// ignore-windows: File handling is not implemented yet // compile-flags: -Zmiri-disable-isolation #![feature(rustc_private)] #![feature(io_error_more)] extern crate libc; use std::ffi::CString; use std::fs::{ create_dir, read_dir, remove_dir, remove_dir_all, remove_file, rename, File, OpenOptions, }; use std::io::{Error, ErrorKind, Read, Result, Seek, SeekFrom, Write}; use std::path::{Path, PathBuf}; fn main() { test_file(); test_file_clone(); test_file_create_new(); test_seek(); test_metadata(); test_file_set_len(); test_file_sync(); test_symlink(); test_errors(); test_rename(); test_directory(); test_dup_stdout_stderr(); // These all require unix, if the test is changed to no longer `ignore-windows`, move these to a unix test test_file_open_unix_allow_two_args(); test_file_open_unix_needs_three_args(); test_file_open_unix_extra_third_arg(); } fn tmp() -> PathBuf { std::env::var("MIRI_TEMP") .map(|tmp| { // MIRI_TEMP is set outside of our emulated // program, so it may have path separators that don't // correspond to our target platform. We normalize them here // before constructing a `PathBuf` #[cfg(windows)] return PathBuf::from(tmp.replace("/", "\\")); #[cfg(not(windows))] return PathBuf::from(tmp.replace("\\", "/")); }) .unwrap_or_else(|_| std::env::temp_dir()) } /// Prepare: compute filename and make sure the file does not exist. fn prepare(filename: &str) -> PathBuf { let path = tmp().join(filename); // Clean the paths for robustness. remove_file(&path).ok(); path } /// Prepare directory: compute directory name and make sure it does not exist. fn prepare_dir(dirname: &str) -> PathBuf { let path = tmp().join(&dirname); // Clean the directory for robustness. remove_dir_all(&path).ok(); path } /// Prepare like above, and also write some initial content to the file. fn prepare_with_content(filename: &str, content: &[u8]) -> PathBuf { let path = prepare(filename); let mut file = File::create(&path).unwrap(); file.write(content).unwrap(); path } fn test_file() { let bytes = b"Hello, World!\n"; let path = prepare("miri_test_fs_file.txt"); // Test creating, writing and closing a file (closing is tested when `file` is dropped). let mut file = File::create(&path).unwrap(); // Writing 0 bytes should not change the file contents. file.write(&mut []).unwrap(); assert_eq!(file.metadata().unwrap().len(), 0); file.write(bytes).unwrap(); assert_eq!(file.metadata().unwrap().len(), bytes.len() as u64); // Test opening, reading and closing a file. let mut file = File::open(&path).unwrap(); let mut contents = Vec::new(); // Reading 0 bytes should not move the file pointer. file.read(&mut []).unwrap(); // Reading until EOF should get the whole text. file.read_to_end(&mut contents).unwrap(); assert_eq!(bytes, contents.as_slice()); // Removing file should succeed. remove_file(&path).unwrap(); } fn test_file_open_unix_allow_two_args() { use std::os::unix::ffi::OsStrExt; let path = prepare_with_content("test_file_open_unix_allow_two_args.txt", &[]); let mut name = path.into_os_string(); name.push("\0"); let name_ptr = name.as_bytes().as_ptr().cast::(); let _fd = unsafe { libc::open(name_ptr, libc::O_RDONLY) }; } fn test_file_open_unix_needs_three_args() { use std::os::unix::ffi::OsStrExt; let path = prepare_with_content("test_file_open_unix_needs_three_args.txt", &[]); let mut name = path.into_os_string(); name.push("\0"); let name_ptr = name.as_bytes().as_ptr().cast::(); let _fd = unsafe { libc::open(name_ptr, libc::O_CREAT, 0o666) }; } fn test_file_open_unix_extra_third_arg() { use std::os::unix::ffi::OsStrExt; let path = prepare_with_content("test_file_open_unix_extra_third_arg.txt", &[]); let mut name = path.into_os_string(); name.push("\0"); let name_ptr = name.as_bytes().as_ptr().cast::(); let _fd = unsafe { libc::open(name_ptr, libc::O_RDONLY, 42) }; } fn test_file_clone() { let bytes = b"Hello, World!\n"; let path = prepare_with_content("miri_test_fs_file_clone.txt", bytes); // Cloning a file should be successful. let file = File::open(&path).unwrap(); let mut cloned = file.try_clone().unwrap(); // Reading from a cloned file should get the same text. let mut contents = Vec::new(); cloned.read_to_end(&mut contents).unwrap(); assert_eq!(bytes, contents.as_slice()); // Removing file should succeed. remove_file(&path).unwrap(); } fn test_file_create_new() { let path = prepare("miri_test_fs_file_create_new.txt"); // Creating a new file that doesn't yet exist should succeed. OpenOptions::new().write(true).create_new(true).open(&path).unwrap(); // Creating a new file that already exists should fail. assert_eq!