use rustc::middle::const_val; use rustc::hir::def_id::DefId; use rustc::mir::mir_map::MirMap; use rustc::mir::repr as mir; use rustc::traits::{self, ProjectionMode}; use rustc::ty::fold::TypeFoldable; use rustc::ty::layout::{self, Layout, Size}; use rustc::ty::subst::{self, Subst, Substs}; use rustc::ty::{self, Ty, TyCtxt, BareFnTy}; use rustc::util::nodemap::DefIdMap; use rustc_data_structures::indexed_vec::Idx; use std::cell::RefCell; use std::ops::Deref; use std::rc::Rc; use std::{iter, mem}; use syntax::ast; use syntax::attr; use syntax::codemap::{self, DUMMY_SP, Span}; use error::{EvalError, EvalResult}; use memory::{Memory, Pointer, FunctionDefinition}; use primval::{self, PrimVal}; use std::collections::HashMap; mod stepper; pub fn step<'ecx, 'a: 'ecx, 'tcx: 'a>(ecx: &'ecx mut EvalContext<'a, 'tcx>) -> EvalResult<'tcx, bool> { stepper::Stepper::new(ecx).step() } pub struct EvalContext<'a, 'tcx: 'a> { /// The results of the type checker, from rustc. tcx: TyCtxt<'a, 'tcx, 'tcx>, /// A mapping from NodeIds to Mir, from rustc. Only contains MIR for crate-local items. mir_map: &'a MirMap<'tcx>, /// A local cache from DefIds to Mir for non-crate-local items. mir_cache: RefCell>>>, /// The virtual memory system. memory: Memory<'tcx>, /// Precomputed statics, constants and promoteds. statics: HashMap, Pointer>, /// The virtual call stack. stack: Vec>, } /// A stack frame. pub struct Frame<'a, 'tcx: 'a> { //////////////////////////////////////////////////////////////////////////////// // Function and callsite information //////////////////////////////////////////////////////////////////////////////// /// The MIR for the function called on this frame. pub mir: CachedMir<'a, 'tcx>, /// The def_id of the current function. pub def_id: DefId, /// type substitutions for the current function invocation. pub substs: &'tcx Substs<'tcx>, /// The span of the call site. pub span: codemap::Span, //////////////////////////////////////////////////////////////////////////////// // Return pointer and local allocations //////////////////////////////////////////////////////////////////////////////// /// A pointer for writing the return value of the current call if it's not a diverging call. pub return_ptr: Option, /// The list of locals for the current function, stored in order as /// `[arguments..., variables..., temporaries...]`. The variables begin at `self.var_offset` /// and the temporaries at `self.temp_offset`. pub locals: Vec, /// The offset of the first variable in `self.locals`. pub var_offset: usize, /// The offset of the first temporary in `self.locals`. pub temp_offset: usize, //////////////////////////////////////////////////////////////////////////////// // Current position within the function //////////////////////////////////////////////////////////////////////////////// /// The block that is currently executed (or will be executed after the above call stacks /// return). pub block: mir::BasicBlock, /// The index of the currently evaluated statment. pub stmt: usize, } #[derive(Copy, Clone, Debug, Eq, PartialEq)] struct Lvalue { ptr: Pointer, extra: LvalueExtra, } #[derive(Copy, Clone, Debug, Eq, PartialEq)] enum LvalueExtra { None, Length(u64), // TODO(solson): Vtable(memory::AllocId), DowncastVariant(usize), } #[derive(Clone)] pub enum CachedMir<'mir, 'tcx: 'mir> { Ref(&'mir mir::Mir<'tcx>), Owned(Rc>) } #[derive(Clone, Debug, Eq, PartialEq, Hash)] /// Uniquely identifies a specific constant or static struct ConstantId<'tcx> { /// the def id of the constant/static or in case of promoteds, the def id of the function they belong to def_id: DefId, /// In case of statics and constants this is `Substs::empty()`, so only promoteds and associated /// constants actually have something useful here. We could special case statics and constants, /// but that would only require more branching when working with constants, and not bring any /// real benefits. substs: &'tcx Substs<'tcx>, kind: ConstantKind, } #[derive(Clone, Debug, Eq, PartialEq, Hash)] enum ConstantKind { Promoted(mir::Promoted), /// Statics, constants and associated constants Global, } impl<'a, 'tcx> EvalContext<'a, 'tcx> { pub fn new(tcx: TyCtxt<'a, 'tcx, 'tcx>, mir_map: &'a MirMap<'tcx>) -> Self { EvalContext { tcx: tcx, mir_map: mir_map, mir_cache: RefCell::new(DefIdMap()), memory: Memory::new(tcx.sess .target .uint_type .bit_width() .expect("Session::target::uint_type was usize")/8), statics: HashMap::new(), stack: Vec::new(), } } pub fn alloc_ret_ptr(&mut self, output_ty: ty::FnOutput<'tcx>, substs: &'tcx Substs<'tcx>) -> Option { match output_ty { ty::FnConverging(ty) => { let size = self.type_size_with_substs(ty, substs); Some(self.memory.allocate(size)) } ty::FnDiverging => None, } } pub fn memory(&self) -> &Memory { &self.memory } pub fn memory_mut(&mut self) -> &mut Memory<'tcx> { &mut self.memory } pub fn stack(&self) -> &[Frame] { &self.stack } // TODO(solson): Try making const_to_primval instead. fn const_to_ptr(&mut self, const_val: &const_val::ConstVal) -> EvalResult<'tcx, Pointer> { use rustc::middle::const_val::ConstVal::*; match *const_val { Float(_f) => unimplemented!(), Integral(int) => { // TODO(solson): Check int constant type. let ptr = self.memory.allocate(8); self.memory.write_uint(ptr, int.to_u64_unchecked(), 8)?; Ok(ptr) } Str(ref s) => { let psize = self.memory.pointer_size; let static_ptr = self.memory.allocate(s.len()); let ptr = self.memory.allocate(psize * 2); self.memory.write_bytes(static_ptr, s.as_bytes())?; self.memory.write_ptr(ptr, static_ptr)?; self.memory.write_usize(ptr.offset(psize as isize), s.len() as u64)?; Ok(ptr) } ByteStr(ref bs) => { let psize = self.memory.pointer_size; let static_ptr = self.memory.allocate(bs.len()); let ptr = self.memory.allocate(psize); self.memory.write_bytes(static_ptr, bs)?; self.memory.write_ptr(ptr, static_ptr)?; Ok(ptr) } Bool(b) => { let ptr = self.memory.allocate(1); self.memory.write_bool(ptr, b)?; Ok(ptr) } Char(_c) => unimplemented!