// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. /*! * # Translation of Expressions * * Public entry points: * * - `trans_into(bcx, expr, dest) -> bcx`: evaluates an expression, * storing the result into `dest`. This is the preferred form, if you * can manage it. * * - `trans(bcx, expr) -> DatumBlock`: evaluates an expression, yielding * `Datum` with the result. You can then store the datum, inspect * the value, etc. This may introduce temporaries if the datum is a * structural type. * * - `trans_to_lvalue(bcx, expr, "...") -> DatumBlock`: evaluates an * expression and ensures that the result has a cleanup associated with it, * creating a temporary stack slot if necessary. * * - `trans_local_var -> Datum`: looks up a local variable or upvar. * * See doc.rs for more comments. */ #![allow(non_camel_case_types)] use back::abi; use lib::llvm::{ValueRef, llvm}; use lib; use metadata::csearch; use middle::def; use middle::lang_items::MallocFnLangItem; use middle::mem_categorization::Typer; use middle::trans::_match; use middle::trans::adt; use middle::trans::asm; use middle::trans::base::*; use middle::trans::base; use middle::trans::build::*; use middle::trans::callee; use middle::trans::cleanup; use middle::trans::cleanup::CleanupMethods; use middle::trans::closure; use middle::trans::common::*; use middle::trans::consts; use middle::trans::controlflow; use middle::trans::datum::*; use middle::trans::debuginfo; use middle::trans::glue; use middle::trans::machine; use middle::trans::meth; use middle::trans::inline; use middle::trans::tvec; use middle::trans::type_of; use middle::ty::struct_fields; use middle::ty::{AutoBorrowObj, AutoDerefRef, AutoAddEnv, AutoObject, AutoUnsafe}; use middle::ty::{AutoPtr, AutoBorrowVec, AutoBorrowVecRef}; use middle::ty; use middle::typeck; use middle::typeck::MethodCall; use util::common::indenter; use util::ppaux::Repr; use util::nodemap::NodeMap; use middle::trans::machine::{llalign_of_min, llsize_of, llsize_of_alloc}; use middle::trans::type_::Type; use syntax::ast; use syntax::codemap; use syntax::print::pprust::{expr_to_str}; use std::gc::Gc; // Destinations // These are passed around by the code generating functions to track the // destination of a computation's value. #[deriving(PartialEq)] pub enum Dest { SaveIn(ValueRef), Ignore, } impl Dest { pub fn to_str(&self, ccx: &CrateContext) -> String { match *self { SaveIn(v) => format!("SaveIn({})", ccx.tn.val_to_str(v)), Ignore => "Ignore".to_string() } } } pub fn trans_into<'a>(bcx: &'a Block<'a>, expr: &ast::Expr, dest: Dest) -> &'a Block<'a> { /*! * This function is equivalent to `trans(bcx, expr).store_to_dest(dest)` * but it may generate better optimized LLVM code. */ let mut bcx = bcx; if bcx.tcx().adjustments.borrow().contains_key(&expr.id) { // use trans, which may be less efficient but // which will perform the adjustments: let datum = unpack_datum!(bcx, trans(bcx, expr)); return datum.store_to_dest(bcx, dest, expr.id) } debug!("trans_into() expr={}", expr.repr(bcx.tcx())); debuginfo::set_source_location(bcx.fcx, expr.id, expr.span); bcx.fcx.push_ast_cleanup_scope(expr.id); let kind = ty::expr_kind(bcx.tcx(), expr); bcx = match kind { ty::LvalueExpr | ty::RvalueDatumExpr => { trans_unadjusted(bcx, expr).store_to_dest(dest, expr.id) } ty::RvalueDpsExpr => { trans_rvalue_dps_unadjusted(bcx, expr, dest) } ty::RvalueStmtExpr => { trans_rvalue_stmt_unadjusted(bcx, expr) } }; bcx.fcx.pop_and_trans_ast_cleanup_scope(bcx, expr.id) } pub fn trans<'a>(bcx: &'a Block<'a>, expr: &ast::Expr) -> DatumBlock<'a, Expr> { /*! * Translates an expression, returning a datum (and new block) * encapsulating the result. When possible, it is preferred to * use `trans_into`, as that may avoid creating a temporary on * the stack. */ debug!("trans(expr={})", bcx.expr_to_str(expr)); let mut bcx = bcx; let fcx = bcx.fcx; fcx.push_ast_cleanup_scope(expr.id); let datum = unpack_datum!(bcx, trans_unadjusted(bcx, expr)); let datum = unpack_datum!(bcx, apply_adjustments(bcx, expr, datum)); bcx = fcx.pop_and_trans_ast_cleanup_scope(bcx, expr.id); return DatumBlock::new(bcx, datum); } fn apply_adjustments<'a>(bcx: &'a Block<'a>, expr: &ast::Expr, datum: Datum) -> DatumBlock<'a, Expr> { /*! * Helper for trans that apply adjustments from `expr` to `datum`, * which should be the unadjusted translation of `expr`. */ let mut bcx = bcx; let mut datum = datum; let adjustment = match bcx.tcx().adjustments.borrow().find_copy(&expr.id) { None => { return DatumBlock::new(bcx, datum); } Some(adj) => { adj } }; debug!("unadjusted datum for expr {}: {}", expr.id, datum.to_str(bcx.ccx())); match adjustment { AutoAddEnv(..) => { datum = unpack_datum!(bcx, add_env(bcx, expr, datum)); } AutoDerefRef(ref adj) => { if adj.autoderefs > 0 { datum = unpack_datum!( bcx, deref_multiple(bcx, expr, datum, adj.autoderefs)); } datum = match adj.autoref { None => { datum } Some(AutoUnsafe(..)) | // region + unsafe ptrs have same repr Some(AutoPtr(..)) => { unpack_datum!(bcx, auto_ref(bcx, datum, expr)) } Some(AutoBorrowVec(..)) => { unpack_datum!(bcx, auto_slice(bcx, expr, datum)) } Some(AutoBorrowVecRef(..)) => { unpack_datum!(bcx, auto_slice_and_ref(bcx, expr, datum)) } Some(AutoBorrowObj(..)) => { unpack_datum!(bcx, auto_borrow_obj(bcx, expr, datum)) } }; } AutoObject(..) => { let adjusted_ty = ty::expr_ty_adjusted(bcx.tcx(), expr); let scratch = rvalue_scratch_datum(bcx, adjusted_ty, "__adjust"); bcx = meth::trans_trait_cast( bcx, datum, expr.id, SaveIn(scratch.val)); datum = scratch.to_expr_datum(); } } debug!("after adjustments, datum={}", datum.to_str(bcx.ccx())); return DatumBlock {bcx: bcx, datum: datum}; fn auto_slice<'a>( bcx: &'a Block<'a>, expr: &ast::Expr, datum: Datum) -> DatumBlock<'a, Expr> { // This is not the most efficient thing possible; since slices // are two words it'd be better if this were compiled in // 'dest' mode, but I can't find a nice way to structure the // code and keep it DRY that accommodates that use case at the // moment. let mut bcx = bcx; let tcx = bcx.tcx(); let unit_ty = ty::sequence_element_type(tcx, datum.ty); // Arrange cleanup, if not already done. This is needed in // case we are auto-slicing an owned vector or some such. let datum = unpack_datum!