( ErrorKind::AlreadyExists, OpenOptions::new().write(true).create_new(true).open(&path).unwrap_err().kind() ); // Optionally creating a new file that already exists should succeed. OpenOptions::new().write(true).create(true).open(&path).unwrap(); // Clean up remove_file(&path).unwrap(); } fn test_seek() { let bytes = b"Hello, entire World!\n"; let path = prepare_with_content("miri_test_fs_seek.txt", bytes); let mut file = File::open(&path).unwrap(); let mut contents = Vec::new(); file.read_to_end(&mut contents).unwrap(); assert_eq!(bytes, contents.as_slice()); // Test that seeking to the beginning and reading until EOF gets the text again. file.seek(SeekFrom::Start(0)).unwrap(); let mut contents = Vec::new(); file.read_to_end(&mut contents).unwrap(); assert_eq!(bytes, contents.as_slice()); // Test seeking relative to the end of the file. file.seek(SeekFrom::End(-1)).unwrap(); let mut contents = Vec::new(); file.read_to_end(&mut contents).unwrap(); assert_eq!(&bytes[bytes.len() - 1..], contents.as_slice()); // Test seeking relative to the current position. file.seek(SeekFrom::Start(5)).unwrap(); file.seek(SeekFrom::Current(-3)).unwrap(); let mut contents = Vec::new(); file.read_to_end(&mut contents).unwrap(); assert_eq!(&bytes[2..], contents.as_slice()); // Removing file should succeed. remove_file(&path).unwrap(); } fn check_metadata(bytes: &[u8], path: &Path) -> Result<()> { // Test that the file metadata is correct. let metadata = path.metadata()?; // `path` should point to a file. assert!(metadata.is_file()); // The size of the file must be equal to the number of written bytes. assert_eq!(bytes.len() as u64, metadata.len()); Ok(()) } fn test_metadata() { let bytes = b"Hello, meta-World!\n"; let path = prepare_with_content("miri_test_fs_metadata.txt", bytes); // Test that metadata of an absolute path is correct. check_metadata(bytes, &path).unwrap(); // Test that metadata of a relative path is correct. std::env::set_current_dir(path.parent().unwrap()).unwrap(); check_metadata(bytes, Path::new(path.file_name().unwrap())).unwrap(); // Removing file should succeed. remove_file(&path).unwrap(); } fn test_file_set_len() { let bytes = b"Hello, World!\n"; let path = prepare_with_content("miri_test_fs_set_len.txt", bytes); // Test extending the file let mut file = OpenOptions::new().read(true).write(true).open(&path).unwrap(); let bytes_extended = b"Hello, World!\n\x00\x00\x00\x00\x00\x00"; file.set_len(20).unwrap(); let mut contents = Vec::new(); file.read_to_end(&mut contents).unwrap(); assert_eq!(bytes_extended, contents.as_slice()); // Test truncating the file file.seek(SeekFrom::Start(0)).unwrap(); file.set_len(10).unwrap(); let mut contents = Vec::new(); file.read_to_end(&mut contents).unwrap(); assert_eq!(&bytes[..10], contents.as_slice()); // Can't use set_len on a file not opened for writing let file = OpenOptions::new().read(true).open(&path).unwrap(); assert_eq!(ErrorKind::InvalidInput, file.set_len(14).unwrap_err().kind()); remove_file(&path).unwrap(); } fn test_file_sync() { let bytes = b"Hello, World!\n"; let path = prepare_with_content("miri_test_fs_sync.txt", bytes); // Test that we can call sync_data and sync_all (can't readily test effects of this operation) let file = OpenOptions::new().write(true).open(&path).unwrap(); file.sync_data().unwrap(); file.sync_all().unwrap(); // Test that we can call sync_data and sync_all on a file opened for reading. let file = File::open(&path).unwrap(); file.sync_data().unwrap(); file.sync_all().unwrap(); remove_file(&path).unwrap(); } fn test_symlink() { let bytes = b"Hello, World!\n"; let path = prepare_with_content("miri_test_fs_link_target.txt", bytes); let symlink_path = prepare("miri_test_fs_symlink.txt"); // Creating a symbolic link should succeed. #[cfg(unix)] std::os::unix::fs::symlink(&path, &symlink_path).unwrap(); #[cfg(windows)] std::os::windows::fs::symlink_file(&path, &symlink_path).unwrap(); // Test that the symbolic link has the same contents as the file. let mut symlink_file = File::open(&symlink_path).unwrap(); let mut contents = Vec::new(); symlink_file.read_to_end(&mut contents).unwrap(); assert_eq!(bytes, contents.as_slice()); #[cfg(unix)] { use std::os::unix::ffi::OsStrExt; let expected_path = path.as_os_str().as_bytes(); // Test that the expected string gets written to a buffer of proper // length, and that a trailing null byte is not written. let symlink_c_str = CString::new(symlink_path.as_os_str().as_bytes()).unwrap(); let symlink_c_ptr = symlink_c_str.as_ptr(); // Make the buf one byte larger than it needs to be, // and check that the last byte is not overwritten. let mut large_buf = vec![0xFF; expected_path.len() + 1]; let res = unsafe { libc::readlink(symlink_c_ptr, large_buf.as_mut_ptr().cast(), large_buf.len()) }; // Check that the resovled path was properly written into the buf. assert_eq!