(), Struct(_node_id) => unimplemented!(), Tuple(_node_id) => unimplemented!(), Function(_def_id) => unimplemented!(), Array(_, _) => unimplemented!(), Repeat(_, _) => unimplemented!(), Dummy => unimplemented!(), } } fn type_needs_drop(&self, ty: Ty<'tcx>) -> bool { self.tcx.type_needs_drop_given_env(ty, &self.tcx.empty_parameter_environment()) } fn type_is_sized(&self, ty: Ty<'tcx>) -> bool { ty.is_sized(self.tcx, &self.tcx.empty_parameter_environment(), DUMMY_SP) } fn fulfill_obligation(&self, trait_ref: ty::PolyTraitRef<'tcx>) -> traits::Vtable<'tcx, ()> { // Do the initial selection for the obligation. This yields the shallow result we are // looking for -- that is, what specific impl. self.tcx.normalizing_infer_ctxt(ProjectionMode::Any).enter(|infcx| { let mut selcx = traits::SelectionContext::new(&infcx); let obligation = traits::Obligation::new( traits::ObligationCause::misc(DUMMY_SP, ast::DUMMY_NODE_ID), trait_ref.to_poly_trait_predicate(), ); let selection = selcx.select(&obligation).unwrap().unwrap(); // Currently, we use a fulfillment context to completely resolve all nested obligations. // This is because they can inform the inference of the impl's type parameters. let mut fulfill_cx = traits::FulfillmentContext::new(); let vtable = selection.map(|predicate| { fulfill_cx.register_predicate_obligation(&infcx, predicate); }); infcx.drain_fulfillment_cx_or_panic(DUMMY_SP, &mut fulfill_cx, &vtable) }) } /// Trait method, which has to be resolved to an impl method. pub fn trait_method( &self, def_id: DefId, substs: &'tcx Substs<'tcx> ) -> (DefId, &'tcx Substs<'tcx>) { let method_item = self.tcx.impl_or_trait_item(def_id); let trait_id = method_item.container().id(); let trait_ref = ty::Binder(substs.to_trait_ref(self.tcx, trait_id)); match self.fulfill_obligation(trait_ref) { traits::VtableImpl(vtable_impl) => { let impl_did = vtable_impl.impl_def_id; let mname = self.tcx.item_name(def_id); // Create a concatenated set of substitutions which includes those from the impl // and those from the method: let impl_substs = vtable_impl.substs.with_method_from(substs); let substs = self.tcx.mk_substs(impl_substs); let mth = get_impl_method(self.tcx, impl_did, substs, mname); (mth.method.def_id, mth.substs) } traits::VtableClosure(vtable_closure) => (vtable_closure.closure_def_id, vtable_closure.substs.func_substs), traits::VtableFnPointer(_fn_ty) => { let _trait_closure_kind = self.tcx.lang_items.fn_trait_kind(trait_id).unwrap(); unimplemented!() // let llfn = trans_fn_pointer_shim(ccx, trait_closure_kind, fn_ty); // let method_ty = def_ty(tcx, def_id, substs); // let fn_ptr_ty = match method_ty.sty { // ty::TyFnDef(_, _, fty) => tcx.mk_ty(ty::TyFnPtr(fty)), // _ => unreachable!("expected fn item type, found {}", // method_ty) // }; // Callee::ptr(immediate_rvalue(llfn, fn_ptr_ty)) } traits::VtableObject(ref _data) => { unimplemented!() // Callee { // data: Virtual(traits::get_vtable_index_of_object_method( // tcx, data, def_id)), // ty: def_ty(tcx, def_id, substs) // } } vtable => unreachable!("resolved vtable bad vtable {:?} in trans", vtable), } } fn load_mir(&self, def_id: DefId) -> CachedMir<'a, 'tcx> { use rustc_trans::back::symbol_names::def_id_to_string; match self.tcx.map.as_local_node_id(def_id) { Some(node_id) => CachedMir::Ref(self.mir_map.map.get(&node_id).unwrap()), None => { let mut mir_cache = self.mir_cache.borrow_mut(); if let Some(mir) = mir_cache.get(&def_id) { return CachedMir::Owned(mir.clone()); } let cs = &self.tcx.sess.cstore; let mir = cs.maybe_get_item_mir(self.tcx, def_id).unwrap_or_else(|| { panic!("no mir for `{}`", def_id_to_string(self.tcx, def_id)); }); let cached = Rc::new(mir); mir_cache.insert(def_id, cached.clone()); CachedMir::Owned(cached) } } } fn monomorphize(&self, ty: Ty<'tcx>, substs: &'tcx Substs<'tcx>) -> Ty<'tcx> { let substituted = ty.subst(self.tcx, substs); self.tcx.normalize_associated_type(&substituted) } fn type_size(&self, ty: Ty<'tcx>) -> usize { self.type_size_with_substs(ty, self.substs()) } fn type_size_with_substs(&self, ty: Ty<'tcx>, substs: &'tcx Substs<'tcx>) -> usize { self.type_layout_with_substs(ty, substs).size(&self.tcx.data_layout).bytes() as usize } fn type_layout(&self, ty: Ty<'tcx>) -> &'tcx Layout { self.type_layout_with_substs(ty, self.substs()) } fn type_layout_with_substs(&self, ty: Ty<'tcx>, substs: &'tcx Substs<'tcx>) -> &'tcx Layout { // TODO(solson): Is this inefficient? Needs investigation. let ty = self.monomorphize(ty, substs); self.tcx.normalizing_infer_ctxt(ProjectionMode::Any).enter(|infcx| { // TODO(solson): Report this error properly. ty.layout(&infcx).unwrap() }) } pub fn push_stack_frame(&mut self, def_id: DefId, span: codemap::Span, mir: CachedMir<'a, 'tcx>, substs: &'tcx Substs<'tcx>, return_ptr: Option) { let arg_tys = mir.arg_decls.iter().map(|a| a.ty); let var_tys = mir.var_decls.iter().map(|v| v.ty); let temp_tys = mir.temp_decls.iter().map(|t| t.ty); let num_args = mir.arg_decls.len(); let num_vars = mir.var_decls.len(); ::log_settings::settings().indentation += 1; let locals: Vec = arg_tys.chain(var_tys).chain(temp_tys).map(|ty| { let size = self.type_size_with_substs(ty, substs); self.memory.allocate(size) }).collect(); self.stack.push(Frame { mir: mir.clone(), block: mir::START_BLOCK, return_ptr: return_ptr, locals: locals, var_offset: num_args, temp_offset: num_args + num_vars, span: span, def_id: def_id, substs: substs, stmt: 0, }); } fn pop_stack_frame(&mut self) { ::log_settings::settings().indentation -= 1; let _frame = self.stack.pop().expect("tried to pop