacity}; /// The internal representation of a (boxed) vector pub struct VecRepr { box_header: managed::raw::BoxHeaderRepr, unboxed: UnboxedVecRepr } pub struct SliceRepr { mut data: *u8, mut len: uint } /** * Sets the length of a vector * * This will explicitly set the size of the vector, without actually * modifing its buffers, so it is up to the caller to ensure that * the vector is actually the specified size. */ #[inline(always)] pub unsafe fn set_len<T>(v: &mut ~[T], new_len: uint) { let repr: **VecRepr = ::cast::transmute(v); (**repr).unboxed.fill = new_len * sys::nonzero_size_of::<T>(); } /** * Returns an unsafe pointer to the vector's buffer * * The caller must ensure that the vector outlives the pointer this * function returns, or else it will end up pointing to garbage. * * Modifying the vector may cause its buffer to be reallocated, which * would also make any pointers to it invalid. */ #[inline(always)] pub unsafe fn to_ptr<T>(v: &[T]) -> *T { let repr: **SliceRepr = ::cast::transmute(&v); return ::cast::reinterpret_cast(&addr_of(&((**repr).data))); } /** see `to_ptr()` */ #[inline(always)] pub unsafe fn to_const_ptr<T>(v: &[const T]) -> *const T { let repr: **SliceRepr = ::cast::transmute(&v); return ::cast::reinterpret_cast(&addr_of(&((**repr).data))); } /** see `to_ptr()` */ #[inline(always)] pub unsafe fn to_mut_ptr<T>(v: &mut [T]) -> *mut T { let repr: **SliceRepr = ::cast::transmute(&v); return ::cast::reinterpret_cast(&addr_of(&((**repr).data))); } /** * Form a slice from a pointer and length (as a number of units, * not bytes). */ #[inline(always)] pub unsafe fn buf_as_slice<T,U>(p: *T, len: uint, f: fn(v: &[T]) -> U) -> U { let pair = (p, len * sys::nonzero_size_of::<T>()); let v : *(&blk/[T]) = ::cast::reinterpret_cast(&addr_of(&pair)); f(*v) } /** * Unchecked vector indexing. */ #[inline(always)] pub unsafe fn get<T:Copy>(v: &[const T], i: uint) -> T { as_const_buf(v, |p, _len| *ptr::const_offset(p, i)) } /** * Unchecked vector index assignment. Does not drop the * old value and hence is only suitable when the vector * is newly allocated. */ #[inline(always)] pub unsafe fn init_elem<T>(v: &mut [T], i: uint, val: T) { let mut box = Some(val); do as_mut_buf(v) |p, _len| { let mut box2 = None; box2 <-> box; intrinsics::move_val_init(&mut(*ptr::mut_offset(p, i)), option::unwrap(box2)); } } /** * Constructs a vector from an unsafe pointer to a buffer * * # Arguments * * * ptr - An unsafe pointer to a buffer of `T` * * elts - The number of elements in the buffer */ // Was in raw, but needs to be called by net_tcp::on_tcp_read_cb #[inline(always)] pub unsafe fn from_buf_raw<T>(ptr: *T, elts: uint) -> ~[T] { let mut dst = with_capacity(elts); set_len(&mut dst, elts); as_mut_buf(dst, |p_dst, _len_dst| ptr::copy_memory(p_dst, ptr, elts)); dst } /** * Copies data from one vector to another. * * Copies `count` bytes from `src` to `dst`. The source and destination * may overlap. */ #[inline(always)] pub unsafe fn copy_memory<T>(dst: &mut [T], src: &[const T], count: uint) { assert dst.len() >= count; assert src.len() >= count; do as_mut_buf(dst) |p_dst, _len_dst| { do as_const_buf(src) |p_src, _len_src| { ptr::copy_memory(p_dst, p_src, count) } } } } /// Operations on `[u8]` pub mod bytes { use libc; use uint; use vec::len; use vec::raw; use vec; /// Bytewise string comparison pub pure fn memcmp(a: &~[u8], b: &~[u8]) -> int { let a_len = len(*a); let b_len = len(*b); let n = uint::min(a_len, b_len) as libc::size_t; let r = unsafe { libc::memcmp(raw::to_ptr(*a) as *libc::c_void, raw::to_ptr(*b) as *libc::c_void, n) as int }; if r != 0 { r } else { if a_len == b_len { 0 } else if a_len < b_len { -1 } else { 1 } } } /// Bytewise less than or equal pub pure fn lt(a: &~[u8], b: &~[u8]) -> bool { memcmp(a, b) < 0 } /// Bytewise less than or equal pub pure fn le(a: &~[u8], b: &~[u8]) -> bool { memcmp(a, b) <= 0 } /// Bytewise equality pub pure fn eq(a: &~[u8], b: &~[u8]) -> bool { memcmp(a, b) == 0 } /// Bytewise inequality pub pure fn ne(a: &~[u8], b: &~[u8]) -> bool { memcmp(a, b) != 0 } /// Bytewise greater than or equal pub pure fn ge(a: &~[u8], b: &~[u8]) -> bool { memcmp(a, b) >= 0 } /// Bytewise greater than pub pure fn gt(a: &~[u8], b: &~[u8]) -> bool { memcmp(a, b) > 0 } /** * Copies data from one vector to another. * * Copies `count` bytes from `src` to `dst`. The source and destination * may overlap. */ #[inline(always)] pub fn copy_memory(dst: &mut [u8], src: &[const u8], count: uint) { // Bound checks are done at vec::raw::copy_memory. unsafe { vec::raw::copy_memory(dst, src, count) } } } // ___________________________________________________________________________ // ITERATION TRAIT METHODS // // This cannot be used with iter-trait.rs because of the region pointer // required in the slice. impl<A> iter::BaseIter<A> for &[A] { pub pure fn each(&self, blk: fn(v: &A) -> bool) { // FIXME(#2263)---should be able to call each(self, blk) for each(*self) |e| { if (!blk(e)) { return; } } } pure fn size_hint(&self) -> Option<uint> { Some(len(*self)) } } // FIXME(#4148): This should be redundant impl<A> iter::BaseIter<A> for ~[A] { pub pure fn each(&self, blk: fn(v: &A) -> bool) { // FIXME(#2263)---should be able to call each(self, blk) for each(*self) |e| { if (!blk(e)) { return; } } } pure fn size_hint(&self) -> Option<uint> { Some(len(*self)) } } // FIXME(#4148): This should be redundant impl<A> iter::BaseIter<A> for @[A] { pub pure fn each(&self, blk: fn(v: &A) -> bool) { // FIXME(#2263)---should be able to call each(self, blk) for each(*self) |e| { if (!blk(e)) { return; } } } pure fn size_hint(&self) -> Option<uint> { Some(len(*self)) } } impl<A> iter::ExtendedIter<A> for &[A] { pub pure fn eachi(&self, blk: fn(uint, v: &A) -> bool) { iter::eachi(self, blk) } pub pure fn all(&self, blk: fn(&A) -> bool) -> bool { iter::all(self, blk) } pub pure fn any(&self, blk: fn(&A) -> bool) -> bool { iter::any(self, blk) } pub pure fn foldl<B>(&self, b0: B, blk: fn(&B, &A) -> B) -> B { iter::foldl(self, b0, blk) } pub pure fn position(&self, f: fn(&A) -> bool) -> Option<uint> { iter::position(self, f) } pure fn map_to_vec<B>(&self, op: fn(&A) -> B) -> ~[B] { iter::map_to_vec(self, op) } pure fn flat_map_to_vec<B,IB:BaseIter<B>>(&self, op: fn(&A) -> IB) -> ~[B] { iter::flat_map_to_vec(self, op) } } // FIXME(#4148): This should be redundant impl<A> iter::ExtendedIter<A> for ~[A] { pub pure fn eachi(&self, blk: fn(uint, v: &A) -> bool) { iter::eachi(self, blk) } pub pure fn all(&self, blk: fn(&A) -> bool) -> bool { iter::all(self, blk) } pub pure fn any(&self, blk: fn(&A) -> bool) -> bool { iter::any(self, blk) } pub pure fn foldl<B>(&self, b0: B, blk: fn(&B, &A) -> B) -> B { iter::foldl(self, b0, blk) } pub pure fn position(&self, f: fn(&A) -> bool) -> Option<uint> { iter::position(self, f) } pure fn map_to_vec<B>(&self, op: fn(&A) -> B) -> ~[B] { iter::map_to_vec(self, op) } pure fn flat_map_to_vec<B,IB:BaseIter<B>>(&self, op: fn(&A) -> IB) -> ~[B] { iter::flat_map_to_vec(self, op) } } // FIXME(#4148): This should be redundant impl<A> iter::ExtendedIter<A> for @[A] { pub pure fn eachi(&self, blk: fn(uint, v: &A) -> bool) { iter::eachi(self, blk) } pub pure fn all(&self, blk: fn(&A) -> bool) -> bool { iter::all(self, blk) } pub pure fn any(&self, blk: fn(&A) -> bool) -> bool { iter::any(self, blk) } pub pure fn foldl<B>(&self, b0: B, blk: fn(&B, &A) -> B) -> B { iter::foldl(self, b0, blk) } pub pure fn position(&self, f: fn(&A) -> bool) -> Option<uint> { iter::position(self, f) } pure fn map_to_vec<B>(&self, op: fn(&A) -> B) -> ~[B] { iter::map_to_vec(self, op) } pure fn flat_map_to_vec<B,IB:BaseIter<B>>(&self, op: fn(&A) -> IB) -> ~[B] { iter::flat_map_to_vec(self, op) } } impl<A:Eq> iter::EqIter<A> for &[A] { pub pure fn contains(&self, x: &A) -> bool { iter::contains(self, x) } pub pure fn count(&self, x: &A) -> uint { iter::count(self, x) } } // FIXME(#4148): This should be redundant impl<A:Eq> iter::EqIter<A> for ~[A] { pub pure fn contains(&self, x: &A) -> bool { iter::contains(self, x) } pub pure fn count(&self, x: &A) -> uint { iter::count(self, x) } } // FIXME(#4148): This should be redundant impl<A:Eq> iter::EqIter<A> for @[A] { pub pure fn contains(&self, x: &A) -> bool { iter::contains(self, x) } pub pure fn count(&self, x: &A) -> uint { iter::count(self, x) } } impl<A:Copy> iter::CopyableIter<A> for &[A] { pure fn filter_to_vec(&self, pred: fn(&A) -> bool) -> ~[A] { iter::filter_to_vec(self, pred) } pure fn to_vec(&self) -> ~[A] { iter::to_vec(self) } pub pure fn find(&self, f: fn(&A) -> bool) -> Option<A> { iter::find(self, f) } } // FIXME(#4148): This should be redundant impl<A:Copy> iter::CopyableIter<A> for ~[A] { pure fn filter_to_vec(&self, pred: fn(&A) -> bool) -> ~[A] { iter::filter_to_vec(self, pred) } pure fn to_vec(&self) -> ~[A] { iter::to_vec(self) } pub pure fn find(&self, f: fn(&A) -> bool) -> Option<A> { iter::find(self, f) } } // FIXME(#4148): This should be redundant impl<A:Copy> iter::CopyableIter<A> for @[A] { pure fn filter_to_vec(&self, pred: fn(&A) -> bool) -> ~[A] { iter::filter_to_vec(self, pred) } pure fn to_vec(&self) -> ~[A] { iter::to_vec(self) } pub pure fn find(&self, f: fn(&A) -> bool) -> Option<A> { iter::find(self, f) } } impl<A:Copy + Ord> iter::CopyableOrderedIter<A> for &[A] { pure fn min(&self) -> A { iter::min(self) } pure fn max(&self) -> A { iter::max(self) } } // FIXME(#4148): This should be redundant impl<A:Copy + Ord> iter::CopyableOrderedIter<A> for ~[A] { pure fn min(&self) -> A { iter::min(self) } pure fn max(&self) -> A { iter::max(self) } } // FIXME(#4148): This should be redundant impl<A:Copy + Ord> iter::CopyableOrderedIter<A> for @[A] { pure fn min(&self) -> A { iter::min(self) } pure fn max(&self) -> A { iter::max(self) } } impl<A:Copy> iter::CopyableNonstrictIter<A> for &[A] { pure fn each_val(&const self, f: fn(A) -> bool) { let mut i = 0; while i < self.len() { if !f(copy self[i]) { break; } i += 1; } } } // FIXME(#4148): This should be redundant impl<A:Copy> iter::CopyableNonstrictIter<A> for ~[A] { pure fn each_val(&const self, f: fn(A) -> bool) { let mut i = 0; while i < self.len() { if !f(copy self[i]) { break; } i += 1; } } } // FIXME(#4148): This should be redundant impl<A:Copy> iter::CopyableNonstrictIter<A> for @[A] { pure fn each_val(&const self, f: fn(A) -> bool) { let mut i = 0; while i < self.len() { if !f(copy self[i]) { break; } i += 1; } } } // ___________________________________________________________________________ #[cfg(test)] mod tests { use option::{None, Option, Some}; use option; use sys; use vec::*; use cmp::*; fn square(n: uint) -> uint { return n * n; } fn square_ref(n: &uint) -> uint { return square(*n); } pure fn is_three(n: &uint) -> bool { return *n == 3u; } pure fn is_odd(n: &uint) -> bool { return *n % 2u == 1u; } pure fn is_equal(x: &uint, y:&uint) -> bool { return *x == *y; } fn square_if_odd_r(n: &uint) -> Option<uint> { return if *n % 2u == 1u { Some(*n * *n) } else { None }; } fn square_if_odd_v(n: uint) -> Option<uint> { return if n % 2u == 1u { Some(n * n) } else { None }; } fn add(x: uint, y: &uint) -> uint { return x + *y; } #[test] fn test_unsafe_ptrs() { unsafe { // Test on-stack copy-from-buf. let a = ~[1, 2, 3]; let mut ptr = raw::to_ptr(a); let b = from_buf(ptr, 3u); assert (len(b) == 3u); assert (b[0] == 1); assert (b[1] == 2); assert (b[2] == 3); // Test on-heap copy-from-buf. let c = ~[1, 2, 3, 4, 5]; ptr = raw::to_ptr(c); let d = from_buf(ptr, 5u); assert (len(d) == 5u); assert (d[0] == 1); assert (d[1] == 2); assert (d[2] == 3); assert (d[3] == 4); assert (d[4] == 5); } } #[test] fn test_from_fn() { // Test on-stack from_fn. let mut v = from_fn(3u, square); assert (len(v) == 3u); assert (v[0] == 0u); assert (v[1] == 1u); assert (v[2] == 4u); // Test on-heap from_fn. v = from_fn(5u, square); assert (len(v) == 5u); assert (v[0] == 0u); assert (v[1] == 1u); assert (v[2] == 4u); assert (v[3] == 9u); assert (v[4] == 16u); } #[test] fn test_from_elem() { // Test on-stack from_elem. let mut v = from_elem(2u, 10u); assert (len(v) == 2u); assert (v[0] == 10u); assert (v[1] == 10u); // Test on-heap from_elem. v = from_elem(6u, 20u); assert (v[0] == 20u); assert (v[1] == 20u); assert (v[2] == 20u); assert (v[3] == 20u); assert (v[4] == 20u); assert (v[5] == 20u); } #[test] fn test_is_empty() { assert (is_empty::<int>(~[])); assert (!is_empty(~[0])); } #[test] fn test_len_divzero() { type Z = [i8 * 0]; let v0 : &[Z] = &[]; let v1 : &[Z] = &[[]]; let v2 : &[Z] = &[[], []]; assert(sys::size_of::<Z>() == 0); assert(len(v0) == 0); assert(len(v1) == 1); assert(len(v2) == 2); } #[test] fn test_head() { let mut a = ~[11]; assert a.head() == &11; a = ~[11, 12]; assert a.head() == &11; } #[test] #[should_fail] #[ignore(cfg(windows))] fn test_head_empty() { let a: ~[int] = ~[]; a.head(); } #[test] fn test_head_opt() { let mut a = ~[]; assert a.head_opt() == None; a = ~[11]; assert a.head_opt().unwrap() == &11; a = ~[11, 12]; assert a.head_opt().unwrap() == &11; } #[test] fn test_tail() { let mut a = ~[11]; assert a.tail() == &[]; a = ~[11, 12]; assert a.tail() == &[12]; } #[test] #[should_fail] #[ignore(cfg(windows))] fn test_tail_empty() { let a: ~[int] = ~[]; a.tail(); } #[test] fn test_tailn() { let mut a = ~[11, 12, 13]; assert a.tailn(0) == &[11, 12, 13]; a = ~[11, 12, 13]; assert a.tailn(2) == &[13]; } #[test] #[should_fail] #[ignore(cfg(windows))] fn test_tailn_empty() { let a: ~[int] = ~[]; a.tailn(2); } #[test] fn test_init() { let mut a = ~[11]; assert a.init() == &[]; a = ~[11, 12]; assert a.init() == &[11]; } #[init] #[should_fail] #[ignore(cfg(windows))] fn test_init_empty() { let a: ~[int] = ~[]; a.init(); } #[test] fn test_initn() { let mut a = ~[11, 12, 13]; assert a.initn(0) == &[11, 12, 13]; a = ~[11, 12, 13]; assert a.initn(2) == &[11]; } #[init] #[should_fail] #[ignore(cfg(windows))] fn test_initn_empty() { let a: ~[int] = ~[]; a.initn(2); } #[test] fn test_last() { let mut n = last_opt(~[]); assert (n.is_none()); n = last_opt(~[1, 2, 3]); assert (n == Some(3)); n = last_opt(~[1, 2, 3, 4, 5]); assert (n == Some(5)); } #[test] fn test_slice() { // Test fixed length vector. let vec_fixed = [1, 2, 3, 4]; let v_a = slice(vec_fixed, 1u, len(vec_fixed)).to_vec(); assert (len(v_a) == 3u); assert (v_a[0] == 2); assert (v_a[1] == 3); assert (v_a[2] == 4); // Test on stack. let vec_stack = &[1, 2, 3]; let v_b = slice(vec_stack, 1u, 3u).to_vec(); assert (len(v_b) == 2u); assert (v_b[0] == 2); assert (v_b[1] == 3); // Test on managed heap. let vec_managed = @[1, 2, 3, 4, 5]; let v_c = slice(vec_managed, 0u, 3u).to_vec(); assert (len(v_c) == 3u); assert (v_c[0] == 1); assert (v_c[1] == 2); assert (v_c[2] == 3); // Test on exchange heap. let vec_unique = ~[1, 2, 3, 4, 5, 6]; let v_d = slice(vec_unique, 1u, 6u).to_vec(); assert (len(v_d) == 5u); assert (v_d[0] == 2); assert (v_d[1] == 3); assert (v_d[2] == 4); assert (v_d[3] == 5); assert (v_d[4] == 6); } #[test] fn test_pop() { // Test on-heap pop. let mut v = ~[1, 2, 3, 4, 5]; let e = v.pop(); assert (len(v) == 4u); assert (v[0] == 1); assert (v[1] == 2); assert (v[2] == 3); assert (v[3] == 4); assert (e == 5); } #[test] fn test_swap_remove() { let mut v = ~[1, 2, 3, 4, 5]; let mut e = v.swap_remove(0); assert (len(v) == 4); assert e == 1; assert (v[0] == 5); e = v.swap_remove(3); assert (len(v) == 3); assert e == 4; assert (v[0] == 5); assert (v[1] == 2); assert (v[2] == 3); } #[test] fn test_swap_remove_noncopyable() { // Tests that we don't accidentally run destructors twice. let mut v = ~[::unstable::exclusive(()), ::unstable::exclusive(()), ::unstable::exclusive(())]; let mut _e = v.swap_remove(0); assert (len(v) == 2); _e = v.swap_remove(1); assert (len(v) == 1); _e = v.swap_remove(0); assert (len(v) == 0); } #[test] fn test_push() { // Test on-stack push(). let mut v = ~[]; v.push(1); assert (len(v) == 1u); assert (v[0] == 1); // Test on-heap push(). v.push(2); assert (len(v) == 2u); assert (v[0] == 1); assert (v[1] == 2); } #[test] fn test_grow() { // Test on-stack grow(). let mut v = ~[]; v.grow(2u, &1); assert (len(v) == 2u); assert (v[0] == 1); assert (v[1] == 1); // Test on-heap grow(). v.grow(3u, &2); assert (len(v) == 5u); assert (v[0] == 1); assert (v[1] == 1); assert (v[2] == 2); assert (v[3] == 2); assert (v[4] == 2); } #[test] fn test_grow_fn() { let mut v = ~[]; v.grow_fn(3u, square); assert (len(v) == 3u); assert (v[0] == 0u); assert (v[1] == 1u); assert (v[2] == 4u); } #[test] fn test_grow_set() { let mut v = ~[1, 2, 3]; v.grow_set(4u, &4, 5); assert (len(v) == 5u); assert (v[0] == 1); assert (v[1] == 2); assert (v[2] == 3); assert (v[3] == 4); assert (v[4] == 5); } #[test] fn test_truncate() { let mut v = ~[@6,@5,@4]; v.truncate(1); assert(v.len() == 1); assert(*(v[0]) == 6); // If the unsafe block didn't drop things properly, we blow up here. } #[test] fn test_clear() { let mut v = ~[@6,@5,@4]; v.clear(); assert(v.len() == 0); // If the unsafe block didn't drop things properly, we blow up here. } #[test] fn test_dedup() { fn case(a: ~[uint], b: ~[uint]) { let mut v = a; v.dedup(); assert(v == b); } case(~[], ~[]); case(~[1], ~[1]); case(~[1,1], ~[1]); case(~[1,2,3], ~[1,2,3]); case(~[1,1,2,3], ~[1,2,3]); case(~[1,2,2,3], ~[1,2,3]); case(~[1,2,3,3], ~[1,2,3]); case(~[1,1,2,2,2,3,3], ~[1,2,3]); } #[test] fn test_dedup_unique() { let mut v0 = ~[~1, ~1, ~2, ~3]; v0.dedup(); let mut v1 = ~[~1, ~2, ~2, ~3]; v1.dedup(); let mut v2 = ~[~1, ~2, ~3, ~3]; v2.dedup(); /* * If the ~pointers were leaked or otherwise misused, valgrind and/or * rustrt should raise errors. */ } #[test] fn test_dedup_shared() { let mut v0 = ~[@1, @1, @2, @3]; v0.dedup(); let mut v1 = ~[@1, @2, @2, @3]; v1.dedup(); let mut v2 = ~[@1, @2, @3, @3]; v2.dedup(); /* * If the @pointers were leaked or otherwise misused, valgrind and/or * rustrt should raise errors. */ } #[test] fn test_map() { // Test on-stack map. let mut v = ~[1u, 2u, 3u]; let mut w = map(v, square_ref); assert (len(w) == 3u); assert (w[0] == 1u); assert (w[1] == 4u); assert (w[2] == 9u); // Test on-heap map. v = ~[1u, 2u, 3u, 4u, 5u]; w = map(v, square_ref); assert (len(w) == 5u); assert (w[0] == 1u); assert (w[1] == 4u); assert (w[2] == 9u); assert (w[3] == 16u); assert (w[4] == 25u); } #[test] fn test_map2() { fn times(x: &int, y: &int) -> int { return *x * *y; } let f = times; let v0 = ~[1, 2, 3, 4, 5]; let v1 = ~[5, 4, 3, 2, 1]; let u = map2::<int, int, int>(v0, v1, f); let mut i = 0; while i < 5 { assert (v0[i] * v1[i] == u[i]); i += 1; } } #[test] fn test_filter_mapped() { // Test on-stack filter-map. let mut v = ~[1u, 2u, 3u]; let mut w = filter_mapped(v, square_if_odd_r); assert (len(w) == 2u); assert (w[0] == 1u); assert (w[1] == 9u); // Test on-heap filter-map. v = ~[1u, 2u, 3u, 4u, 5u]; w = filter_mapped(v, square_if_odd_r); assert (len(w) == 3u); assert (w[0] == 1u); assert (w[1] == 9u); assert (w[2] == 25u); fn halve(i: &int) -> Option<int> { if *i % 2 == 0 { return option::Some::<int>(*i / 2); } else { return option::None::<int>; } } fn halve_for_sure(i: &int) -> int { return *i / 2; } let all_even: ~[int] = ~[0, 2, 8, 6]; let all_odd1: ~[int] = ~[1, 7, 3]; let all_odd2: ~[int] = ~[]; let mix: ~[int] = ~[9, 2, 6, 7, 1, 0, 0, 3]; let mix_dest: ~[int] = ~[1, 3, 0, 0]; assert (filter_mapped(all_even, halve) == map(all_even, halve_for_sure)); assert (filter_mapped(all_odd1, halve) == ~[]); assert (filter_mapped(all_odd2, halve) == ~[]); assert (filter_mapped(mix, halve) == mix_dest); } #[test] fn test_filter_map() { // Test on-stack filter-map. let mut v = ~[1u, 2u, 3u]; let mut w = filter_map(v, square_if_odd_v); assert (len(w) == 2u); assert (w[0] == 1u); assert (w[1] == 9u); // Test on-heap filter-map. v = ~[1u, 2u, 3u, 4u, 5u]; w = filter_map(v, square_if_odd_v); assert (len(w) == 3u); assert (w[0] == 1u); assert (w[1] == 9u); assert (w[2] == 25u); fn halve(i: int) -> Option<int> { if i % 2 == 0 { return option::Some::<int>(i / 2); } else { return option::None::<int>; } } fn halve_for_sure(i: &int) -> int { return *i / 2; } let all_even: ~[int] = ~[0, 2, 8, 6]; let all_even0: ~[int] = copy all_even; let all_odd1: ~[int] = ~[1, 7, 3]; let all_odd2: ~[int] = ~[]; let mix: ~[int] = ~[9, 2, 6, 7, 1, 0, 0, 3]; let mix_dest: ~[int] = ~[1, 3, 0, 0]; assert (filter_map(all_even, halve) == map(all_even0, halve_for_sure)); assert (filter_map(all_odd1, halve) == ~[]); assert (filter_map(all_odd2, halve) == ~[]); assert (filter_map(mix, halve) == mix_dest); } #[test] fn test_filter() { assert filter(~[1u, 2u, 3u], is_odd) == ~[1u, 3u]; assert filter(~[1u, 2u, 4u, 8u, 16u], is_three) == ~[]; } #[test] fn test_retain() { let mut v = ~[1, 2, 3, 4, 5]; v.retain(is_odd); assert v == ~[1, 3, 5]; } #[test] fn test_foldl() { // Test on-stack fold. let mut v = ~[1u, 2u, 3u]; let mut sum = foldl(0u, v, add); assert (sum == 6u); // Test on-heap fold. v = ~[1u, 2u, 3u, 4u, 5u]; sum = foldl(0u, v, add); assert (sum == 15u); } #[test] fn test_foldl2() { fn sub(a: int, b: &int) -> int { a - *b } let mut v = ~[1, 2, 3, 4]; let sum = foldl(0, v, sub); assert sum == -10; } #[test] fn test_foldr() { fn sub(a: &int, b: int) -> int { *a - b } let mut v = ~[1, 2, 3, 4]; let sum = foldr(v, 0, sub); assert sum == -2; } #[test] fn test_each_empty() { for each::<int>(~[]) |_v| { fail!