( bcx, datum.to_lvalue_datum(bcx, "auto_slice", expr.id)); let (base, len) = datum.get_vec_base_and_len(bcx); // this type may have a different region/mutability than the // real one, but it will have the same runtime representation let slice_ty = ty::mk_slice(tcx, ty::ReStatic, ty::mt { ty: unit_ty, mutbl: ast::MutImmutable }); let scratch = rvalue_scratch_datum(bcx, slice_ty, "__adjust"); Store(bcx, base, GEPi(bcx, scratch.val, [0u, abi::slice_elt_base])); Store(bcx, len, GEPi(bcx, scratch.val, [0u, abi::slice_elt_len])); DatumBlock::new(bcx, scratch.to_expr_datum()) } fn add_env<'a>(bcx: &'a Block<'a>, expr: &ast::Expr, datum: Datum) -> DatumBlock<'a, Expr> { // This is not the most efficient thing possible; since closures // are two words it'd be better if this were compiled in // 'dest' mode, but I can't find a nice way to structure the // code and keep it DRY that accommodates that use case at the // moment. let closure_ty = expr_ty_adjusted(bcx, expr); let fn_ptr = datum.to_llscalarish(bcx); let def = ty::resolve_expr(bcx.tcx(), expr); closure::make_closure_from_bare_fn(bcx, closure_ty, def, fn_ptr) } fn auto_slice_and_ref<'a>( bcx: &'a Block<'a>, expr: &ast::Expr, datum: Datum) -> DatumBlock<'a, Expr> { let DatumBlock { bcx, datum } = auto_slice(bcx, expr, datum); auto_ref(bcx, datum, expr) } fn auto_borrow_obj<'a>(bcx: &'a Block<'a>, expr: &ast::Expr, source_datum: Datum) -> DatumBlock<'a, Expr> { let tcx = bcx.tcx(); let target_obj_ty = expr_ty_adjusted(bcx, expr); debug!("auto_borrow_obj(target={})", target_obj_ty.repr(tcx)); let mut datum = source_datum.to_expr_datum(); datum.ty = target_obj_ty; DatumBlock::new(bcx, datum) } } pub fn trans_to_lvalue<'a>(bcx: &'a Block<'a>, expr: &ast::Expr, name: &str) -> DatumBlock<'a, Lvalue> { /*! * Translates an expression in "lvalue" mode -- meaning that it * returns a reference to the memory that the expr represents. * * If this expression is an rvalue, this implies introducing a * temporary. In other words, something like `x().f` is * translated into roughly the equivalent of * * { tmp = x(); tmp.f } */ let mut bcx = bcx; let datum = unpack_datum!(bcx, trans(bcx, expr)); return datum.to_lvalue_datum(bcx, name, expr.id); } fn trans_unadjusted<'a>(bcx: &'a Block<'a>, expr: &ast::Expr) -> DatumBlock<'a, Expr> { /*! * A version of `trans` that ignores adjustments. You almost * certainly do not want to call this directly. */ let mut bcx = bcx; debug!("trans_unadjusted(expr={})", bcx.expr_to_str(expr)); let _indenter = indenter(); debuginfo::set_source_location(bcx.fcx, expr.id, expr.span); return match ty::expr_kind(bcx.tcx(), expr) { ty::LvalueExpr | ty::RvalueDatumExpr => { let datum = unpack_datum!(bcx, { trans_datum_unadjusted(bcx, expr) }); DatumBlock {bcx: bcx, datum: datum} } ty::RvalueStmtExpr => { bcx = trans_rvalue_stmt_unadjusted(bcx, expr); nil(bcx, expr_ty(bcx, expr)) } ty::RvalueDpsExpr => { let ty = expr_ty(bcx, expr); if type_is_zero_size(bcx.ccx(), ty) { bcx = trans_rvalue_dps_unadjusted(bcx, expr, Ignore); nil(bcx, ty) } else { let scratch = rvalue_scratch_datum(bcx, ty, ""); bcx = trans_rvalue_dps_unadjusted( bcx, expr, SaveIn(scratch.val)); // Note: this is not obviously a good idea. It causes // immediate values to be loaded immediately after a // return from a call or other similar expression, // which in turn leads to alloca's having shorter // lifetimes and hence larger stack frames. However, // in turn it can lead to more register pressure. // Still, in practice it seems to increase // performance, since we have fewer problems with // morestack churn. let scratch = unpack_datum!( bcx, scratch.to_appropriate_datum(bcx)); DatumBlock::new(bcx, scratch.to_expr_datum()) } } }; fn nil<'a>(bcx: &'a Block<'a>, ty: ty::t) -> DatumBlock<'a, Expr> { let llval = C_undef(type_of::type_of(bcx.ccx(), ty)); let datum = immediate_rvalue(llval, ty); DatumBlock::new(bcx, datum.to_expr_datum()) } } fn trans_datum_unadjusted<'a>(bcx: &'a Block<'a>, expr: &ast::Expr) -> DatumBlock<'a, Expr> { let mut bcx = bcx; let fcx = bcx.fcx; let _icx = push_ctxt("trans_datum_unadjusted"); match expr.node { ast::ExprParen(ref e) => { trans(bcx, &**e) } ast::ExprPath(_) => { trans_def(bcx, expr, bcx.def(expr.id)) } ast::ExprField(ref base, ident, _) => { trans_rec_field(bcx, &**base, ident.node) } ast::ExprIndex(ref base, ref idx) => { trans_index(bcx, expr, &**base, &**idx) } ast::ExprVstore(ref contents, ast::ExprVstoreUniq) => { fcx.push_ast_cleanup_scope(contents.id); let datum = unpack_datum!( bcx, tvec::trans_uniq_vstore(bcx, expr, &**contents)); bcx = fcx.pop_and_trans_ast_cleanup_scope(bcx, contents.id); DatumBlock::new(bcx, datum) } ast::ExprBox(_, ref contents) => { // Special case for `Box` and `Gc` let box_ty = expr_ty(bcx, expr); let contents_ty = expr_ty(bcx, &**contents); match ty::get(box_ty).sty { ty::ty_uniq(..) => { trans_uniq_expr(bcx, box_ty, &**contents, contents_ty) } ty::ty_box(..) => { trans_managed_expr(bcx, box_ty, &**contents, contents_ty) } _ => bcx.sess().span_bug(expr.span, "expected unique or managed box") } } ast::ExprLit(ref lit) => trans_immediate_lit(bcx, expr, (**lit).clone()), ast::ExprBinary(op, ref lhs, ref rhs) => { trans_binary(bcx, expr, op, &**lhs, &**rhs) } ast::ExprUnary(op, ref x) => { trans_unary(bcx, expr, op, &**x) } ast::ExprAddrOf(_, ref x) => { trans_addr_of(bcx, expr, &**x) } ast::ExprCast(ref val, _) => { // Datum output mode means this is a scalar cast: trans_imm_cast(bcx, &**val, expr.id) } _ => { bcx.tcx().sess.span_bug( expr.span, format!("trans_rvalue_datum_unadjusted reached \ fall-through case: {:?}", expr.node).as_slice()); } } } fn trans_rec_field<'a>(bcx: &'a Block<'a>, base: &ast::Expr, field: ast::Ident) -> DatumBlock<'a, Expr> { //! Translates `base.field`. let mut bcx = bcx; let _icx = push_ctxt("trans_rec_field"); let base_datum = unpack_datum!(bcx, trans_to_lvalue(bcx, base, "field")); let repr = adt::represent_type(bcx.ccx(), base_datum.ty); with_field_tys(bcx.tcx(), base_datum.ty, None, |discr, field_tys| { let ix = ty::field_idx_strict(bcx.tcx(), field.name, field_tys); let d = base_datum.get_element( field_tys[ix].mt.ty, |srcval| adt::trans_field_ptr(bcx, &*repr, srcval, discr, ix)); DatumBlock { datum: d.to_expr_datum(), bcx: bcx } }) } fn trans_index<'a>(bcx: &'a Block<'a>, index_expr: &ast::Expr, base: &ast::Expr, idx: &ast::Expr) -> DatumBlock<'a, Expr> { //! Translates `base[idx]`. let _icx = push_ctxt("trans_index"); let ccx = bcx.ccx(); let mut bcx = bcx; let base_datum = unpack_datum!