a stack frame, but there were none"); // TODO(solson): Deallocate local variables. } fn eval_terminator(&mut self, terminator: &mir::Terminator<'tcx>) -> EvalResult<'tcx, ()> { use rustc::mir::repr::TerminatorKind::*; match terminator.kind { Return => self.pop_stack_frame(), Goto { target } => { self.frame_mut().block = target; }, If { ref cond, targets: (then_target, else_target) } => { let cond_ptr = self.eval_operand(cond)?; let cond_val = self.memory.read_bool(cond_ptr)?; self.frame_mut().block = if cond_val { then_target } else { else_target }; } SwitchInt { ref discr, ref values, ref targets, .. } => { let discr_ptr = self.eval_lvalue(discr)?.to_ptr(); let discr_size = self .type_layout(self.lvalue_ty(discr)) .size(&self.tcx.data_layout) .bytes() as usize; let discr_val = self.memory.read_uint(discr_ptr, discr_size)?; // Branch to the `otherwise` case by default, if no match is found. let mut target_block = targets[targets.len() - 1]; for (index, val_const) in values.iter().enumerate() { let ptr = self.const_to_ptr(val_const)?; let val = self.memory.read_uint(ptr, discr_size)?; if discr_val == val { target_block = targets[index]; break; } } self.frame_mut().block = target_block; } Switch { ref discr, ref targets, adt_def } => { let adt_ptr = self.eval_lvalue(discr)?.to_ptr(); let adt_ty = self.lvalue_ty(discr); let discr_val = self.read_discriminant_value(adt_ptr, adt_ty)?; let matching = adt_def.variants.iter() .position(|v| discr_val == v.disr_val.to_u64_unchecked()); match matching { Some(i) => { self.frame_mut().block = targets[i]; }, None => return Err(EvalError::InvalidDiscriminant), } } Call { ref func, ref args, ref destination, .. } => { let mut return_ptr = None; if let Some((ref lv, target)) = *destination { self.frame_mut().block = target; return_ptr = Some(self.eval_lvalue(lv)?.to_ptr()); } let func_ty = self.operand_ty(func); match func_ty.sty { ty::TyFnPtr(bare_fn_ty) => { let ptr = self.eval_operand(func)?; assert_eq!(ptr.offset, 0); let fn_ptr = self.memory.read_ptr(ptr)?; let FunctionDefinition { def_id, substs, fn_ty } = self.memory.get_fn(fn_ptr.alloc_id)?; if fn_ty != bare_fn_ty { return Err(EvalError::FunctionPointerTyMismatch(fn_ty, bare_fn_ty)); } self.eval_fn_call(def_id, substs, bare_fn_ty, return_ptr, args, terminator.source_info.span)? }, ty::TyFnDef(def_id, substs, fn_ty) => { self.eval_fn_call(def_id, substs, fn_ty, return_ptr, args, terminator.source_info.span)? } _ => return Err(EvalError::Unimplemented(format!("can't handle callee of type {:?}", func_ty))), } } Drop { ref location, target, .. } => { let ptr = self.eval_lvalue(location)?.to_ptr(); let ty = self.lvalue_ty(location); self.drop(ptr, ty)?; self.frame_mut().block = target; } Assert { ref cond, expected, ref msg, target, .. } => { let cond_ptr = self.eval_operand(cond)?; if expected == self.memory.read_bool(cond_ptr)? { self.frame_mut().block = target; } else { return match *msg { mir::AssertMessage::BoundsCheck { ref len, ref index } => { let len = self.eval_operand(len).expect("can't eval len"); let len = self.memory.read_usize(len).expect("can't read len"); let index = self.eval_operand(index).expect("can't eval index"); let index = self.memory.read_usize(index).expect("can't read index"); Err(EvalError::ArrayIndexOutOfBounds(terminator.source_info.span, len, index)) }, mir::AssertMessage::Math(ref err) => Err(EvalError::Math(terminator.source_info.span, err.clone())), } } }, DropAndReplace { .. } => unimplemented!(), Resume => unimplemented!(), Unreachable => unimplemented!(), } Ok(()) } pub fn eval_fn_call( &mut self, def_id: DefId, substs: &'tcx Substs<'tcx>, fn_ty: &'tcx BareFnTy, return_ptr: Option, args: &[mir::Operand<'tcx>], span: Span, ) -> EvalResult<'tcx, ()> { use syntax::abi::Abi; match fn_ty.abi { Abi::RustIntrinsic => { let name = self.tcx.item_name(def_id).as_str(); match fn_ty.sig.0.output { ty::FnConverging(ty) => { let layout = self.type_layout(ty); let ret = return_ptr.unwrap(); self.call_intrinsic(&name, substs, args, ret, layout) } ty::FnDiverging => unimplemented!(), } } Abi::C => { match fn_ty.sig.0.output { ty::FnConverging(ty) => { let size = self.type_size(ty); self.call_c_abi(def_id, args, return_ptr.unwrap(), size) } ty::FnDiverging => unimplemented!(), } } Abi::Rust | Abi::RustCall => { // TODO(solson): Adjust the first argument when calling a Fn or // FnMut closure via FnOnce::call_once. // Only trait methods can have a Self parameter. let (resolved_def_id, resolved_substs) = if substs.self_ty().is_some() { self.trait_method(def_id, substs) } else { (def_id, substs) }; let mut arg_srcs = Vec::new(); for arg in args { let src = self.eval_operand(arg)?; let src_ty = self.operand_ty(arg); arg_srcs.push((src, src_ty)); } if fn_ty.abi == Abi::RustCall && !args.is_empty() { arg_srcs.pop(); let last_arg = args.last().unwrap(); let last = self.eval_operand(last_arg)?; let last_ty = self.operand_ty(last_arg); let last_layout = self.type_layout(last_ty); match (&last_ty.sty, last_layout) { (&ty::TyTuple(fields), &Layout::Univariant { ref variant, .. }) => { let offsets = iter::once(0) .chain(variant.offset_after_field.iter() .map(|s| s.bytes())); for (offset, ty) in offsets.zip(fields) { let src = last.offset(offset as isize); arg_srcs.push((src, ty)); } } ty => panic!("expected tuple as last argument in function with 'rust-call' ABI, got {:?}", ty), } } let mir = self.load_mir(resolved_def_id); self.push_stack_frame(def_id, span, mir, resolved_substs, return_ptr); for (i, (src, src_ty)) in arg_srcs.into_iter().enumerate() { let dest = self.frame().locals[i]; self.move_(src, dest, src_ty)?; } Ok(()) } abi => Err(EvalError::Unimplemented(format!("can't handle function with {:?} ABI", abi))), } } fn drop(&mut self, ptr: Pointer, ty: Ty<'tcx>) -> EvalResult<'tcx, ()> { if !self.type_needs_drop(ty) { debug!