(); // should never be executed } } #[test] fn test_iter_nonempty() { let mut i = 0; for each(~[1, 2, 3]) |v| { i += *v; } assert i == 6; } #[test] fn test_iteri() { let mut i = 0; for eachi(~[1, 2, 3]) |j, v| { if i == 0 { assert *v == 1; } assert j + 1u == *v as uint; i += *v; } assert i == 6; } #[test] fn test_reach_empty() { for rev_each::<int>(~[]) |_v| { fail!(); // should never execute } } #[test] fn test_reach_nonempty() { let mut i = 0; for rev_each(~[1, 2, 3]) |v| { if i == 0 { assert *v == 3; } i += *v } assert i == 6; } #[test] fn test_reachi() { let mut i = 0; for rev_eachi(~[0, 1, 2]) |j, v| { if i == 0 { assert *v == 2; } assert j == *v as uint; i += *v; } assert i == 3; } #[test] fn test_each_permutation() { let mut results: ~[~[int]]; results = ~[]; for each_permutation(~[]) |v| { results.push(from_slice(v)); } assert results == ~[~[]]; results = ~[]; for each_permutation(~[7]) |v| { results.push(from_slice(v)); } assert results == ~[~[7]]; results = ~[]; for each_permutation(~[1,1]) |v| { results.push(from_slice(v)); } assert results == ~[~[1,1],~[1,1]]; results = ~[]; for each_permutation(~[5,2,0]) |v| { results.push(from_slice(v)); } assert results == ~[~[5,2,0],~[5,0,2],~[2,5,0],~[2,0,5],~[0,5,2],~[0,2,5]]; } #[test] fn test_any_and_all() { assert (any(~[1u, 2u, 3u], is_three)); assert (!any(~[0u, 1u, 2u], is_three)); assert (any(~[1u, 2u, 3u, 4u, 5u], is_three)); assert (!any(~[1u, 2u, 4u, 5u, 6u], is_three)); assert (all(~[3u, 3u, 3u], is_three)); assert (!all(~[3u, 3u, 2u], is_three)); assert (all(~[3u, 3u, 3u, 3u, 3u], is_three)); assert (!all(~[3u, 3u, 0u, 1u, 2u], is_three)); } #[test] fn test_any2_and_all2() { assert (any2(~[2u, 4u, 6u], ~[2u, 4u, 6u], is_equal)); assert (any2(~[1u, 2u, 3u], ~[4u, 5u, 3u], is_equal)); assert (!any2(~[1u, 2u, 3u], ~[4u, 5u, 6u], is_equal)); assert (any2(~[2u, 4u, 6u], ~[2u, 4u], is_equal)); assert (all2(~[2u, 4u, 6u], ~[2u, 4u, 6u], is_equal)); assert (!all2(~[1u, 2u, 3u], ~[4u, 5u, 3u], is_equal)); assert (!all2(~[1u, 2u, 3u], ~[4u, 5u, 6u], is_equal)); assert (!all2(~[2u, 4u, 6u], ~[2u, 4u], is_equal)); } #[test] fn test_zip_unzip() { let v1 = ~[1, 2, 3]; let v2 = ~[4, 5, 6]; let z1 = zip(v1, v2); assert ((1, 4) == z1[0]); assert ((2, 5) == z1[1]); assert ((3, 6) == z1[2]); let (left, right) = unzip(z1); assert ((1, 4) == (left[0], right[0])); assert ((2, 5) == (left[1], right[1])); assert ((3, 6) == (left[2], right[2])); } #[test] fn test_position_elem() { assert position_elem(~[], &1).is_none(); let v1 = ~[1, 2, 3, 3, 2, 5]; assert position_elem(v1, &1) == Some(0u); assert position_elem(v1, &2) == Some(1u); assert position_elem(v1, &5) == Some(5u); assert position_elem(v1, &4).is_none(); } #[test] fn test_position() { fn less_than_three(i: &int) -> bool { return *i < 3; } fn is_eighteen(i: &int) -> bool { return *i == 18; } assert position(~[], less_than_three).is_none(); let v1 = ~[5, 4, 3, 2, 1]; assert position(v1, less_than_three) == Some(3u); assert position(v1, is_eighteen).is_none(); } #[test] fn test_position_between() { assert position_between(~[], 0u, 0u, f).is_none(); fn f(xy: &(int, char)) -> bool { let (_x, y) = *xy; y == 'b' } let mut v = ~[(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')]; assert position_between(v, 0u, 0u, f).is_none(); assert position_between(v, 0u, 1u, f).is_none(); assert position_between(v, 0u, 2u, f) == Some(1u); assert position_between(v, 0u, 3u, f) == Some(1u); assert position_between(v, 0u, 4u, f) == Some(1u); assert position_between(v, 1u, 1u, f).is_none(); assert position_between(v, 1u, 2u, f) == Some(1u); assert position_between(v, 1u, 3u, f) == Some(1u); assert position_between(v, 1u, 4u, f) == Some(1u); assert position_between(v, 2u, 2u, f).is_none(); assert position_between(v, 2u, 3u, f).is_none(); assert position_between(v, 2u, 4u, f) == Some(3u); assert position_between(v, 3u, 3u, f).is_none(); assert position_between(v, 3u, 4u, f) == Some(3u); assert position_between(v, 4u, 4u, f).is_none(); } #[test] fn test_find() { assert find(~[], f).is_none(); fn f(xy: &(int, char)) -> bool { let (_x, y) = *xy; y == 'b' } fn g(xy: &(int, char)) -> bool { let (_x, y) = *xy; y == 'd' } let mut v = ~[(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')]; assert find(v, f) == Some((1, 'b')); assert find(v, g).is_none(); } #[test] fn test_find_between() { assert find_between(~[], 0u, 0u, f).is_none(); fn f(xy: &(int, char)) -> bool { let (_x, y) = *xy; y == 'b' } let mut v = ~[(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')]; assert find_between(v, 0u, 0u, f).is_none(); assert find_between(v, 0u, 1u, f).is_none(); assert find_between(v, 0u, 2u, f) == Some((1, 