(bcx, trans_to_lvalue(bcx, base, "index")); // Translate index expression and cast to a suitable LLVM integer. // Rust is less strict than LLVM in this regard. let ix_datum = unpack_datum!(bcx, trans(bcx, idx)); let ix_val = ix_datum.to_llscalarish(bcx); let ix_size = machine::llbitsize_of_real(bcx.ccx(), val_ty(ix_val)); let int_size = machine::llbitsize_of_real(bcx.ccx(), ccx.int_type); let ix_val = { if ix_size < int_size { if ty::type_is_signed(expr_ty(bcx, idx)) { SExt(bcx, ix_val, ccx.int_type) } else { ZExt(bcx, ix_val, ccx.int_type) } } else if ix_size > int_size { Trunc(bcx, ix_val, ccx.int_type) } else { ix_val } }; let vt = tvec::vec_types(bcx, ty::sequence_element_type(bcx.tcx(), base_datum.ty)); base::maybe_name_value(bcx.ccx(), vt.llunit_size, "unit_sz"); let (base, len) = base_datum.get_vec_base_and_len(bcx); debug!("trans_index: base {}", bcx.val_to_str(base)); debug!("trans_index: len {}", bcx.val_to_str(len)); let bounds_check = ICmp(bcx, lib::llvm::IntUGE, ix_val, len); let expect = ccx.get_intrinsic(&("llvm.expect.i1")); let expected = Call(bcx, expect, [bounds_check, C_i1(ccx, false)], []); let bcx = with_cond(bcx, expected, |bcx| { controlflow::trans_fail_bounds_check(bcx, index_expr.span, ix_val, len) }); let elt = InBoundsGEP(bcx, base, [ix_val]); let elt = PointerCast(bcx, elt, vt.llunit_ty.ptr_to()); DatumBlock::new(bcx, Datum::new(elt, vt.unit_ty, LvalueExpr)) } fn trans_def<'a>(bcx: &'a Block<'a>, ref_expr: &ast::Expr, def: def::Def) -> DatumBlock<'a, Expr> { //! Translates a reference to a path. let _icx = push_ctxt("trans_def_lvalue"); match def { def::DefFn(..) | def::DefStaticMethod(..) | def::DefStruct(_) | def::DefVariant(..) => { trans_def_fn_unadjusted(bcx, ref_expr, def) } def::DefStatic(did, _) => { let const_ty = expr_ty(bcx, ref_expr); fn get_did(ccx: &CrateContext, did: ast::DefId) -> ast::DefId { if did.krate != ast::LOCAL_CRATE { inline::maybe_instantiate_inline(ccx, did) } else { did } } fn get_val<'a>(bcx: &'a Block<'a>, did: ast::DefId, const_ty: ty::t) -> ValueRef { // For external constants, we don't inline. if did.krate == ast::LOCAL_CRATE { // The LLVM global has the type of its initializer, // which may not be equal to the enum's type for // non-C-like enums. let val = base::get_item_val(bcx.ccx(), did.node); let pty = type_of::type_of(bcx.ccx(), const_ty).ptr_to(); PointerCast(bcx, val, pty) } else { match bcx.ccx().extern_const_values.borrow().find(&did) { None => {} // Continue. Some(llval) => { return *llval; } } unsafe { let llty = type_of::type_of(bcx.ccx(), const_ty); let symbol = csearch::get_symbol( &bcx.ccx().sess().cstore, did); let llval = symbol.as_slice().with_c_str(|buf| { llvm::LLVMAddGlobal(bcx.ccx().llmod, llty.to_ref(), buf) }); bcx.ccx().extern_const_values.borrow_mut() .insert(did, llval); llval } } } let did = get_did(bcx.ccx(), did); let val = get_val(bcx, did, const_ty); DatumBlock::new(bcx, Datum::new(val, const_ty, LvalueExpr)) } _ => { DatumBlock::new(bcx, trans_local_var(bcx, def).to_expr_datum()) } } } fn trans_rvalue_stmt_unadjusted<'a>(bcx: &'a Block<'a>, expr: &ast::Expr) -> &'a Block<'a> { let mut bcx = bcx; let _icx = push_ctxt("trans_rvalue_stmt"); if bcx.unreachable.get() { return bcx; } match expr.node { ast::ExprParen(ref e) => { trans_into(bcx, &**e, Ignore) } ast::ExprBreak(label_opt) => { controlflow::trans_break(bcx, expr.id, label_opt) } ast::ExprAgain(label_opt) => { controlflow::trans_cont(bcx, expr.id, label_opt) } ast::ExprRet(ex) => { controlflow::trans_ret(bcx, ex) } ast::ExprWhile(ref cond, ref body) => { controlflow::trans_while(bcx, expr.id, &**cond, &**body) } ast::ExprLoop(ref body, _) => { controlflow::trans_loop(bcx, expr.id, &**body) } ast::ExprAssign(ref dst, ref src) => { let dst_datum = unpack_datum!(bcx, trans_to_lvalue(bcx, &**dst, "assign")); if ty::type_needs_drop(bcx.tcx(), dst_datum.ty) { // If there are destructors involved, make sure we // are copying from an rvalue, since that cannot possible // alias an lvalue. We are concerned about code like: // // a = a // // but also // // a = a.b // // where e.g. a : Option and a.b : // Option. In that case, freeing `a` before the // assignment may also free `a.b`! // // We could avoid this intermediary with some analysis // to determine whether `dst` may possibly own `src`. let src_datum = unpack_datum!(bcx, trans(bcx, &**src)); let src_datum = unpack_datum!( bcx, src_datum.to_rvalue_datum(bcx, "ExprAssign")); bcx = glue::drop_ty(bcx, dst_datum.val, dst_datum.ty); src_datum.store_to(bcx, dst_datum.val) } else { trans_into(bcx, &**src, SaveIn(dst_datum.to_llref())) } } ast::ExprAssignOp(op, ref dst, ref src) => { trans_assign_op(bcx, expr, op, &**dst, src.clone()) } ast::ExprInlineAsm(ref a) => { asm::trans_inline_asm(bcx, a) } _ => { bcx.tcx().sess.span_bug( expr.span, format!("trans_rvalue_stmt_unadjusted reached \ fall-through case: {:?}", expr.node).as_slice()); } } } fn trans_rvalue_dps_unadjusted<'a>(bcx: &'a Block<'a>, expr: &ast::Expr, dest: Dest) -> &'a Block<'a> { let _icx = push_ctxt("trans_rvalue_dps_unadjusted"); let mut bcx = bcx; let tcx = bcx.tcx(); let fcx = bcx.fcx; match expr.node { ast::ExprParen(ref e) => { trans_into(bcx, &**e, dest) } ast::ExprPath(_) => { trans_def_dps_unadjusted(bcx, expr, bcx.def(expr.id), dest) } ast::ExprIf(ref cond, ref thn, els) => { controlflow::trans_if(bcx, expr.id, &**cond, thn.clone(), els, dest) } ast::ExprMatch(ref discr, ref arms) => { _match::trans_match(bcx, expr, &**discr, arms.as_slice(), dest) } ast::ExprBlock(ref blk) => { controlflow::trans_block(bcx, &**blk, dest) } ast::ExprStruct(_, ref fields, base) => { trans_rec_or_struct(bcx, fields.as_slice(), base, expr.span, expr.id, dest) } ast::ExprTup(ref args) => { let repr = adt::represent_type(bcx.ccx(), expr_ty(bcx, expr)); let numbered_fields: Vec<(uint, Gc)> = args.iter().enumerate().map(|(i, arg)| (i, *arg)).collect(); trans_adt(bcx, &*repr, 0, numbered_fields.as_slice(), None, dest) } ast::ExprLit(lit) => { match lit.node { ast::LitStr(ref s, _) => { tvec::trans_lit_str(bcx, expr, (*s).clone(), dest) } _ => { bcx.tcx() .sess .span_bug(expr.span, "trans_rvalue_dps_unadjusted shouldn't be \ translating this type of literal") } } } ast::ExprVstore(ref contents, ast::ExprVstoreSlice) | ast::ExprVstore(ref contents, ast::ExprVstoreMutSlice) => { fcx.push_ast_cleanup_scope(contents.id); bcx = tvec::trans_slice_vstore(bcx, expr, &**contents, dest); fcx.pop_and_trans_ast_cleanup_scope(bcx, contents.id) } ast::ExprVec(..) | ast::ExprRepeat(..) => { tvec::trans_fixed_vstore(bcx, expr, expr, dest) } ast::ExprFnBlock(ref decl, ref body) | ast::ExprProc(ref decl, ref body) => { let expr_ty = expr_ty(bcx, expr); let store = ty::ty_closure_store(expr_ty); debug!