("no need to drop {:?}", ty); return Ok(()); } trace!("-need to drop {:?}", ty); // TODO(solson): Call user-defined Drop::drop impls. match ty.sty { ty::TyBox(contents_ty) => { match self.memory.read_ptr(ptr) { Ok(contents_ptr) => { self.drop(contents_ptr, contents_ty)?; trace!("-deallocating box"); self.memory.deallocate(contents_ptr)?; } Err(EvalError::ReadBytesAsPointer) => { let size = self.memory.pointer_size; let possible_drop_fill = self.memory.read_bytes(ptr, size)?; if possible_drop_fill.iter().all(|&b| b == mem::POST_DROP_U8) { return Ok(()); } else { return Err(EvalError::ReadBytesAsPointer); } } Err(e) => return Err(e), } } // TODO(solson): Implement drop for other relevant types (e.g. aggregates). _ => {} } // Filling drop. // FIXME(solson): Trait objects (with no static size) probably get filled, too. let size = self.type_size(ty); self.memory.drop_fill(ptr, size)?; Ok(()) } fn read_discriminant_value(&self, adt_ptr: Pointer, adt_ty: Ty<'tcx>) -> EvalResult<'tcx, u64> { use rustc::ty::layout::Layout::*; let adt_layout = self.type_layout(adt_ty); let discr_val = match *adt_layout { General { discr, .. } | CEnum { discr, .. } => { let discr_size = discr.size().bytes(); self.memory.read_uint(adt_ptr, discr_size as usize)? } RawNullablePointer { nndiscr, .. } => { self.read_nonnull_discriminant_value(adt_ptr, nndiscr)? } StructWrappedNullablePointer { nndiscr, ref discrfield, .. } => { let offset = self.nonnull_offset(adt_ty, nndiscr, discrfield)?; let nonnull = adt_ptr.offset(offset.bytes() as isize); self.read_nonnull_discriminant_value(nonnull, nndiscr)? } // The discriminant_value intrinsic returns 0 for non-sum types. Array { .. } | FatPointer { .. } | Scalar { .. } | Univariant { .. } | Vector { .. } => 0, }; Ok(discr_val) } fn read_nonnull_discriminant_value(&self, ptr: Pointer, nndiscr: u64) -> EvalResult<'tcx, u64> { let not_null = match self.memory.read_usize(ptr) { Ok(0) => false, Ok(_) | Err(EvalError::ReadPointerAsBytes) => true, Err(e) => return Err(e), }; assert!(nndiscr == 0 || nndiscr == 1); Ok(if not_null { nndiscr } else { 1 - nndiscr }) } /// applies the binary operation `op` to the two operands and writes a tuple of the result /// and a boolean signifying the potential overflow to the destination fn intrinsic_with_overflow( &mut self, op: mir::BinOp, left: &mir::Operand<'tcx>, right: &mir::Operand<'tcx>, dest: Pointer, dest_layout: &'tcx Layout, ) -> EvalResult<'tcx, ()> { use rustc::ty::layout::Layout::*; let tup_layout = match *dest_layout { Univariant { ref variant, .. } => variant, _ => panic!("checked bin op returns something other than a tuple"), }; let overflowed = self.intrinsic_overflowing(op, left, right, dest)?; let offset = tup_layout.field_offset(1).bytes() as isize; self.memory.write_bool(dest.offset(offset), overflowed) } /// extracts the lhs and rhs primval from the operands and applies the binary op fn eval_binop( &mut self, op: mir::BinOp, left: &mir::Operand<'tcx>, right: &mir::Operand<'tcx>, ) -> EvalResult<'tcx, PrimVal> { let left_ptr = self.eval_operand(left)?; let left_ty = self.operand_ty(left); let left_val = self.read_primval(left_ptr, left_ty)?; let right_ptr = self.eval_operand(right)?; let right_ty = self.operand_ty(right); let right_val = self.read_primval(right_ptr, right_ty)?; primval::binary_op(op, left_val, right_val) } /// applies the binary operation `op` to the arguments and writes the result to the destination fn intrinsic_overflowing( &mut self, op: mir::BinOp, left: &mir::Operand<'tcx>, right: &mir::Operand<'tcx>, dest: Pointer, ) -> EvalResult<'tcx, bool> { match self.eval_binop(op, left, right) { Ok(val) => { self.memory.write_primval(dest, val)?; Ok(false) }, Err(EvalError::Overflow(l, r, op, val)) => { debug!("operation overflowed: {:?} {} {:?} => {:?}", l, op.to_hir_binop().as_str(), r, val); self.memory.write_primval(dest, val)?; Ok(true) }, Err(other) => Err(other), } } fn call_intrinsic( &mut self, name: &str, substs: &'tcx Substs<'tcx>, args: &[mir::Operand<'tcx>], dest: Pointer, dest_layout: &'tcx Layout, ) -> EvalResult<'tcx, ()> { let args_res: EvalResult> = args.iter() .map(|arg| self.eval_operand(arg)) .collect(); let args_ptrs = args_res?; let pointer_size = self.memory.pointer_size; match name { "add_with_overflow" => self.intrinsic_with_overflow(mir::BinOp::Add, &args[0], &args[1], dest, dest_layout)?, "sub_with_overflow" => self.intrinsic_with_overflow(mir::BinOp::Sub, &args[0], &args[1], dest, dest_layout)?, "mul_with_overflow" => self.intrinsic_with_overflow(mir::BinOp::Mul, &args[0], &args[1], dest, dest_layout)?, // FIXME: turn into an assertion to catch wrong `assume` that would cause UB in llvm "assume" => {} "copy_nonoverlapping" => { let elem_ty = *substs.types.get(subst::FnSpace, 0); let elem_size = self.type_size(elem_ty); let src = self.memory.read_ptr(args_ptrs[0])?; let dest = self.memory.read_ptr(args_ptrs[1])?; let count = self.memory.read_isize(args_ptrs[2])?; self.memory.copy(src, dest, count as usize * elem_size)?; } "discriminant_value" => { let ty = *substs.types.get(subst::FnSpace, 0); let adt_ptr = self.memory.read_ptr(args_ptrs[0])?; let discr_val = self.read_discriminant_value(adt_ptr, ty)?; self.memory.write_uint(dest, discr_val, 8)?; } "forget" => { let arg_ty = *substs.types.get(subst::FnSpace, 0); let arg_size = self.type_size(arg_ty); self.memory.drop_fill(args_ptrs[0], arg_size)?; } "init" => self.memory.write_repeat(dest, 0, dest_layout.size(&self.tcx.data_layout).bytes() as usize)?, "min_align_of" => { // FIXME: use correct value self.memory.write_int(dest, 1, pointer_size)?; } "move_val_init" => { let ty = *substs.types.get(subst::FnSpace, 0); let ptr = self.memory.read_ptr(args_ptrs[0])?; self.move_(args_ptrs[1], ptr, ty)?; } "offset" => { let pointee_ty = *substs.types.get(subst::FnSpace, 0); let pointee_size = self.type_size(pointee_ty) as isize; let ptr_arg = args_ptrs[0]; let offset = self.memory.read_isize(args_ptrs[1])?; match self.memory.read_ptr(ptr_arg) { Ok(ptr) => { let result_ptr = ptr.offset(offset as isize * pointee_size); self.memory.write_ptr(dest, result_ptr)?; } Err(EvalError::ReadBytesAsPointer) => { let addr = self.memory.read_isize(ptr_arg)?; let result_addr = addr + offset * pointee_size as i64; self.memory.write_isize(dest, result_addr)?; } Err(e) => return Err(e), } } "overflowing_sub" => { self.intrinsic_overflowing(mir::BinOp::Sub, &args[0], &args[1], dest)?; } "overflowing_mul" => { self.intrinsic_overflowing(mir::BinOp::Mul, &args[0], &args[1], dest)?; } "overflowing_add" => { self.intrinsic_overflowing(mir::BinOp::Add, &args[0], &args[1], dest)?; } "size_of" => { let ty = *substs.types.get(subst::FnSpace, 0); let size = self.type_size(ty) as u64; self.memory.write_uint(dest, size, pointer_size)?; } "size_of_val" => { let ty = *substs.types.get(subst::FnSpace, 0); if self.type_is_sized(ty) { let size = self.type_size(ty) as u64; self.memory.write_uint(dest, size, pointer_size)?; } else { match ty.sty { ty::TySlice(_) | ty::TyStr => { let elem_ty = ty.sequence_element_type(self.tcx); let elem_size = self.type_size(elem_ty) as u64; let ptr_size = self.memory.pointer_size as isize; let n = self.memory.read_usize(args_ptrs[0].offset(ptr_size))?; self.memory.write_uint(dest, n * elem_size, pointer_size)?; } _ => return Err(EvalError::Unimplemented(format!("unimplemented: size_of_val::<{:?}>", ty))), } } } "transmute" => { let ty = *substs.types.get(subst::FnSpace, 0); self.move_(args_ptrs[0], dest, ty)?; } "uninit" => self.memory.mark_definedness(dest, dest_layout.size(&self.tcx.data_layout).bytes() as usize, false)?, name => return Err(EvalError::Unimplemented(format!("unimplemented intrinsic: {}", name))), } // Since we pushed no stack frame, the main loop will act // as if the call just completed and it's returning to the // current frame. Ok(()) } fn call_c_abi( &mut self, def_id: DefId, args: &[mir::Operand<'tcx>], dest: Pointer, dest_size: usize, ) -> EvalResult<'tcx, ()> { let name = self.tcx.item_name(def_id); let attrs = self.tcx.get_attrs(def_id); let link_name = match attr::first_attr_value_str_by_name(&attrs, "link_name") { Some(ln) => ln.clone(), None => name.as_str(), }; let args_res: EvalResult> = args.iter() .map(|arg| self.eval_operand(arg)) .collect(); let args = args_res?; match &link_name[..] { "__rust_allocate" => { let size = self.memory.read_usize(args[0])?; let ptr = self.memory.allocate(size as usize); self.memory.write_ptr(dest, ptr)?; } "__rust_reallocate" => { let ptr = self.memory.read_ptr(args[0])?; let size = self.memory.read_usize(args[2])?; self.memory.reallocate(ptr, size as usize)?; self.memory.write_ptr(dest, ptr)?; } "memcmp" => { let left = self.memory.read_ptr(args[0])?; let right = self.memory.read_ptr(args[1])?; let n = self.memory.read_usize(args[2])? as usize; let result = { let left_bytes = self.memory.read_bytes(left, n)?; let right_bytes = self.memory.read_bytes(right, n)?; use std::cmp::Ordering::*; match left_bytes.cmp(right_bytes) { Less => -1, Equal => 0, Greater => 1, } }; self.memory.write_int(dest, result, dest_size)?; } _ => { return Err(EvalError::Unimplemented(format!("can't call C ABI function: {}", link_name))); } } // Since we pushed no stack frame, the main loop will act // as if the call just completed and it's returning to the // current frame. Ok(()) } fn assign_fields>( &mut self, dest: Pointer, offsets: I, operands: &[mir::Operand<'tcx>], ) -> EvalResult<'tcx, ()> { for (offset, operand) in offsets.into_iter().zip(operands) { let src = self.eval_operand(operand)?; let src_ty = self.operand_ty(operand); let field_dest = dest.offset(offset as isize); self.move_(src, field_dest, src_ty)?; } Ok(()) } fn eval_assignment(&mut self, lvalue: &mir::Lvalue<'tcx>, rvalue: &mir::Rvalue<'tcx>) -> EvalResult<'tcx, ()> { let dest = self.eval_lvalue(lvalue)?.to_ptr(); let dest_ty = self.lvalue_ty(lvalue); let dest_layout = self.type_layout(dest_ty); use rustc::mir::repr::Rvalue::*; match *rvalue { Use(ref operand) => { let src = self.eval_operand(operand)?; self.move_(src, dest, dest_ty)?; } BinaryOp(bin_op, ref left, ref right) => { let result = self.eval_binop(bin_op, left, right)?; self.memory.write_primval(dest, result)?; } CheckedBinaryOp(bin_op, ref left, ref right) => { self.intrinsic_with_overflow(bin_op, left, right, dest, dest_layout)?; } UnaryOp(un_op, ref operand) => { let ptr = self.eval_operand(operand)?; let ty = self.operand_ty(operand); let val = self.read_primval(ptr, ty)?; self.memory.write_primval(dest, primval::unary_op(un_op, val)?)?; } Aggregate(ref kind, ref operands) => { use rustc::ty::layout::Layout::*; match *dest_layout { Univariant { ref variant, .. } => { let offsets = iter::once(0) .chain(variant.offset_after_field.iter().map(|s| s.bytes())); self.assign_fields(dest, offsets, operands)?; } Array { .. } => { let elem_size = match dest_ty.sty { ty::TyArray(elem_ty, _) => self.type_size(elem_ty) as u64, _ => panic!("tried to assign {:?} to non-array type {:?}", kind, dest_ty), }; let offsets = (0..).map(|i| i * elem_size); self.assign_fields(dest, offsets, operands)?; } General { discr, ref variants, .. } => { if let mir::AggregateKind::Adt(adt_def, variant, _) = *kind { let discr_val = adt_def.variants[variant].disr_val.to_u64_unchecked(); let discr_size = discr.size().bytes() as usize; self.memory.write_uint(dest, discr_val, discr_size)?; let offsets = variants[variant].offset_after_field.iter() .map(|s| s.bytes()); self.assign_fields(dest, offsets, operands)?; } else { panic!