'b')); assert find_between(v, 0u, 3u, f) == Some((1, 'b')); assert find_between(v, 0u, 4u, f) == Some((1, 'b')); assert find_between(v, 1u, 1u, f).is_none(); assert find_between(v, 1u, 2u, f) == Some((1, 'b')); assert find_between(v, 1u, 3u, f) == Some((1, 'b')); assert find_between(v, 1u, 4u, f) == Some((1, 'b')); assert find_between(v, 2u, 2u, f).is_none(); assert find_between(v, 2u, 3u, f).is_none(); assert find_between(v, 2u, 4u, f) == Some((3, 'b')); assert find_between(v, 3u, 3u, f).is_none(); assert find_between(v, 3u, 4u, f) == Some((3, 'b')); assert find_between(v, 4u, 4u, f).is_none(); } #[test] fn test_rposition() { assert find(~[], f).is_none(); fn f(xy: &(int, char)) -> bool { let (_x, y) = *xy; y == 'b' } fn g(xy: &(int, char)) -> bool { let (_x, y) = *xy; y == 'd' } let mut v = ~[(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')]; assert position(v, f) == Some(1u); assert position(v, g).is_none(); } #[test] fn test_rposition_between() { assert rposition_between(~[], 0u, 0u, f).is_none(); fn f(xy: &(int, char)) -> bool { let (_x, y) = *xy; y == 'b' } let mut v = ~[(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')]; assert rposition_between(v, 0u, 0u, f).is_none(); assert rposition_between(v, 0u, 1u, f).is_none(); assert rposition_between(v, 0u, 2u, f) == Some(1u); assert rposition_between(v, 0u, 3u, f) == Some(1u); assert rposition_between(v, 0u, 4u, f) == Some(3u); assert rposition_between(v, 1u, 1u, f).is_none(); assert rposition_between(v, 1u, 2u, f) == Some(1u); assert rposition_between(v, 1u, 3u, f) == Some(1u); assert rposition_between(v, 1u, 4u, f) == Some(3u); assert rposition_between(v, 2u, 2u, f).is_none(); assert rposition_between(v, 2u, 3u, f).is_none(); assert rposition_between(v, 2u, 4u, f) == Some(3u); assert rposition_between(v, 3u, 3u, f).is_none(); assert rposition_between(v, 3u, 4u, f) == Some(3u); assert rposition_between(v, 4u, 4u, f).is_none(); } #[test] fn test_rfind() { assert rfind(~[], f).is_none(); fn f(xy: &(int, char)) -> bool { let (_x, y) = *xy; y == 'b' } fn g(xy: &(int, char)) -> bool { let (_x, y) = *xy; y == 'd' } let mut v = ~[(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')]; assert rfind(v, f) == Some((3, 'b')); assert rfind(v, g).is_none(); } #[test] fn test_rfind_between() { assert rfind_between(~[], 0u, 0u, f).is_none(); fn f(xy: &(int, char)) -> bool { let (_x, y) = *xy; y == 'b' } let mut v = ~[(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')]; assert rfind_between(v, 0u, 0u, f).is_none(); assert rfind_between(v, 0u, 1u, f).is_none(); assert rfind_between(v, 0u, 2u, f) == Some((1, 'b')); assert rfind_between(v, 0u, 3u, f) == Some((1, 'b')); assert rfind_between(v, 0u, 4u, f) == Some((3, 'b')); assert rfind_between(v, 1u, 1u, f).is_none(); assert rfind_between(v, 1u, 2u, f) == Some((1, 'b')); assert rfind_between(v, 1u, 3u, f) == Some((1, 'b')); assert rfind_between(v, 1u, 4u, f) == Some((3, 'b')); assert rfind_between(v, 2u, 2u, f).is_none(); assert rfind_between(v, 2u, 3u, f).is_none(); assert rfind_between(v, 2u, 4u, f) == Some((3, 'b')); assert rfind_between(v, 3u, 3u, f).is_none(); assert rfind_between(v, 3u, 4u, f) == Some((3, 'b')); assert rfind_between(v, 4u, 4u, f).is_none(); } #[test] fn reverse_and_reversed() { let mut v: ~[int] = ~[10, 20]; assert (v[0] == 10); assert (v[1] == 20); reverse(v); assert (v[0] == 20); assert (v[1] == 10); let v2 = reversed::<int>(~[10, 20]); assert (v2[0] == 20); assert (v2[1] == 10); v[0] = 30; assert (v2[0] == 20); // Make sure they work with 0-length vectors too. let v4 = reversed::<int>(~[]); assert (v4 == ~[]); let mut v3: ~[int] = ~[]; reverse::<int>(v3); } #[test] fn reversed_mut() { let mut v2 = reversed::<int>(~[10, 20]); assert (v2[0] == 20); assert (v2[1] == 10); } #[test] fn test_split() { fn f(x: &int) -> bool { *x == 3 } assert split(~[], f) == ~[]; assert split(~[1, 2], f) == ~[~[1, 2]]; assert split(~[3, 1, 2], f) == ~[~[], ~[1, 2]]; assert split(~[1, 2, 3], f) == ~[~[1, 2], ~[]]; assert split(~[1, 2, 3, 4, 3, 5], f) == ~[~[1, 2], ~[4], ~[5]]; } #[test] fn test_splitn() { fn f(x: &int) -> bool { *x == 3 } assert splitn(~[], 1u, f) == ~[]; assert splitn(~[1, 2], 1u, f) == ~[~[1, 2]]; assert splitn(~[3, 1, 2], 1u, f) == ~[~[], ~[1, 2]]; assert splitn(~[1, 2, 3], 1u, f) == ~[~[1, 2], ~[]]; assert splitn(~[1, 2, 3, 4, 3, 5], 1u, f) == ~[~[1, 2], ~[4, 3, 5]]; } #[test] fn test_rsplit() { fn f(x: &int) -> bool { *x == 3 } assert rsplit(~[], f) == ~[]; assert rsplit(~[1, 2], f) == ~[~[1, 2]]; assert rsplit(~[1, 2, 3], f) == ~[~[1, 2], ~[]]; assert rsplit(~[1, 2, 3, 4, 3, 5], f) == ~[~[1, 2], ~[4], ~[5]]; } #[test] fn test_rsplitn() { fn f(x: &int) -> bool { *x == 3 } assert rsplitn(~[], 1u, f) == ~[]; assert rsplitn(~[1, 2], 1u, f) == ~[~[1, 2]]; assert rsplitn(~[1, 2, 3], 1u, f) == ~[~[1, 2], ~[]]; assert rsplitn(~[1, 2, 3, 4, 3, 5], 1u, f) == ~[~[1, 2, 3, 4], ~[5]]; } #[test] fn test_partition() { // FIXME (#4355 maybe): using v.partition here crashes assert partition(~[], |x: &int| *x < 3) == (~[], ~[]); assert partition(~[1, 2, 3], |x: &int| *x < 4) == (~[1, 2, 3], ~[]); assert partition(~[1, 2, 3], |x: &int| *x < 2) == (~[1], ~[2, 3]); assert