("translating block function {} with type {}", expr_to_str(expr), expr_ty.repr(tcx)); closure::trans_expr_fn(bcx, store, &**decl, &**body, expr.id, dest) } ast::ExprCall(ref f, ref args) => { if bcx.tcx().is_method_call(expr.id) { let callee_datum = unpack_datum!(bcx, trans(bcx, &**f)); trans_overloaded_call(bcx, expr, callee_datum, args.as_slice(), Some(dest)) } else { callee::trans_call(bcx, expr, &**f, callee::ArgExprs(args.as_slice()), dest) } } ast::ExprMethodCall(_, _, ref args) => { callee::trans_method_call(bcx, expr, &**args.get(0), callee::ArgExprs(args.as_slice()), dest) } ast::ExprBinary(_, ref lhs, ref rhs) => { // if not overloaded, would be RvalueDatumExpr let lhs = unpack_datum!(bcx, trans(bcx, &**lhs)); let rhs_datum = unpack_datum!(bcx, trans(bcx, &**rhs)); trans_overloaded_op(bcx, expr, MethodCall::expr(expr.id), lhs, Some((rhs_datum, rhs.id)), Some(dest)).bcx } ast::ExprUnary(_, ref subexpr) => { // if not overloaded, would be RvalueDatumExpr let arg = unpack_datum!(bcx, trans(bcx, &**subexpr)); trans_overloaded_op(bcx, expr, MethodCall::expr(expr.id), arg, None, Some(dest)).bcx } ast::ExprIndex(ref base, ref idx) => { // if not overloaded, would be RvalueDatumExpr let base = unpack_datum!(bcx, trans(bcx, &**base)); let idx_datum = unpack_datum!(bcx, trans(bcx, &**idx)); trans_overloaded_op(bcx, expr, MethodCall::expr(expr.id), base, Some((idx_datum, idx.id)), Some(dest)).bcx } ast::ExprCast(ref val, _) => { // DPS output mode means this is a trait cast: if ty::type_is_trait(node_id_type(bcx, expr.id)) { let datum = unpack_datum!(bcx, trans(bcx, &**val)); meth::trans_trait_cast(bcx, datum, expr.id, dest) } else { bcx.tcx().sess.span_bug(expr.span, "expr_cast of non-trait"); } } ast::ExprAssignOp(op, ref dst, ref src) => { trans_assign_op(bcx, expr, op, &**dst, src.clone()) } _ => { bcx.tcx().sess.span_bug( expr.span, format!("trans_rvalue_dps_unadjusted reached fall-through \ case: {:?}", expr.node).as_slice()); } } } fn trans_def_dps_unadjusted<'a>( bcx: &'a Block<'a>, ref_expr: &ast::Expr, def: def::Def, dest: Dest) -> &'a Block<'a> { let _icx = push_ctxt("trans_def_dps_unadjusted"); let lldest = match dest { SaveIn(lldest) => lldest, Ignore => { return bcx; } }; match def { def::DefVariant(tid, vid, _) => { let variant_info = ty::enum_variant_with_id(bcx.tcx(), tid, vid); if variant_info.args.len() > 0u { // N-ary variant. let llfn = callee::trans_fn_ref(bcx, vid, ExprId(ref_expr.id)); Store(bcx, llfn, lldest); return bcx; } else { // Nullary variant. let ty = expr_ty(bcx, ref_expr); let repr = adt::represent_type(bcx.ccx(), ty); adt::trans_start_init(bcx, &*repr, lldest, variant_info.disr_val); return bcx; } } def::DefStruct(_) => { let ty = expr_ty(bcx, ref_expr); match ty::get(ty).sty { ty::ty_struct(did, _) if ty::has_dtor(bcx.tcx(), did) => { let repr = adt::represent_type(bcx.ccx(), ty); adt::trans_start_init(bcx, &*repr, lldest, 0); } _ => {} } bcx } _ => { bcx.tcx().sess.span_bug(ref_expr.span, format!( "Non-DPS def {:?} referened by {}", def, bcx.node_id_to_str(ref_expr.id)).as_slice()); } } } fn trans_def_fn_unadjusted<'a>(bcx: &'a Block<'a>, ref_expr: &ast::Expr, def: def::Def) -> DatumBlock<'a, Expr> { let _icx = push_ctxt("trans_def_datum_unadjusted"); let llfn = match def { def::DefFn(did, _) | def::DefStruct(did) | def::DefVariant(_, did, _) | def::DefStaticMethod(did, def::FromImpl(_), _) => { callee::trans_fn_ref(bcx, did, ExprId(ref_expr.id)) } def::DefStaticMethod(impl_did, def::FromTrait(trait_did), _) => { meth::trans_static_method_callee(bcx, impl_did, trait_did, ref_expr.id) } _ => { bcx.tcx().sess.span_bug(ref_expr.span, format!( "trans_def_fn_unadjusted invoked on: {:?} for {}", def, ref_expr.repr(bcx.tcx())).as_slice()); } }; let fn_ty = expr_ty(bcx, ref_expr); DatumBlock::new(bcx, Datum::new(llfn, fn_ty, RvalueExpr(Rvalue::new(ByValue)))) } pub fn trans_local_var<'a>(bcx: &'a Block<'a>, def: def::Def) -> Datum { /*! * Translates a reference to a local variable or argument. * This always results in an lvalue datum. */ let _icx = push_ctxt("trans_local_var"); return match def { def::DefUpvar(nid, _, _, _) => { // Can't move upvars, so this is never a ZeroMemLastUse. let local_ty = node_id_type(bcx, nid); match bcx.fcx.llupvars.borrow().find(&nid) { Some(&val) => Datum::new(val, local_ty, Lvalue), None => { bcx.sess().bug(format!( "trans_local_var: no llval for upvar {:?} found", nid).as_slice()); } } } def::DefArg(nid, _) => { take_local(bcx, &*bcx.fcx.llargs.borrow(), nid) } def::DefLocal(nid, _) | def::DefBinding(nid, _) => { take_local(bcx, &*bcx.fcx.lllocals.borrow(), nid) } _ => { bcx.sess().unimpl(format!( "unsupported def type in trans_local_var: {:?}", def).as_slice()); } }; fn take_local<'a>(bcx: &'a Block<'a>, table: &NodeMap>, nid: ast::NodeId) -> Datum { let datum = match table.find(&nid) { Some(&v) => v, None => { bcx.sess().bug(format!( "trans_local_var: no datum for local/arg {:?} found", nid).as_slice()); } }; debug!("take_local(nid={:?}, v={}, ty={})", nid, bcx.val_to_str(datum.val), bcx.ty_to_str(datum.ty)); datum } } pub fn with_field_tys(tcx: &ty::ctxt, ty: ty::t, node_id_opt: Option, op: |ty::Disr, (&[ty::field])| -> R) -> R { /*! * Helper for enumerating the field types of structs, enums, or records. * The optional node ID here is the node ID of the path identifying the enum * variant in use. If none, this cannot possibly an enum variant (so, if it * is and `node_id_opt` is none, this function fails). */ match ty::get(ty).sty { ty::ty_struct(did, ref substs) => { op(0, struct_fields(tcx, did, substs).as_slice()) } ty::ty_enum(_, ref substs) => { // We want the *variant* ID here, not the enum ID. match node_id_opt { None => { tcx.sess.bug(format!