("tried to assign {:?} to Layout::General", kind); } } RawNullablePointer { nndiscr, .. } => { if let mir::AggregateKind::Adt(_, variant, _) = *kind { if nndiscr == variant as u64 { assert_eq!(operands.len(), 1); let operand = &operands[0]; let src = self.eval_operand(operand)?; let src_ty = self.operand_ty(operand); self.move_(src, dest, src_ty)?; } else { assert_eq!(operands.len(), 0); self.memory.write_isize(dest, 0)?; } } else { panic!("tried to assign {:?} to Layout::RawNullablePointer", kind); } } StructWrappedNullablePointer { nndiscr, ref nonnull, ref discrfield } => { if let mir::AggregateKind::Adt(_, variant, _) = *kind { if nndiscr == variant as u64 { let offsets = iter::once(0) .chain(nonnull.offset_after_field.iter().map(|s| s.bytes())); try!(self.assign_fields(dest, offsets, operands)); } else { assert_eq!(operands.len(), 0); let offset = self.nonnull_offset(dest_ty, nndiscr, discrfield)?; let dest = dest.offset(offset.bytes() as isize); try!(self.memory.write_isize(dest, 0)); } } else { panic!("tried to assign {:?} to Layout::RawNullablePointer", kind); } } CEnum { discr, signed, .. } => { assert_eq!(operands.len(), 0); if let mir::AggregateKind::Adt(adt_def, variant, _) = *kind { let val = adt_def.variants[variant].disr_val.to_u64_unchecked(); let size = discr.size().bytes() as usize; if signed { self.memory.write_int(dest, val as i64, size)?; } else { self.memory.write_uint(dest, val, size)?; } } else { panic!("tried to assign {:?} to Layout::CEnum", kind); } } _ => return Err(EvalError::Unimplemented(format!("can't handle destination layout {:?} when assigning {:?}", dest_layout, kind))), } } Repeat(ref operand, _) => { let (elem_size, length) = match dest_ty.sty { ty::TyArray(elem_ty, n) => (self.type_size(elem_ty), n), _ => panic!("tried to assign array-repeat to non-array type {:?}", dest_ty), }; let src = self.eval_operand(operand)?; for i in 0..length { let elem_dest = dest.offset((i * elem_size) as isize); self.memory.copy(src, elem_dest, elem_size)?; } } Len(ref lvalue) => { let src = self.eval_lvalue(lvalue)?; let ty = self.lvalue_ty(lvalue); let len = match ty.sty { ty::TyArray(_, n) => n as u64, ty::TySlice(_) => if let LvalueExtra::Length(n) = src.extra { n } else { panic!("Rvalue::Len of a slice given non-slice pointer: {:?}", src); }, _ => panic!("Rvalue::Len expected array or slice, got {:?}", ty), }; self.memory.write_usize(dest, len)?; } Ref(_, _, ref lvalue) => { let lv = self.eval_lvalue(lvalue)?; self.memory.write_ptr(dest, lv.ptr)?; match lv.extra { LvalueExtra::None => {}, LvalueExtra::Length(len) => { let len_ptr = dest.offset(self.memory.pointer_size as isize); self.memory.write_usize(len_ptr, len)?; } LvalueExtra::DowncastVariant(..) => panic!("attempted to take a reference to an enum downcast lvalue"), } } Box(ty) => { let size = self.type_size(ty); let ptr = self.memory.allocate(size); self.memory.write_ptr(dest, ptr)?; } Cast(kind, ref operand, dest_ty) => { use rustc::mir::repr::CastKind::*; match kind { Unsize => { let src = self.eval_operand(operand)?; let src_ty = self.operand_ty(operand); self.move_(src, dest, src_ty)?; let src_pointee_ty = pointee_type(src_ty).unwrap(); let dest_pointee_ty = pointee_type(dest_ty).unwrap(); match (&src_pointee_ty.sty, &dest_pointee_ty.sty) { (&ty::TyArray(_, length), &ty::TySlice(_)) => { let len_ptr = dest.offset(self.memory.pointer_size as isize); self.memory.write_usize(len_ptr, length as u64)?; } _ => return Err(EvalError::Unimplemented(format!("can't handle cast: {:?}", rvalue))), } } Misc => { let src = self.eval_operand(operand)?; let src_ty = self.operand_ty(operand); // FIXME(solson): Wrong for almost everything. warn!("misc cast from {:?} to {:?}", src_ty, dest_ty); let dest_size = self.type_size(dest_ty); let src_size = self.type_size(src_ty); // Hack to support fat pointer -> thin pointer casts to keep tests for // other things passing for now. let is_fat_ptr_cast = pointee_type(src_ty).map_or(false, |ty| !self.type_is_sized(ty)); if dest_size == src_size || is_fat_ptr_cast { self.memory.copy(src, dest, dest_size)?; } else { return Err(EvalError::Unimplemented(format!("can't handle cast: {:?}", rvalue))); } } ReifyFnPointer => match self.operand_ty(operand).sty { ty::TyFnDef(def_id, substs, fn_ty) => { let fn_ptr = self.memory.create_fn_ptr(def_id, substs, fn_ty); self.memory.write_ptr(dest, fn_ptr)?; }, ref other => panic!("reify fn pointer on {:?}", other), }, UnsafeFnPointer => match dest_ty.sty { ty::TyFnPtr(unsafe_fn_ty) => { let src = self.eval_operand(operand)?; let ptr = self.memory.read_ptr(src)?; let fn_def = self.memory.get_fn(ptr.alloc_id)?; let fn_ptr = self.memory.create_fn_ptr(fn_def.def_id, fn_def.substs, unsafe_fn_ty); self.memory.write_ptr(dest, fn_ptr)?; }, ref other => panic!("fn to unsafe fn cast on {:?}", other), }, } } InlineAsm { .. } => unimplemented!(), } Ok(()) } fn nonnull_offset(&self, ty: Ty<'tcx>, nndiscr: u64, discrfield: &[u32]) -> EvalResult<'tcx, Size> { // Skip the constant 0 at the start meant for LLVM GEP. let mut path = discrfield.iter().skip(1).map(|&i| i as usize); // Handle the field index for the outer non-null variant. let inner_ty = match ty.sty { ty::TyEnum(adt_def, substs) => { let variant = &adt_def.variants[nndiscr as usize]; let index = path.next().unwrap(); let field = &variant.fields[index]; field.ty(self.tcx, substs) } _ => panic!