(&large_buf[..(large_buf.len() - 1)], expected_path); assert_eq!(large_buf.last(), Some(&0xFF)); assert_eq!(res, large_buf.len() as isize - 1); // Test that the resolved path is truncated if the provided buffer // is too small. let mut small_buf = [0u8; 2]; let res = unsafe { libc::readlink(symlink_c_ptr, small_buf.as_mut_ptr().cast(), small_buf.len()) }; assert_eq!(small_buf, &expected_path[..small_buf.len()]); assert_eq!(res, small_buf.len() as isize); // Test that we report a proper error for a missing path. let bad_path = CString::new("MIRI_MISSING_FILE_NAME").unwrap(); let res = unsafe { libc::readlink(bad_path.as_ptr(), small_buf.as_mut_ptr().cast(), small_buf.len()) }; assert_eq!(res, -1); assert_eq!(Error::last_os_error().kind(), ErrorKind::NotFound); } // Test that metadata of a symbolic link is correct. check_metadata(bytes, &symlink_path).unwrap(); // Test that the metadata of a symbolic link is correct when not following it. assert!(symlink_path.symlink_metadata().unwrap().file_type().is_symlink()); // Removing symbolic link should succeed. remove_file(&symlink_path).unwrap(); // Removing file should succeed. remove_file(&path).unwrap(); } fn test_errors() { let bytes = b"Hello, World!\n"; let path = prepare("miri_test_fs_errors.txt"); // The following tests also check that the `__errno_location()` shim is working properly. // Opening a non-existing file should fail with a "not found" error. assert_eq!(ErrorKind::NotFound, File::open(&path).unwrap_err().kind()); // Removing a non-existing file should fail with a "not found" error. assert_eq!(ErrorKind::NotFound, remove_file(&path).unwrap_err().kind()); // Reading the metadata of a non-existing file should fail with a "not found" error. assert_eq!(ErrorKind::NotFound, check_metadata(bytes, &path).unwrap_err().kind()); } fn test_rename() { // Renaming a file should succeed. let path1 = prepare("miri_test_fs_rename_source.txt"); let path2 = prepare("miri_test_fs_rename_destination.txt"); let file = File::create(&path1).unwrap(); drop(file); // Renaming should succeed rename(&path1, &path2).unwrap(); // Check that the old file path isn't present assert_eq!(ErrorKind::NotFound, path1.metadata().unwrap_err().kind()); // Check that the file has moved successfully assert!(path2.metadata().unwrap().is_file()); // Renaming a nonexistent file should fail assert_eq!(ErrorKind::NotFound, rename(&path1, &path2).unwrap_err().kind()); remove_file(&path2).unwrap(); } fn test_directory() { let dir_path = prepare_dir("miri_test_fs_dir"); // Creating a directory should succeed. create_dir(&dir_path).unwrap(); // Test that the metadata of a directory is correct. assert!(dir_path.metadata().unwrap().is_dir()); // Creating a directory when it already exists should fail. assert_eq!(ErrorKind::AlreadyExists, create_dir(&dir_path).unwrap_err().kind()); // Create some files inside the directory let path_1 = dir_path.join("test_file_1"); drop(File::create(&path_1).unwrap()); let path_2 = dir_path.join("test_file_2"); drop(File::create(&path_2).unwrap()); // Test that the files are present inside the directory let dir_iter = read_dir(&dir_path).unwrap(); let mut file_names = dir_iter.map(|e| e.unwrap().file_name()).collect::>(); file_names.sort_unstable(); assert_eq!(file_names, vec!["test_file_1", "test_file_2"]); // Deleting the directory should fail, since it is not empty. assert_eq!(ErrorKind::DirectoryNotEmpty, remove_dir(&dir_path).unwrap_err().kind()); // Clean up the files in the directory remove_file(&path_1).unwrap(); remove_file(&path_2).unwrap(); // Now there should be nothing left in the directory. let dir_iter = read_dir(&dir_path).unwrap(); let file_names = dir_iter.map(|e| e.unwrap().file_name()).collect::>(); assert!(file_names.is_empty()); // Deleting the directory should succeed. remove_dir(&dir_path).unwrap(); // Reading the metadata of a non-existent directory should fail with a "not found" error. assert_eq!(ErrorKind::NotFound, check_metadata(&[], &dir_path).unwrap_err().kind()); } fn test_dup_stdout_stderr() { let bytes = b"hello dup fd\n"; unsafe { let new_stdout = libc::fcntl(1, libc::F_DUPFD, 0); let new_stderr = libc::fcntl(2, libc::F_DUPFD, 0); libc::write(new_stdout, bytes.as_ptr() as *const libc::c_void, bytes.len()); libc::write(new_stderr, bytes.as_ptr() as *const libc::c_void, bytes.len()); } }