( "cannot get field types from the enum type {} \ without a node ID", ty.repr(tcx)).as_slice()); } Some(node_id) => { let def = tcx.def_map.borrow().get_copy(&node_id); match def { def::DefVariant(enum_id, variant_id, _) => { let variant_info = ty::enum_variant_with_id( tcx, enum_id, variant_id); op(variant_info.disr_val, struct_fields(tcx, variant_id, substs).as_slice()) } _ => { tcx.sess.bug("resolve didn't map this expr to a \ variant ID") } } } } } _ => { tcx.sess.bug(format!( "cannot get field types from the type {}", ty.repr(tcx)).as_slice()); } } } fn trans_rec_or_struct<'a>( bcx: &'a Block<'a>, fields: &[ast::Field], base: Option>, expr_span: codemap::Span, id: ast::NodeId, dest: Dest) -> &'a Block<'a> { let _icx = push_ctxt("trans_rec"); let bcx = bcx; let ty = node_id_type(bcx, id); let tcx = bcx.tcx(); with_field_tys(tcx, ty, Some(id), |discr, field_tys| { let mut need_base = Vec::from_elem(field_tys.len(), true); let numbered_fields = fields.iter().map(|field| { let opt_pos = field_tys.iter().position(|field_ty| field_ty.ident.name == field.ident.node.name); match opt_pos { Some(i) => { *need_base.get_mut(i) = false; (i, field.expr) } None => { tcx.sess.span_bug(field.span, "Couldn't find field in struct type") } } }).collect::>(); let optbase = match base { Some(base_expr) => { let mut leftovers = Vec::new(); for (i, b) in need_base.iter().enumerate() { if *b { leftovers.push((i, field_tys[i].mt.ty)) } } Some(StructBaseInfo {expr: base_expr, fields: leftovers }) } None => { if need_base.iter().any(|b| *b) { tcx.sess.span_bug(expr_span, "missing fields and no base expr") } None } }; let repr = adt::represent_type(bcx.ccx(), ty); trans_adt(bcx, &*repr, discr, numbered_fields.as_slice(), optbase, dest) }) } /** * Information that `trans_adt` needs in order to fill in the fields * of a struct copied from a base struct (e.g., from an expression * like `Foo { a: b, ..base }`. * * Note that `fields` may be empty; the base expression must always be * evaluated for side-effects. */ struct StructBaseInfo { /// The base expression; will be evaluated after all explicit fields. expr: Gc, /// The indices of fields to copy paired with their types. fields: Vec<(uint, ty::t)> } /** * Constructs an ADT instance: * * - `fields` should be a list of field indices paired with the * expression to store into that field. The initializers will be * evaluated in the order specified by `fields`. * * - `optbase` contains information on the base struct (if any) from * which remaining fields are copied; see comments on `StructBaseInfo`. */ fn trans_adt<'a>( bcx: &'a Block<'a>, repr: &adt::Repr, discr: ty::Disr, fields: &[(uint, Gc)], optbase: Option, dest: Dest) -> &'a Block<'a> { let _icx = push_ctxt("trans_adt"); let fcx = bcx.fcx; let mut bcx = bcx; let addr = match dest { Ignore => { for &(_i, ref e) in fields.iter() { bcx = trans_into(bcx, &**e, Ignore); } for sbi in optbase.iter() { // FIXME #7261: this moves entire base, not just certain fields bcx = trans_into(bcx, &*sbi.expr, Ignore); } return bcx; } SaveIn(pos) => pos }; // This scope holds intermediates that must be cleaned should // failure occur before the ADT as a whole is ready. let custom_cleanup_scope = fcx.push_custom_cleanup_scope(); adt::trans_start_init(bcx, repr, addr, discr); for &(i, ref e) in fields.iter() { let dest = adt::trans_field_ptr(bcx, repr, addr, discr, i); let e_ty = expr_ty_adjusted(bcx, &**e); bcx = trans_into(bcx, &**e, SaveIn(dest)); fcx.schedule_drop_mem(cleanup::CustomScope(custom_cleanup_scope), dest, e_ty); } for base in optbase.iter() { // FIXME #6573: is it sound to use the destination's repr on the base? // And, would it ever be reasonable to be here with discr != 0? let base_datum = unpack_datum!(bcx, trans_to_lvalue(bcx, &*base.expr, "base")); for &(i, t) in base.fields.iter() { let datum = base_datum.get_element( t, |srcval| adt::trans_field_ptr(bcx, repr, srcval, discr, i)); let dest = adt::trans_field_ptr(bcx, repr, addr, discr, i); bcx = datum.store_to(bcx, dest); } } fcx.pop_custom_cleanup_scope(custom_cleanup_scope); return bcx; } fn trans_immediate_lit<'a>(bcx: &'a Block<'a>, expr: &ast::Expr, lit: ast::Lit) -> DatumBlock<'a, Expr> { // must not be a string constant, that is a RvalueDpsExpr let _icx = push_ctxt("trans_immediate_lit"); let ty = expr_ty(bcx, expr); let v = consts::const_lit(bcx.ccx(), expr, lit); immediate_rvalue_bcx(bcx, v, ty).to_expr_datumblock() } fn trans_unary<'a>(bcx: &'a Block<'a>, expr: &ast::Expr, op: ast::UnOp, sub_expr: &ast::Expr) -> DatumBlock<'a, Expr> { let ccx = bcx.ccx(); let mut bcx = bcx; let _icx = push_ctxt("trans_unary_datum"); let method_call = MethodCall::expr(expr.id); // The only overloaded operator that is translated to a datum // is an overloaded deref, since it is always yields a `&T`. // Otherwise, we should be in the RvalueDpsExpr path. assert!( op == ast::UnDeref || !ccx.tcx.method_map.borrow().contains_key(&method_call)); let un_ty = expr_ty(bcx, expr); match op { ast::UnNot => { let datum = unpack_datum!(bcx, trans(bcx, sub_expr)); let llresult = if ty::type_is_bool(un_ty) { let val = datum.to_llscalarish(bcx); Xor(bcx, val, C_bool(ccx, true)) } else { // Note: `Not` is bitwise, not suitable for logical not. Not(bcx, datum.to_llscalarish(bcx)) }; immediate_rvalue_bcx(bcx, llresult, un_ty).to_expr_datumblock() } ast::UnNeg => { let datum = unpack_datum!(bcx, trans(bcx, sub_expr)); let val = datum.to_llscalarish(bcx); let llneg = { if ty::type_is_fp(un_ty) { FNeg(bcx, val) } else { Neg(bcx, val) } }; immediate_rvalue_bcx(bcx, llneg, un_ty).to_expr_datumblock() } ast::UnBox => { trans_managed_expr(bcx, un_ty, sub_expr, expr_ty(bcx, sub_expr)) } ast::UnUniq => { trans_uniq_expr(bcx, un_ty, sub_expr, expr_ty(bcx, sub_expr)) } ast::UnDeref => { let datum = unpack_datum!(bcx, trans(bcx, sub_expr)); deref_once(bcx, expr, datum, method_call) } } } fn trans_uniq_expr<'a>(bcx: &'a Block<'a>, box_ty: ty::t, contents: &ast::Expr, contents_ty: ty::t) -> DatumBlock<'a, Expr> { let _icx = push_ctxt("trans_uniq_expr"); let fcx = bcx.fcx; let llty = type_of::type_of(bcx.ccx(), contents_ty); let size = llsize_of(bcx.ccx(), llty); let align = C_uint(bcx.ccx(), llalign_of_min(bcx.ccx(), llty) as uint); // We need to a make a pointer type because box_ty is ty_bot // if content_ty is, e.g. box fail!