( "non-enum for StructWrappedNullablePointer: {}", ty, ), }; self.field_path_offset(inner_ty, path) } fn field_path_offset>(&self, mut ty: Ty<'tcx>, path: I) -> EvalResult<'tcx, Size> { let mut offset = Size::from_bytes(0); // Skip the initial 0 intended for LLVM GEP. for field_index in path { let field_offset = self.get_field_offset(ty, field_index)?; ty = self.get_field_ty(ty, field_index)?; offset = offset.checked_add(field_offset, &self.tcx.data_layout).unwrap(); } Ok(offset) } fn get_field_ty(&self, ty: Ty<'tcx>, field_index: usize) -> EvalResult<'tcx, Ty<'tcx>> { match ty.sty { ty::TyStruct(adt_def, substs) => { Ok(adt_def.struct_variant().fields[field_index].ty(self.tcx, substs)) } ty::TyRef(_, ty::TypeAndMut { ty, .. }) | ty::TyRawPtr(ty::TypeAndMut { ty, .. }) | ty::TyBox(ty) => { assert_eq!(field_index, 0); Ok(ty) } _ => Err(EvalError::Unimplemented(format!("can't handle type: {:?}", ty))), } } fn get_field_offset(&self, ty: Ty<'tcx>, field_index: usize) -> EvalResult<'tcx, Size> { let layout = self.type_layout(ty); use rustc::ty::layout::Layout::*; match *layout { Univariant { .. } => { assert_eq!(field_index, 0); Ok(Size::from_bytes(0)) } FatPointer { .. } => { let bytes = layout::FAT_PTR_ADDR * self.memory.pointer_size; Ok(Size::from_bytes(bytes as u64)) } _ => Err(EvalError::Unimplemented(format!("can't handle type: {:?}, with layout: {:?}", ty, layout))), } } fn eval_operand(&mut self, op: &mir::Operand<'tcx>) -> EvalResult<'tcx, Pointer> { use rustc::mir::repr::Operand::*; match *op { Consume(ref lvalue) => Ok(self.eval_lvalue(lvalue)?.to_ptr()), Constant(mir::Constant { ref literal, ty, .. }) => { use rustc::mir::repr::Literal::*; match *literal { Value { ref value } => Ok(self.const_to_ptr(value)?), Item { def_id, substs } => { if let ty::TyFnDef(..) = ty.sty { // function items are zero sized Ok(self.memory.allocate(0)) } else { let cid = ConstantId { def_id: def_id, substs: substs, kind: ConstantKind::Global, }; Ok(*self.statics.get(&cid).expect("static should have been cached (rvalue)")) } }, Promoted { index } => { let cid = ConstantId { def_id: self.frame().def_id, substs: self.substs(), kind: ConstantKind::Promoted(index), }; Ok(*self.statics.get(&cid).expect("a promoted constant hasn't been precomputed")) }, } } } } fn eval_lvalue(&mut self, lvalue: &mir::Lvalue<'tcx>) -> EvalResult<'tcx, Lvalue> { use rustc::mir::repr::Lvalue::*; let ptr = match *lvalue { ReturnPointer => self.frame().return_ptr .expect("ReturnPointer used in a function with no return value"), Arg(i) => self.frame().locals[i.index()], Var(i) => self.frame().locals[self.frame().var_offset + i.index()], Temp(i) => self.frame().locals[self.frame().temp_offset + i.index()], Static(def_id) => { let substs = self.tcx.mk_substs(subst::Substs::empty()); let cid = ConstantId { def_id: def_id, substs: substs, kind: ConstantKind::Global, }; *self.statics.get(&cid).expect("static should have been cached (lvalue)") }, Projection(ref proj) => { let base = self.eval_lvalue(&proj.base)?; let base_ty = self.lvalue_ty(&proj.base); let base_layout = self.type_layout(base_ty); use rustc::mir::repr::ProjectionElem::*; match proj.elem { Field(field, _) => { use rustc::ty::layout::Layout::*; let variant = match *base_layout { Univariant { ref variant, .. } => variant, General { ref variants, .. } => { if let LvalueExtra::DowncastVariant(variant_idx) = base.extra { &variants[variant_idx] } else { panic!("field access on enum had no variant index"); } } RawNullablePointer { .. } => { assert_eq!(field.index(), 0); return Ok(base); } StructWrappedNullablePointer { ref nonnull, .. } => nonnull, _ => panic!("field access on non-product type: {:?}", base_layout), }; let offset = variant.field_offset(field.index()).bytes(); base.ptr.offset(offset as isize) }, Downcast(_, variant) => { use rustc::ty::layout::Layout::*; match *base_layout { General { discr, .. } => { return Ok(Lvalue { ptr: base.ptr.offset(discr.size().bytes() as isize), extra: LvalueExtra::DowncastVariant(variant), }); } RawNullablePointer { .. } | StructWrappedNullablePointer { .. } => { return Ok(base); } _ => panic!("variant downcast on non-aggregate: {:?}", base_layout), } }, Deref => { let pointee_ty = pointee_type(base_ty).expect("Deref of non-pointer"); let ptr = self.memory.read_ptr(base.ptr)?; let extra = match pointee_ty.sty { ty::TySlice(_) | ty::TyStr => { let len_ptr = base.ptr.offset(self.memory.pointer_size as isize); let len = self.memory.read_usize(len_ptr)?; LvalueExtra::Length(len) } ty::TyTrait(_) => unimplemented!(), _ => LvalueExtra::None, }; return Ok(Lvalue { ptr: ptr, extra: extra }); } Index(ref operand) => { let elem_size = match base_ty.sty { ty::TyArray(elem_ty, _) | ty::TySlice(elem_ty) => self.type_size(elem_ty), _ => panic!("indexing expected an array or slice, got {:?}", base_ty), }; let n_ptr = self.eval_operand(operand)?; let n = self.memory.read_usize(n_ptr)?; base.ptr.offset(n as isize * elem_size as isize) } ConstantIndex { .. } => unimplemented!(), Subslice { .. } => unimplemented!(), } } }; Ok(Lvalue { ptr: ptr, extra: LvalueExtra::None }) } fn lvalue_ty(&self, lvalue: &mir::Lvalue<'tcx>) -> Ty<'tcx> { self.monomorphize(self.mir().lvalue_ty(self.tcx, lvalue).to_ty(self.tcx), self.substs()) } fn operand_ty(&self, operand: &mir::Operand<'tcx>) -> Ty<'tcx> { self.monomorphize(self.mir().operand_ty(self.tcx, operand), self.substs()) } fn move_(&mut self, src: Pointer, dest: Pointer, ty: Ty<'tcx>) -> EvalResult<'tcx, ()> { let size = self.type_size(ty); self.memory.copy(src, dest, size)?; if self.type_needs_drop(ty) { self.memory.drop_fill(src, size)?; } Ok(()) } pub fn read_primval(&mut self, ptr: Pointer, ty: Ty<'tcx>) -> EvalResult<'tcx, PrimVal> { use syntax::ast::{IntTy, UintTy}; let val = match (self.memory.pointer_size, &ty.sty) { (_, &ty::TyBool) => PrimVal::Bool(self.memory.read_bool(ptr)?), (_, &ty::TyInt(IntTy::I8)) => PrimVal::I8(self.memory.read_int(ptr, 1)? as i8), (2, &ty::TyInt(IntTy::Is)) | (_, &ty::TyInt(IntTy::I16)) => PrimVal::I16(self.memory.read_int(ptr, 2)? as i16), (4, &ty::TyInt(IntTy::Is)) | (_, &ty::TyInt(IntTy::I32)) => PrimVal::I32(self.memory.read_int(ptr, 