partition(~[1, 2, 3], |x: &int| *x < 0) == (~[], ~[1, 2, 3]); } #[test] fn test_partitioned() { assert (~[]).partitioned(|x: &int| *x < 3) == (~[], ~[]); assert (~[1, 2, 3]).partitioned(|x: &int| *x < 4) == (~[1, 2, 3], ~[]); assert (~[1, 2, 3]).partitioned(|x: &int| *x < 2) == (~[1], ~[2, 3]); assert (~[1, 2, 3]).partitioned(|x: &int| *x < 0) == (~[], ~[1, 2, 3]); } #[test] fn test_concat() { assert concat(~[~[1], ~[2,3]]) == ~[1, 2, 3]; } #[test] fn test_connect() { assert connect(~[], &0) == ~[]; assert connect(~[~[1], ~[2, 3]], &0) == ~[1, 0, 2, 3]; assert connect(~[~[1], ~[2], ~[3]], &0) == ~[1, 0, 2, 0, 3]; } #[test] fn test_windowed () { assert ~[~[1u,2u,3u],~[2u,3u,4u],~[3u,4u,5u],~[4u,5u,6u]] == windowed (3u, ~[1u,2u,3u,4u,5u,6u]); assert ~[~[1u,2u,3u,4u],~[2u,3u,4u,5u],~[3u,4u,5u,6u]] == windowed (4u, ~[1u,2u,3u,4u,5u,6u]); assert ~[] == windowed (7u, ~[1u,2u,3u,4u,5u,6u]); } #[test] #[should_fail] #[ignore(cfg(windows))] fn test_windowed_() { let _x = windowed (0u, ~[1u,2u,3u,4u,5u,6u]); } #[test] fn test_unshift() { let mut x = ~[1, 2, 3]; x.unshift(0); assert x == ~[0, 1, 2, 3]; } #[test] fn test_insert() { let mut a = ~[1, 2, 4]; a.insert(2, 3); assert a == ~[1, 2, 3, 4]; let mut a = ~[1, 2, 3]; a.insert(0, 0); assert a == ~[0, 1, 2, 3]; let mut a = ~[1, 2, 3]; a.insert(3, 4); assert a == ~[1, 2, 3, 4]; let mut a = ~[]; a.insert(0, 1); assert a == ~[1]; } #[test] #[ignore(cfg(windows))] #[should_fail] fn test_insert_oob() { let mut a = ~[1, 2, 3]; a.insert(4, 5); } #[test] fn test_remove() { let mut a = ~[1, 2, 3, 4]; a.remove(2); assert a == ~[1, 2, 4]; let mut a = ~[1, 2, 3]; a.remove(0); assert a == ~[2, 3]; let mut a = ~[1]; a.remove(0); assert a == ~[]; } #[test] #[ignore(cfg(windows))] #[should_fail] fn test_remove_oob() { let mut a = ~[1, 2, 3]; a.remove(3); } #[test] fn test_capacity() { let mut v = ~[0u64]; reserve(&mut v, 10u); assert capacity(&v) == 10u; let mut v = ~[0u32]; reserve(&mut v, 10u); assert capacity(&v) == 10u; } #[test] fn test_view() { let v = ~[1, 2, 3, 4, 5]; let v = v.view(1u, 3u); assert(len(v) == 2u); assert(v[0] == 2); assert(v[1] == 3); } #[test] #[ignore(windows)] #[should_fail] fn test_from_fn_fail() { do from_fn(100) |v| { if v == 50 { fail!() } (~0, @0) }; } #[test] #[ignore(windows)] #[should_fail] fn test_build_fail() { do build |push| { push((~0, @0)); push((~0, @0)); push((~0, @0)); push((~0, @0)); fail!(); }; } #[test] #[ignore(windows)] #[should_fail] #[allow(non_implicitly_copyable_typarams)] fn test_split_fail_ret_true() { let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)]; let mut i = 0; do split(v) |_elt| { if i == 2 { fail!() } i += 1; true }; } #[test] #[ignore(windows)] #[should_fail] #[allow(non_implicitly_copyable_typarams)] fn test_split_fail_ret_false() { let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)]; let mut i = 0; do split(v) |_elt| { if i == 2 { fail!() } i += 1; false }; } #[test] #[ignore(windows)] #[should_fail] #[allow(non_implicitly_copyable_typarams)] fn test_splitn_fail_ret_true() { let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)]; let mut i = 0; do splitn(v, 100) |_elt| { if i == 2 { fail!() } i += 1; true }; } #[test] #[ignore(windows)] #[should_fail] #[allow(non_implicitly_copyable_typarams)] fn test_splitn_fail_ret_false() { let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)]; let mut i = 0; do split(v) |_elt| { if i == 2 { fail!() } i += 1; false }; } #[test] #[ignore(windows)] #[should_fail] #[allow(non_implicitly_copyable_typarams)] fn test_rsplit_fail_ret_true() { let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)]; let mut i = 0; do rsplit(v) |_elt| { if i == 2 { fail!() } i += 1; true }; } #[test] #[ignore(windows)] #[should_fail] #[allow(non_implicitly_copyable_typarams)] fn test_rsplit_fail_ret_false() { let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)]; let mut i = 0; do rsplit(v) |_elt| { if i == 2 { fail!() } i += 1; false }; } #[test] #[ignore(windows)] #[should_fail] #[allow(non_implicitly_copyable_typarams)] fn test_rsplitn_fail_ret_true() { let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)]; let mut i = 0; do rsplitn(v, 100) |_elt| { if i == 2 { fail!() } i += 1; true }; } #[test] #[ignore(windows)] #[should_fail] #[allow(non_implicitly_copyable_typarams)] fn test_rsplitn_fail_ret_false() { let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)]; let mut i = 0; do rsplitn(v, 100) |_elt| { if i == 2 { fail!() } i += 1; false }; } #[test] #[ignore(windows)] #[should_fail] fn test_consume_fail() { let v = ~[(~0, @0), (~0, @0), (~0, @0), (~0, @0)]; let mut i = 0; do consume(v) |_i, _elt| { if i == 2 { fail!() } i += 1; }; } #[test] #[ignore(windows)] #[should_fail] #[allow(non_implicitly_copyable_typarams)] fn test_grow_fn_fail() { let mut v = ~[]; do v.grow_fn(100) |i| { if i == 50 { fail!() } (~0, @0) } } #[test] #[ignore(windows)] #[should_fail] fn test_map_fail() { let mut v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)]; let mut i = 0; do map(v) |_elt| { if i == 2 { fail!() } i += 0; ~[(~0, @0)] }; } #[test] #[ignore(windows)] #[should_fail] fn test_map_consume_fail() { let v = ~[(~0, @0), (~0, @0), (~0, @0), (~0, @0)]; let mut i = 0; do map_consume(v) |_elt| { if i == 2 { fail!