(). let real_box_ty = ty::mk_uniq(bcx.tcx(), contents_ty); let Result { bcx, val } = malloc_raw_dyn(bcx, real_box_ty, size, align); // Unique boxes do not allocate for zero-size types. The standard library // may assume that `free` is never called on the pointer returned for // `Box`. let bcx = if llsize_of_alloc(bcx.ccx(), llty) == 0 { trans_into(bcx, contents, SaveIn(val)) } else { let custom_cleanup_scope = fcx.push_custom_cleanup_scope(); fcx.schedule_free_value(cleanup::CustomScope(custom_cleanup_scope), val, cleanup::HeapExchange, contents_ty); let bcx = trans_into(bcx, contents, SaveIn(val)); fcx.pop_custom_cleanup_scope(custom_cleanup_scope); bcx }; immediate_rvalue_bcx(bcx, val, box_ty).to_expr_datumblock() } fn trans_managed_expr<'a>(bcx: &'a Block<'a>, box_ty: ty::t, contents: &ast::Expr, contents_ty: ty::t) -> DatumBlock<'a, Expr> { let _icx = push_ctxt("trans_managed_expr"); let fcx = bcx.fcx; let ty = type_of::type_of(bcx.ccx(), contents_ty); let Result {bcx, val: bx} = malloc_raw_dyn_managed(bcx, contents_ty, MallocFnLangItem, llsize_of(bcx.ccx(), ty)); let body = GEPi(bcx, bx, [0u, abi::box_field_body]); let custom_cleanup_scope = fcx.push_custom_cleanup_scope(); fcx.schedule_free_value(cleanup::CustomScope(custom_cleanup_scope), bx, cleanup::HeapManaged, contents_ty); let bcx = trans_into(bcx, contents, SaveIn(body)); fcx.pop_custom_cleanup_scope(custom_cleanup_scope); immediate_rvalue_bcx(bcx, bx, box_ty).to_expr_datumblock() } fn trans_addr_of<'a>(bcx: &'a Block<'a>, expr: &ast::Expr, subexpr: &ast::Expr) -> DatumBlock<'a, Expr> { let _icx = push_ctxt("trans_addr_of"); let mut bcx = bcx; let sub_datum = unpack_datum!(bcx, trans_to_lvalue(bcx, subexpr, "addr_of")); let ty = expr_ty(bcx, expr); return immediate_rvalue_bcx(bcx, sub_datum.val, ty).to_expr_datumblock(); } // Important to get types for both lhs and rhs, because one might be _|_ // and the other not. fn trans_eager_binop<'a>( bcx: &'a Block<'a>, binop_expr: &ast::Expr, binop_ty: ty::t, op: ast::BinOp, lhs_t: ty::t, lhs: ValueRef, rhs_t: ty::t, rhs: ValueRef) -> DatumBlock<'a, Expr> { let _icx = push_ctxt("trans_eager_binop"); let tcx = bcx.tcx(); let is_simd = ty::type_is_simd(tcx, lhs_t); let intype = { if ty::type_is_bot(lhs_t) { rhs_t } else if is_simd { ty::simd_type(tcx, lhs_t) } else { lhs_t } }; let is_float = ty::type_is_fp(intype); let is_signed = ty::type_is_signed(intype); let rhs = base::cast_shift_expr_rhs(bcx, op, lhs, rhs); let mut bcx = bcx; let val = match op { ast::BiAdd => { if is_float { FAdd(bcx, lhs, rhs) } else { Add(bcx, lhs, rhs) } } ast::BiSub => { if is_float { FSub(bcx, lhs, rhs) } else { Sub(bcx, lhs, rhs) } } ast::BiMul => { if is_float { FMul(bcx, lhs, rhs) } else { Mul(bcx, lhs, rhs) } } ast::BiDiv => { if is_float { FDiv(bcx, lhs, rhs) } else { // Only zero-check integers; fp /0 is NaN bcx = base::fail_if_zero_or_overflows(bcx, binop_expr.span, op, lhs, rhs, rhs_t); if is_signed { SDiv(bcx, lhs, rhs) } else { UDiv(bcx, lhs, rhs) } } } ast::BiRem => { if is_float { FRem(bcx, lhs, rhs) } else { // Only zero-check integers; fp %0 is NaN bcx = base::fail_if_zero_or_overflows(bcx, binop_expr.span, op, lhs, rhs, rhs_t); if is_signed { SRem(bcx, lhs, rhs) } else { URem(bcx, lhs, rhs) } } } ast::BiBitOr => Or(bcx, lhs, rhs), ast::BiBitAnd => And(bcx, lhs, rhs), ast::BiBitXor => Xor(bcx, lhs, rhs), ast::BiShl => Shl(bcx, lhs, rhs), ast::BiShr => { if is_signed { AShr(bcx, lhs, rhs) } else { LShr(bcx, lhs, rhs) } } ast::BiEq | ast::BiNe | ast::BiLt | ast::BiGe | ast::BiLe | ast::BiGt => { if ty::type_is_bot(rhs_t) { C_bool(bcx.ccx(), false) } else if ty::type_is_scalar(rhs_t) { unpack_result!(bcx, base::compare_scalar_types(bcx, lhs, rhs, rhs_t, op)) } else if is_simd { base::compare_simd_types(bcx, lhs, rhs, intype, ty::simd_size(tcx, lhs_t), op) } else { bcx.tcx().sess.span_bug(binop_expr.span, "comparison operator unsupported for type") } } _ => { bcx.tcx().sess.span_bug(binop_expr.span, "unexpected binop"); } }; immediate_rvalue_bcx(bcx, val, binop_ty).to_expr_datumblock() } // refinement types would obviate the need for this enum lazy_binop_ty { lazy_and, lazy_or, } fn trans_lazy_binop<'a>( bcx: &'a Block<'a>, binop_expr: &ast::Expr, op: lazy_binop_ty, a: &ast::Expr, b: &ast::Expr) -> DatumBlock<'a, Expr> { let _icx = push_ctxt("trans_lazy_binop"); let binop_ty = expr_ty(bcx, binop_expr); let fcx = bcx.fcx; let DatumBlock {bcx: past_lhs, datum: lhs} = trans(bcx, a); let lhs = lhs.to_llscalarish(past_lhs); if past_lhs.unreachable.get() { return immediate_rvalue_bcx(past_lhs, lhs, binop_ty).to_expr_datumblock(); } let join = fcx.new_id_block("join", binop_expr.id); let before_rhs = fcx.new_id_block("before_rhs", b.id); match op { lazy_and => CondBr(past_lhs, lhs, before_rhs.llbb, join.llbb), lazy_or => CondBr(past_lhs, lhs, join.llbb, before_rhs.llbb) } let DatumBlock {bcx: past_rhs, datum: rhs} = trans(before_rhs, b); let rhs = rhs.to_llscalarish(past_rhs); if past_rhs.unreachable.get() { return immediate_rvalue_bcx(join, lhs, binop_ty).to_expr_datumblock(); } Br(past_rhs, join.llbb); let phi = Phi(join, Type::bool(bcx.ccx()), [lhs, rhs], [past_lhs.llbb, past_rhs.llbb]); return immediate_rvalue_bcx(join, phi, binop_ty).to_expr_datumblock(); } fn trans_binary<'a>(bcx: &'a Block<'a>, expr: &ast::Expr, op: ast::BinOp, lhs: &ast::Expr, rhs: &ast::Expr) -> DatumBlock<'a, Expr> { let _icx = push_ctxt("trans_binary"); let ccx = bcx.ccx(); // if overloaded, would be RvalueDpsExpr assert!(!ccx.tcx.method_map.borrow().contains_key(&MethodCall::expr(expr.id))); match op { ast::BiAnd => { trans_lazy_binop(bcx, expr, lazy_and, lhs, rhs) } ast::BiOr => { trans_lazy_binop(bcx, expr, lazy_or, lhs, rhs) } _ => { let mut bcx = bcx; let lhs_datum = unpack_datum!(bcx, trans(bcx, lhs)); let rhs_datum = unpack_datum!(bcx, trans(bcx, rhs)); let binop_ty = expr_ty(bcx, expr); debug!("trans_binary (expr {}): lhs_datum={}", expr.id, lhs_datum.to_str(ccx)); let lhs_ty = lhs_datum.ty; let lhs = lhs_datum.to_llscalarish(bcx); debug!