4)? as i32), (8, &ty::TyInt(IntTy::Is)) | (_, &ty::TyInt(IntTy::I64)) => PrimVal::I64(self.memory.read_int(ptr, 8)? as i64), (_, &ty::TyUint(UintTy::U8)) => PrimVal::U8(self.memory.read_uint(ptr, 1)? as u8), (2, &ty::TyUint(UintTy::Us)) | (_, &ty::TyUint(UintTy::U16)) => PrimVal::U16(self.memory.read_uint(ptr, 2)? as u16), (4, &ty::TyUint(UintTy::Us)) | (_, &ty::TyUint(UintTy::U32)) => PrimVal::U32(self.memory.read_uint(ptr, 4)? as u32), (8, &ty::TyUint(UintTy::Us)) | (_, &ty::TyUint(UintTy::U64)) => PrimVal::U64(self.memory.read_uint(ptr, 8)? as u64), (_, &ty::TyFnDef(def_id, substs, fn_ty)) => { PrimVal::FnPtr(self.memory.create_fn_ptr(def_id, substs, fn_ty)) }, (_, &ty::TyFnPtr(_)) => self.memory.read_ptr(ptr).map(PrimVal::FnPtr)?, (_, &ty::TyRef(_, ty::TypeAndMut { ty, .. })) | (_, &ty::TyRawPtr(ty::TypeAndMut { ty, .. })) => { if self.type_is_sized(ty) { match self.memory.read_ptr(ptr) { Ok(p) => PrimVal::AbstractPtr(p), Err(EvalError::ReadBytesAsPointer) => { PrimVal::IntegerPtr(self.memory.read_usize(ptr)?) } Err(e) => return Err(e), } } else { return Err(EvalError::Unimplemented(format!("unimplemented: primitive read of fat pointer type: {:?}", ty))); } } _ => panic!("primitive read of non-primitive type: {:?}", ty), }; Ok(val) } fn frame(&self) -> &Frame<'a, 'tcx> { self.stack.last().expect("no call frames exist") } pub fn frame_mut(&mut self) -> &mut Frame<'a, 'tcx> { self.stack.last_mut().expect("no call frames exist") } fn mir(&self) -> CachedMir<'a, 'tcx> { self.frame().mir.clone() } fn substs(&self) -> &'tcx Substs<'tcx> { self.frame().substs } } fn pointee_type(ptr_ty: ty::Ty) -> Option { match ptr_ty.sty { ty::TyRef(_, ty::TypeAndMut { ty, .. }) | ty::TyRawPtr(ty::TypeAndMut { ty, .. }) | ty::TyBox(ty) => { Some(ty) } _ => None, } } impl Lvalue { fn to_ptr(self) -> Pointer { assert_eq!(self.extra, LvalueExtra::None); self.ptr } } impl<'mir, 'tcx: 'mir> Deref for CachedMir<'mir, 'tcx> { type Target = mir::Mir<'tcx>; fn deref(&self) -> &mir::Mir<'tcx> { match *self { CachedMir::Ref(r) => r, CachedMir::Owned(ref rc) => rc, } } } #[derive(Debug)] pub struct ImplMethod<'tcx> { pub method: Rc>, pub substs: &'tcx Substs<'tcx>, pub is_provided: bool, } /// Locates the applicable definition of a method, given its name. pub fn get_impl_method<'a, 'tcx>( tcx: TyCtxt<'a, 'tcx, 'tcx>, impl_def_id: DefId, substs: &'tcx Substs<'tcx>, name: ast::Name, ) -> ImplMethod<'tcx> { assert!(!substs.types.needs_infer()); let trait_def_id = tcx.trait_id_of_impl(impl_def_id).unwrap(); let trait_def = tcx.lookup_trait_def(trait_def_id); match trait_def.ancestors(impl_def_id).fn_defs(tcx, name).next() { Some(node_item) => { let substs = tcx.normalizing_infer_ctxt(ProjectionMode::Any).enter(|infcx| { let substs = traits::translate_substs(&infcx, impl_def_id, substs, node_item.node); tcx.lift(&substs).unwrap_or_else(|| { bug!("trans::meth::get_impl_method: translate_substs \ returned {:?} which contains inference types/regions", substs); }) }); ImplMethod { method: node_item.item, substs: substs, is_provided: node_item.node.is_from_trait(), } } None => { bug!("method {:?} not found in {:?}", name, impl_def_id) } } } // TODO(solson): Upstream these methods into rustc::ty::layout. trait IntegerExt { fn size(self) -> Size; } impl IntegerExt for layout::Integer { fn size(self) -> Size { use rustc::ty::layout::Integer::*; match self { I1 | I8 => Size::from_bits(8), I16 => Size::from_bits(16), I32 => Size::from_bits(32), I64 => Size::from_bits(64), } } } trait StructExt { fn field_offset(&self, index: usize) -> Size; } impl StructExt for layout::Struct { fn field_offset(&self, index: usize) -> Size { if index == 0 { Size::from_bytes(0) } else { self.offset_after_field[index - 1] } } } pub fn eval_main<'a, 'tcx: 'a>( tcx: TyCtxt<'a, 'tcx, 'tcx>, mir_map: &'a MirMap<'tcx>, node_id: ast::NodeId, ) { let mir = mir_map.map.get(&node_id).expect("no mir for main function"); let def_id = tcx.map.local_def_id(node_id); let mut ecx = EvalContext::new(tcx, mir_map); let substs = tcx.mk_substs(subst::Substs::empty()); let return_ptr = ecx.alloc_ret_ptr(mir.return_ty, substs).expect("main function should not be diverging"); ecx.push_stack_frame(def_id, mir.span, CachedMir::Ref(mir), substs, Some(return_ptr)); if mir.arg_decls.len() == 2 { // start function let ptr_size = ecx.memory().pointer_size; let nargs = ecx.memory_mut().allocate(ptr_size); ecx.memory_mut().write_usize(nargs, 0).unwrap(); let args = ecx.memory_mut().allocate(ptr_size); ecx.memory_mut().write_usize(args, 0).unwrap(); ecx.frame_mut().locals[0] = nargs; ecx.frame_mut().locals[1] = args; } loop { match step(&mut ecx) { Ok(true) => {} Ok(false) => break, // FIXME: diverging functions can end up here in some future miri Err(e) => { report(tcx, &ecx, e); break; } } } } fn report(tcx: TyCtxt, ecx: &EvalContext, e: EvalError) { let frame = ecx.stack().last().expect("stackframe was empty"); let block = &frame.mir.basic_blocks()[frame.block]; let span = if frame.stmt < block.statements.len() { block.statements[frame.stmt].source_info.span } else { block.terminator().source_info.span }; let mut err = tcx.sess.struct_span_err(span, &e.to_string()); for &Frame { def_id, substs, span, .. } in ecx.stack().iter().rev() { // FIXME(solson): Find a way to do this without this Display impl hack. use rustc::util::ppaux; use std::fmt; struct Instance<'tcx>(DefId, &'tcx subst::Substs<'tcx>); impl<'tcx> fmt::Display for Instance<'tcx> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { ppaux::parameterized(f, self.1, self.0, ppaux::Ns::Value, &[], |tcx| Some(tcx.lookup_item_type(self.0).generics)) } } err.span_note(span, &format!("inside call to {}", Instance(def_id, substs))); } err.emit(); }