// Type decoding import std::str; import std::vec; import std::uint; import std::option; import std::option::none; import std::option::some; import front::ast; import middle::ty; import util::common; import util::common::respan; import util::common::a_ty; import util::common::a_bang; export parse_def_id; export parse_ty_data; // Compact string representation for ty::t values. API ty_str & parse_from_str // (The second has to be authed pure.) Extra parameters are for converting // to/from def_ids in the data buffer. Whatever format you choose should not // contain pipe characters. // Callback to translate defs to strs or back: type str_def = fn(str) -> ast::def_id ; type pstate = rec(vec[u8] data, int crate, mutable uint pos, uint len, ty::ctxt tcx); type ty_or_bang = util::common::ty_or_bang[ty::t]; fn peek(@pstate st) -> u8 { ret st.data.(st.pos); } fn next(@pstate st) -> u8 { auto ch = st.data.(st.pos); st.pos = st.pos + 1u; ret ch; } fn parse_ident(@pstate st, str_def sd, char last) -> ast::ident { fn is_last(char b, char c) -> bool { ret c == b; } ret parse_ident_(st, sd, bind is_last(last, _)); } fn parse_ident_(@pstate st, str_def sd, fn(char) -> bool is_last) -> ast::ident { auto rslt = ""; while (! is_last(peek(st) as char)) { rslt += str::unsafe_from_byte(next(st)); } ret rslt; } fn parse_ty_data(vec[u8] data, int crate_num, uint pos, uint len, str_def sd, ty::ctxt tcx) -> ty::t { auto st = @rec(data=data, crate=crate_num, mutable pos=pos, len=len, tcx=tcx); auto result = parse_ty(st, sd); ret result; } fn parse_ty_or_bang(@pstate st, str_def sd) -> ty_or_bang { alt (peek(st) as char) { case ('!') { auto ignore = next(st); ret a_bang[ty::t]; } case (_) { ret a_ty[ty::t](parse_ty(st, sd)); } } } fn parse_constrs(@pstate st, str_def sd) -> vec[@ty::constr_def] { let vec[@ty::constr_def] rslt = []; alt (peek(st) as char) { case (':') { do { auto ignore = next(st); vec::push(rslt, parse_constr(st, sd)); } while (peek(st) as char == ';') } case (_) { } } ret rslt; } fn parse_path(@pstate st, str_def sd) -> ast::path { let vec[ast::ident] idents = []; fn is_last(char c) -> bool { ret (c == '(' || c == ':'); } idents += [parse_ident_(st, sd, is_last)]; while (true) { alt (peek(st) as char) { case (':') { auto ignore = next(st); ignore = next(st); } case (?c) { if (c == '(') { ret respan(rec(lo=0u, hi=0u), rec(idents=idents, types=[])); } else { idents += [parse_ident_(st, sd, is_last)]; } } } } fail "parse_path: ill-formed path"; } fn parse_constr(@pstate st, str_def sd) -> @ty::constr_def { let vec[@ast::constr_arg] args = []; auto sp = rec(lo=0u,hi=0u); // FIXME: use a real span let ast::path pth = parse_path(st, sd); let char ignore = next(st) as char; assert(ignore as char == '('); auto def = parse_def(st, sd); do { alt (peek(st) as char) { case ('*') { st.pos += 1u; args += [@respan(sp, ast::carg_base)]; } case (?c) { /* how will we disambiguate between an arg index and a lit argument? */ if (c >= '0' && c <= '9') { // FIXME args += [@respan(sp, ast::carg_ident((c as uint) - 48u))]; ignore = next(st) as char; } else { log_err("Lit args are unimplemented"); fail; // FIXME } /* else { auto lit = parse_lit(st, sd, ','); args += [respan(st.span, ast::carg_lit(lit))]; } */ } } ignore = next(st) as char; } while (ignore == ';'); assert(ignore == ')'); ret @respan(sp, rec(path=pth, args=args, id=def)); } fn parse_ty(@pstate st, str_def sd) -> ty::t { alt (next(st) as char) { case ('n') { ret ty::mk_nil(st.tcx); } case ('z') { ret ty::mk_bot(st.tcx); } case ('b') { ret ty::mk_bool(st.tcx); } case ('i') { ret ty::mk_int(st.tcx); } case ('u') { ret ty::mk_uint(st.tcx); } case ('l') { ret ty::mk_float(st.tcx); } case ('M') { alt (next(st) as char) { case ('b') { ret ty::mk_mach(st.tcx, common::ty_u8); } case ('w') { ret ty::mk_mach(st.tcx, common::ty_u16); } case ('l') { ret ty::mk_mach(st.tcx, common::ty_u32); } case ('d') { ret ty::mk_mach(st.tcx, common::ty_u64); } case ('B') { ret ty::mk_mach(st.tcx, common::ty_i8); } case ('W') { ret ty::mk_mach(st.tcx, common::ty_i16); } case ('L') { ret ty::mk_mach(st.tcx, common::ty_i32); } case ('D') { ret ty::mk_mach(st.tcx, common::ty_i64); } case ('f') { ret ty::mk_mach(st.tcx, common::ty_f32); } case ('F') { ret ty::mk_mach(st.tcx, common::ty_f64); } } } case ('c') { ret ty::mk_char(st.tcx); } case ('s') { ret ty::mk_str(st.tcx); } case ('S') { ret ty::mk_istr(st.tcx); } case ('t') { assert (next(st) as char == '['); auto def = parse_def(st, sd); let vec[ty::t] params = []; while (peek(st) as char != ']') { params += [parse_ty(st, sd)]; } st.pos = st.pos + 1u; ret ty::mk_tag(st.tcx, def, params); } case ('p') { ret ty::mk_param(st.tcx, parse_int(st) as uint); } case ('@') { ret ty::mk_box(st.tcx, parse_mt(st, sd)); } case ('*') { ret ty::mk_ptr(st.tcx, parse_mt(st, sd)); } case ('V') { ret ty::mk_vec(st.tcx, parse_mt(st, sd)); } case ('I') { ret ty::mk_ivec(st.tcx, parse_mt(st, sd)); } case ('a') { ret ty::mk_task(st.tcx); } case ('P') { ret ty::mk_port(st.tcx, parse_ty(st, sd)); } case ('C') { ret ty::mk_chan(st.tcx, parse_ty(st, sd)); } case ('T') { assert (next(st) as char == '['); let ty::mt[] params = ~[]; while (peek(st) as char != ']') { params += ~[parse_mt(st, sd)]; } st.pos = st.pos + 1u; ret ty::mk_tup(st.tcx, params); } case ('R') { assert (next(st) as char == '['); let ty::field[] fields = ~[]; while (peek(st) as char != ']') { auto name = ""; while (peek(st) as char != '=') { name += str::unsafe_from_byte(next(st)); } st.pos = st.pos + 1u; fields += ~[rec(ident=name, mt=parse_mt(st, sd))]; } st.pos = st.pos + 1u; ret ty::mk_rec(st.tcx, fields); } case ('F') { auto func = parse_ty_fn(st, sd); ret ty::mk_fn(st.tcx, ast::proto_fn, func._0, func._1, func._2, func._3); } case ('W') { auto func = parse_ty_fn(st, sd); ret ty::mk_fn(st.tcx, ast::proto_iter, func._0, func._1, func._2, func._3); } case ('N') { auto abi; alt (next(st) as char) { case ('r') { abi = ast::native_abi_rust; } case ('i') { abi = ast::native_abi_rust_intrinsic; } case ('c') { abi = ast::native_abi_cdecl; } case ('l') { abi = ast::native_abi_llvm; } } auto func = parse_ty_fn(st, sd); ret ty::mk_native_fn(st.tcx, abi, func._0, func._1); } case ('O') { assert (next(st) as char == '['); let vec[ty::method] methods = []; while (peek(st) as char != ']') { auto proto; alt (next(st) as char) { case ('W') { proto = ast::proto_iter; } case ('F') { proto = ast::proto_fn; } } auto name = ""; while (peek(st) as char != '[') { name += str::unsafe_from_byte(next(st)); } auto func = parse_ty_fn(st, sd); methods += [rec(proto=proto, ident=name, inputs=func._0, output=func._1, cf=func._2, constrs=func._3)]; } st.pos += 1u; ret ty::mk_obj(st.tcx, methods); } case ('r') { assert (next(st) as char == '['); auto def = parse_def(st, sd); auto inner = parse_ty(st, sd); let vec[ty::t] params = []; while (peek(st) as char != ']') { params += [parse_ty(st, sd)]; } st.pos = st.pos + 1u; ret ty::mk_res(st.tcx, def, inner, params); } case ('X') { ret ty::mk_var(st.tcx, parse_int(st)); } case ('E') { ret ty::mk_native(st.tcx); } case ('Y') { ret ty::mk_type(st.tcx); } case ('#') { auto pos = parse_hex(st); assert (next(st) as char == ':'); auto len = parse_hex(st); assert (next(st) as char == '#'); alt (st.tcx.rcache.find(tup(st.crate, pos, len))) { case (some(?tt)) { ret tt; } case (none) { auto ps = @rec(pos=pos, len=len with *st); auto tt = parse_ty(ps, sd); st.tcx.rcache.insert(tup(st.crate, pos, len), tt); ret tt; } } } case (?c) { log_err "unexpected char in type string: "; log_err c; fail; } } } fn parse_mt(@pstate st, str_def sd) -> ty::mt { auto mut; alt (peek(st) as char) { case ('m') { next(st); mut = ast::mut; } case ('?') { next(st); mut = ast::maybe_mut; } case (_) { mut = ast::imm; } } ret rec(ty=parse_ty(st, sd), mut=mut); } fn parse_def(@pstate st, str_def sd) -> ast::def_id { auto def = ""; while (peek(st) as char != '|') { def += str::unsafe_from_byte(next(st)); } st.pos = st.pos + 1u; ret sd(def); } fn parse_int(@pstate st) -> int { auto n = 0; while (true) { auto cur = peek(st) as char; if (cur < '0' || cur > '9') { break; } st.pos = st.pos + 1u; n *= 10; n += (cur as int) - ('0' as int); } ret n; } fn parse_hex(@pstate st) -> uint { auto n = 0u; while (true) { auto cur = peek(st) as char; if ((cur < '0' || cur > '9') && (cur < 'a' || cur > 'f')) { break; } st.pos = st.pos + 1u; n *= 16u; if ('0' <= cur && cur <= '9') { n += (cur as uint) - ('0' as uint); } else { n += 10u + (cur as uint) - ('a' as uint); } } ret n; } fn parse_ty_fn(@pstate st, str_def sd) -> tup(vec[ty::arg], ty::t, ast::controlflow, vec[@ty::constr_def]) { assert (next(st) as char == '['); let vec[ty::arg] inputs = []; while (peek(st) as char != ']') { auto mode = ty::mo_val; if (peek(st) as char == '&') { mode = ty::mo_alias(false); st.pos += 1u; if (peek(st) as char == 'm') { mode = ty::mo_alias(true); st.pos += 1u; } } inputs += [rec(mode=mode, ty=parse_ty(st, sd))]; } st.pos += 1u; // eat the ']' auto cs = parse_constrs(st, sd); alt (parse_ty_or_bang(st, sd)) { case (a_bang) { ret tup(inputs, ty::mk_bot(st.tcx), ast::noreturn, cs); } case (a_ty(?t)) { ret tup(inputs, t, ast::return, cs); } } } // Rust metadata parsing fn parse_def_id(vec[u8] buf) -> ast::def_id { auto colon_idx = 0u; auto len = vec::len[u8](buf); while (colon_idx < len && buf.(colon_idx) != ':' as u8) { colon_idx += 1u; } if (colon_idx == len) { log_err "didn't find ':' when parsing def id"; fail; } auto crate_part = vec::slice[u8](buf, 0u, colon_idx); auto def_part = vec::slice[u8](buf, colon_idx + 1u, len); auto crate_num = uint::parse_buf(crate_part, 10u) as int; auto def_id = uint::parse_buf(def_part, 10u) as int; ret tup(crate_num, def_id); }