("trans_binary (expr {}): rhs_datum={}", expr.id, rhs_datum.to_str(ccx)); let rhs_ty = rhs_datum.ty; let rhs = rhs_datum.to_llscalarish(bcx); trans_eager_binop(bcx, expr, binop_ty, op, lhs_ty, lhs, rhs_ty, rhs) } } } fn trans_overloaded_op<'a, 'b>( bcx: &'a Block<'a>, expr: &ast::Expr, method_call: MethodCall, lhs: Datum, rhs: Option<(Datum, ast::NodeId)>, dest: Option) -> Result<'a> { let method_ty = bcx.tcx().method_map.borrow().get(&method_call).ty; callee::trans_call_inner(bcx, Some(expr_info(expr)), monomorphize_type(bcx, method_ty), |bcx, arg_cleanup_scope| { meth::trans_method_callee(bcx, method_call, None, arg_cleanup_scope) }, callee::ArgOverloadedOp(lhs, rhs), dest) } fn trans_overloaded_call<'a>( mut bcx: &'a Block<'a>, expr: &ast::Expr, callee: Datum, args: &[Gc], dest: Option) -> &'a Block<'a> { // Evaluate and tuple the arguments. let tuple_type = ty::mk_tup(bcx.tcx(), args.iter() .map(|e| ty::expr_ty_adjusted(bcx.tcx(), &**e)) .collect()); let repr = adt::represent_type(bcx.ccx(), tuple_type); let numbered_fields: Vec<(uint, Gc)> = args.iter().enumerate().map(|(i, arg)| (i, *arg)).collect(); let argument_scope = bcx.fcx.push_custom_cleanup_scope(); let tuple_datum = unpack_datum!(bcx, lvalue_scratch_datum(bcx, tuple_type, "tupled_arguments", false, cleanup::CustomScope( argument_scope), (), |(), bcx, addr| { trans_adt(bcx, &*repr, 0, numbered_fields.as_slice(), None, SaveIn(addr)) })); let method_call = MethodCall::expr(expr.id); let method_type = bcx.tcx() .method_map .borrow() .get(&method_call) .ty; let callee_rvalue = unpack_datum!(bcx, callee.to_rvalue_datum(bcx, "callee")); let tuple_datum = tuple_datum.to_expr_datum(); let tuple_rvalue = unpack_datum!(bcx, tuple_datum.to_rvalue_datum(bcx, "tuple")); let argument_values = [ callee_rvalue.add_clean(bcx.fcx, cleanup::CustomScope(argument_scope)), tuple_rvalue.add_clean(bcx.fcx, cleanup::CustomScope(argument_scope)) ]; unpack_result!(bcx, callee::trans_call_inner(bcx, Some(expr_info(expr)), monomorphize_type(bcx, method_type), |bcx, arg_cleanup_scope| { meth::trans_method_callee( bcx, method_call, None, arg_cleanup_scope) }, callee::ArgVals(argument_values), dest)); bcx.fcx.pop_custom_cleanup_scope(argument_scope); bcx } fn int_cast(bcx: &Block, lldsttype: Type, llsrctype: Type, llsrc: ValueRef, signed: bool) -> ValueRef { let _icx = push_ctxt("int_cast"); unsafe { let srcsz = llvm::LLVMGetIntTypeWidth(llsrctype.to_ref()); let dstsz = llvm::LLVMGetIntTypeWidth(lldsttype.to_ref()); return if dstsz == srcsz { BitCast(bcx, llsrc, lldsttype) } else if srcsz > dstsz { TruncOrBitCast(bcx, llsrc, lldsttype) } else if signed { SExtOrBitCast(bcx, llsrc, lldsttype) } else { ZExtOrBitCast(bcx, llsrc, lldsttype) }; } } fn float_cast(bcx: &Block, lldsttype: Type, llsrctype: Type, llsrc: ValueRef) -> ValueRef { let _icx = push_ctxt("float_cast"); let srcsz = llsrctype.float_width(); let dstsz = lldsttype.float_width(); return if dstsz > srcsz { FPExt(bcx, llsrc, lldsttype) } else if srcsz > dstsz { FPTrunc(bcx, llsrc, lldsttype) } else { llsrc }; } #[deriving(PartialEq)] pub enum cast_kind { cast_pointer, cast_integral, cast_float, cast_enum, cast_other, } pub fn cast_type_kind(t: ty::t) -> cast_kind { match ty::get(t).sty { ty::ty_char => cast_integral, ty::ty_float(..) => cast_float, ty::ty_ptr(..) => cast_pointer, ty::ty_rptr(_, mt) => match ty::get(mt.ty).sty{ ty::ty_vec(_, None) | ty::ty_str | ty::ty_trait(..) => cast_other, _ => cast_pointer, }, ty::ty_bare_fn(..) => cast_pointer, ty::ty_int(..) => cast_integral, ty::ty_uint(..) => cast_integral, ty::ty_bool => cast_integral, ty::ty_enum(..) => cast_enum, _ => cast_other } } fn trans_imm_cast<'a>(bcx: &'a Block<'a>, expr: &ast::Expr, id: ast::NodeId) -> DatumBlock<'a, Expr> { let _icx = push_ctxt("trans_cast"); let mut bcx = bcx; let ccx = bcx.ccx(); let t_in = expr_ty(bcx, expr); let t_out = node_id_type(bcx, id); let k_in = cast_type_kind(t_in); let k_out = cast_type_kind(t_out); let s_in = k_in == cast_integral && ty::type_is_signed(t_in); let ll_t_in = type_of::type_of(ccx, t_in); let ll_t_out = type_of::type_of(ccx, t_out); // Convert the value to be cast into a ValueRef, either by-ref or // by-value as appropriate given its type: let datum = unpack_datum!(bcx, trans(bcx, expr)); let newval = match (k_in, k_out) { (cast_integral, cast_integral) => { let llexpr = datum.to_llscalarish(bcx); int_cast(bcx, ll_t_out, ll_t_in, llexpr, s_in) } (cast_float, cast_float) => { let llexpr = datum.to_llscalarish(bcx); float_cast(bcx, ll_t_out, ll_t_in, llexpr) } (cast_integral, cast_float) => { let llexpr = datum.to_llscalarish(bcx); if s_in { SIToFP(bcx, llexpr, ll_t_out) } else { UIToFP(bcx, llexpr, ll_t_out) } } (cast_float, cast_integral) => { let llexpr = datum.to_llscalarish(bcx); if ty::type_is_signed(t_out) { FPToSI(bcx, llexpr, ll_t_out) } else { FPToUI(bcx, llexpr, ll_t_out) } } (cast_integral, cast_pointer) => { let llexpr = datum.to_llscalarish(bcx); IntToPtr(bcx, llexpr, ll_t_out) } (cast_pointer, cast_integral) => { let llexpr = datum.to_llscalarish(bcx); PtrToInt(bcx, llexpr, ll_t_out) } (cast_pointer, cast_pointer) => { let llexpr = datum.to_llscalarish(bcx); PointerCast(bcx, llexpr, ll_t_out) } (cast_enum, cast_integral) | (cast_enum, cast_float) => { let mut bcx = bcx; let repr = adt::represent_type(ccx, t_in); let datum = unpack_datum!( bcx, datum.to_lvalue_datum(bcx, "trans_imm_cast", expr.id)); let llexpr_ptr = datum.to_llref(); let lldiscrim_a = adt::trans_get_discr(bcx, &*repr, llexpr_ptr, Some(Type::i64(ccx))); match k_out { cast_integral => int_cast(bcx, ll_t_out, val_ty(lldiscrim_a), lldiscrim_a, true), cast_float => SIToFP(bcx, lldiscrim_a, ll_t_out), _ => { ccx.sess().bug(format!("translating unsupported cast: \ {} ({:?}) -> {} ({:?})", t_in.repr(bcx.tcx()), k_in, t_out.repr(bcx.tcx()), k_out).as_slice()) } } } _ => ccx.sess().bug(format!("translating unsupported cast: \ {} ({:?}) -> {} ({:?})", t_in.repr(bcx.tcx()), k_in, t_out.repr(bcx.tcx()), k_out).as_slice()) }; return immediate_rvalue_bcx(bcx, newval, t_out).to_expr_datumblock(); } fn trans_assign_op<'a>( bcx: &'a Block<'a>, expr: &ast::Expr, op: ast::BinOp, dst: &ast::Expr, src: Gc) -> &'a Block<'a> { let _icx = push_ctxt("trans_assign_op"); let mut bcx = bcx; debug!("trans_assign_op(expr={})", bcx.expr_to_str(expr)); // User-defined operator methods cannot be used with `+=` etc right now assert!(!bcx.tcx().method_map.borrow().contains_key(&MethodCall::expr(expr.id))); // Evaluate LHS (destination), which should be an lvalue let dst_datum = unpack_datum!(bcx, trans_to_lvalue(bcx, dst, "assign_op")); assert!(!ty::type_needs_drop(bcx.tcx(), dst_datum.ty)); let dst_ty = dst_datum.ty; let dst = Load(bcx, dst_datum.val); // Evaluate RHS let rhs_datum = unpack_datum!(bcx, trans(bcx, &*src)); let rhs_ty = rhs_datum.ty; let rhs = rhs_datum.to_llscalarish(bcx); // Perform computation and store the result let result_datum = unpack_datum!( bcx, trans_eager_binop(bcx, expr, dst_datum.ty, op, dst_ty, dst, rhs_ty, rhs)); return result_datum.store_to(bcx, dst_datum.val); } fn auto_ref<'a>(bcx: &'a Block<'a>, datum: Datum, expr: &ast::Expr) -> DatumBlock<'a, Expr> { let mut bcx = bcx; // Ensure cleanup of `datum` if not already scheduled and obtain // a "by ref" pointer. let lv_datum = unpack_datum!(bcx, datum.to_lvalue_datum(bcx, "autoref", expr.id)); // Compute final type. Note that we are loose with the region and // mutability, since those things don't matter in trans. let referent_ty = lv_datum.ty; let ptr_ty = ty::mk_imm_rptr(bcx.tcx(), ty::ReStatic, referent_ty); // Get the pointer. let llref = lv_datum.to_llref(); // Construct the resulting datum, using what was the "by ref" // ValueRef of type `referent_ty` to be the "by value" ValueRef // of type `&referent_ty`. DatumBlock::new(bcx, Datum::new(llref, ptr_ty, RvalueExpr(Rvalue::new(ByValue)))) } fn deref_multiple<'a>(bcx: &'a Block<'a>, expr: &ast::Expr, datum: Datum, times: uint) -> DatumBlock<'a, Expr> { let mut bcx = bcx; let mut datum = datum; for i in range(0, times) { let method_call = MethodCall::autoderef(expr.id, i); datum = unpack_datum!(bcx, deref_once(bcx, expr, datum, method_call)); } DatumBlock { bcx: bcx, datum: datum } } fn deref_once<'a>(bcx: &'a Block<'a>, expr: &ast::Expr, datum: Datum, method_call: MethodCall) -> DatumBlock<'a, Expr> { let ccx = bcx.ccx(); debug!("deref_once(expr={}, datum={}, method_call={})", expr.repr(bcx.tcx()), datum.to_str(ccx), method_call); let mut bcx = bcx; // Check for overloaded deref. let method_ty = ccx.tcx.method_map.borrow() .find(&method_call).map(|method| method.ty); let datum = match method_ty { Some(method_ty) => { // Overloaded. Evaluate `trans_overloaded_op`, which will // invoke the user's deref() method, which basically // converts from the `Shaht` pointer that we have into // a `&T` pointer. We can then proceed down the normal // path (below) to dereference that `&T`. let datum = match method_call.adjustment { // Always perform an AutoPtr when applying an overloaded auto-deref typeck::AutoDeref(_) => unpack_datum!(bcx, auto_ref(bcx, datum, expr)), _ => datum }; let val = unpack_result!(bcx, trans_overloaded_op(bcx, expr, method_call, datum, None, None)); let ref_ty = ty::ty_fn_ret(monomorphize_type(bcx, method_ty)); Datum::new(val, ref_ty, RvalueExpr(Rvalue::new(ByValue))) } None => { // Not overloaded. We already have a pointer we know how to deref. datum } }; let r = match ty::get(datum.ty).sty { ty::ty_uniq(content_ty) => { match ty::get(content_ty).sty { ty::ty_vec(_, None) | ty::ty_str | ty::ty_trait(..) => bcx.tcx().sess.span_bug(expr.span, "unexpected unsized box"), _ => deref_owned_pointer(bcx, expr, datum, content_ty), } } ty::ty_box(content_ty) => { let datum = unpack_datum!( bcx, datum.to_lvalue_datum(bcx, "deref", expr.id)); let llptrref = datum.to_llref(); let llptr = Load(bcx, llptrref); let llbody = GEPi(bcx, llptr, [0u, abi::box_field_body]); DatumBlock::new(bcx, Datum::new(llbody, content_ty, LvalueExpr)) } ty::ty_ptr(ty::mt { ty: content_ty, .. }) | ty::ty_rptr(_, ty::mt { ty: content_ty, .. }) => { match ty::get(content_ty).sty { ty::ty_vec(_, None) | ty::ty_str | ty::ty_trait(..) => bcx.tcx().sess.span_bug(expr.span, "unexpected unsized reference"), _ => { assert!(!ty::type_needs_drop(bcx.tcx(), datum.ty)); let ptr = datum.to_llscalarish(bcx); // Always generate an lvalue datum, even if datum.mode is // an rvalue. This is because datum.mode is only an // rvalue for non-owning pointers like &T or *T, in which // case cleanup *is* scheduled elsewhere, by the true // owner (or, in the case of *T, by the user). DatumBlock::new(bcx, Datum::new(ptr, content_ty, LvalueExpr)) } } } _ => { bcx.tcx().sess.span_bug( expr.span, format!("deref invoked on expr of illegal type {}", datum.ty.repr(bcx.tcx())).as_slice()); } }; debug!("deref_once(expr={}, method_call={}, result={})", expr.id, method_call, r.datum.to_str(ccx)); return r; fn deref_owned_pointer<'a>(bcx: &'a Block<'a>, expr: &ast::Expr, datum: Datum, content_ty: ty::t) -> DatumBlock<'a, Expr> { /*! * We microoptimize derefs of owned pointers a bit here. * Basically, the idea is to make the deref of an rvalue * result in an rvalue. This helps to avoid intermediate stack * slots in the resulting LLVM. The idea here is that, if the * `Box` pointer is an rvalue, then we can schedule a *shallow* * free of the `Box` pointer, and then return a ByRef rvalue * into the pointer. Because the free is shallow, it is legit * to return an rvalue, because we know that the contents are * not yet scheduled to be freed. The language rules ensure that the * contents will be used (or moved) before the free occurs. */ match datum.kind { RvalueExpr(Rvalue { mode: ByRef }) => { let scope = cleanup::temporary_scope(bcx.tcx(), expr.id); let ptr = Load(bcx, datum.val); if !type_is_zero_size(bcx.ccx(), content_ty) { bcx.fcx.schedule_free_value(scope, ptr, cleanup::HeapExchange, content_ty); } } RvalueExpr(Rvalue { mode: ByValue }) => { let scope = cleanup::temporary_scope(bcx.tcx(), expr.id); if !type_is_zero_size(bcx.ccx(), content_ty) { bcx.fcx.schedule_free_value(scope, datum.val, cleanup::HeapExchange, content_ty); } } LvalueExpr => { } } // If we had an rvalue in, we produce an rvalue out. let (llptr, kind) = match datum.kind { LvalueExpr => { (Load(bcx, datum.val), LvalueExpr) } RvalueExpr(Rvalue { mode: ByRef }) => { (Load(bcx, datum.val), RvalueExpr(Rvalue::new(ByRef))) } RvalueExpr(Rvalue { mode: ByValue }) => { (datum.val, RvalueExpr(Rvalue::new(ByRef))) } }; let datum = Datum { ty: content_ty, val: llptr, kind: kind }; DatumBlock { bcx: bcx, datum: datum } } }