() } i += 0; ~[(~0, @0)] }; } #[test] #[ignore(windows)] #[should_fail] fn test_mapi_fail() { let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)]; let mut i = 0; do mapi(v) |_i, _elt| { if i == 2 { fail!() } i += 0; ~[(~0, @0)] }; } #[test] #[ignore(windows)] #[should_fail] fn test_flat_map_fail() { let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)]; let mut i = 0; do map(v) |_elt| { if i == 2 { fail!() } i += 0; ~[(~0, @0)] }; } #[test] #[ignore(windows)] #[should_fail] #[allow(non_implicitly_copyable_typarams)] fn test_map2_fail() { let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)]; let mut i = 0; do map2(v, v) |_elt1, _elt2| { if i == 2 { fail!() } i += 0; ~[(~0, @0)] }; } #[test] #[ignore(windows)] #[should_fail] #[allow(non_implicitly_copyable_typarams)] fn test_filter_mapped_fail() { let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)]; let mut i = 0; do filter_mapped(v) |_elt| { if i == 2 { fail!() } i += 0; Some((~0, @0)) }; } #[test] #[ignore(windows)] #[should_fail] #[allow(non_implicitly_copyable_typarams)] fn test_filter_fail() { let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)]; let mut i = 0; do v.filtered |_elt| { if i == 2 { fail!() } i += 0; true }; } #[test] #[ignore(windows)] #[should_fail] #[allow(non_implicitly_copyable_typarams)] fn test_foldl_fail() { let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)]; let mut i = 0; do foldl((~0, @0), v) |_a, _b| { if i == 2 { fail!() } i += 0; (~0, @0) }; } #[test] #[ignore(windows)] #[should_fail] #[allow(non_implicitly_copyable_typarams)] fn test_foldr_fail() { let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)]; let mut i = 0; do foldr(v, (~0, @0)) |_a, _b| { if i == 2 { fail!() } i += 0; (~0, @0) }; } #[test] #[ignore(windows)] #[should_fail] fn test_any_fail() { let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)]; let mut i = 0; do any(v) |_elt| { if i == 2 { fail!() } i += 0; false }; } #[test] #[ignore(windows)] #[should_fail] fn test_any2_fail() { let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)]; let mut i = 0; do any(v) |_elt| { if i == 2 { fail!() } i += 0; false }; } #[test] #[ignore(windows)] #[should_fail] fn test_all_fail() { let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)]; let mut i = 0; do all(v) |_elt| { if i == 2 { fail!() } i += 0; true }; } #[test] #[ignore(windows)] #[should_fail] fn test_alli_fail() { let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)]; let mut i = 0; do alli(v) |_i, _elt| { if i == 2 { fail!() } i += 0; true }; } #[test] #[ignore(windows)] #[should_fail] fn test_all2_fail() { let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)]; let mut i = 0; do all2(v, v) |_elt1, _elt2| { if i == 2 { fail!() } i += 0; true }; } #[test] #[ignore(windows)] #[should_fail] #[allow(non_implicitly_copyable_typarams)] fn test_find_fail() { let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)]; let mut i = 0; do find(v) |_elt| { if i == 2 { fail!() } i += 0; false }; } #[test] #[ignore(windows)] #[should_fail] fn test_position_fail() { let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)]; let mut i = 0; do position(v) |_elt| { if i == 2 { fail!() } i += 0; false }; } #[test] #[ignore(windows)] #[should_fail] fn test_rposition_fail() { let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)]; let mut i = 0; do rposition(v) |_elt| { if i == 2 { fail!() } i += 0; false }; } #[test] #[ignore(windows)] #[should_fail] fn test_each_fail() { let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)]; let mut i = 0; do each(v) |_elt| { if i == 2 { fail!() } i += 0; false } } #[test] #[ignore(windows)] #[should_fail] fn test_eachi_fail() { let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)]; let mut i = 0; do eachi(v) |_i, _elt| { if i == 2 { fail!() } i += 0; false } } #[test] #[ignore(windows)] #[should_fail] #[allow(non_implicitly_copyable_typarams)] fn test_permute_fail() { let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)]; let mut i = 0; for each_permutation(v) |_elt| { if i == 2 { fail!() } i += 0; } } #[test] #[ignore(windows)] #[should_fail] fn test_as_imm_buf_fail() { let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)]; do as_imm_buf(v) |_buf, _i| { fail!() } } #[test] #[ignore(windows)] #[should_fail] fn test_as_const_buf_fail() { let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)]; do as_const_buf(v) |_buf, _i| { fail!() } } #[test] #[ignore(cfg(windows))] #[should_fail] fn test_as_mut_buf_fail() { let mut v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)]; do as_mut_buf(v) |_buf, _i| { fail!() } } #[test] #[should_fail] #[ignore(cfg(windows))] fn test_copy_memory_oob() { unsafe { let mut a = [1, 2, 3, 4]; let b = [1, 2, 3, 4, 5]; raw::copy_memory(a, b, 5); } } #[test] fn test_total_ord() { [1, 2, 3, 4].cmp(& &[1, 2, 3]) == Greater; [1, 2, 3].cmp(& &[1, 2, 3, 4]) == Less; [1, 2, 3, 4].cmp(& &[1, 2, 3, 4]) == Equal; [1, 2, 3, 4, 5, 5, 5, 5].cmp(& &[1, 2, 3, 4, 5, 6]) == Less; [2, 2].cmp(& &[1, 2, 3, 4]) == Greater; } } // Local Variables: // mode: rust; // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // End: