// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. #![allow(non_camel_case_types)] use back::abi; use llvm; use llvm::{ValueRef}; use middle::lang_items::StrDupUniqFnLangItem; use middle::trans::base::*; use middle::trans::base; use middle::trans::build::*; use middle::trans::callee; use middle::trans::cleanup; use middle::trans::cleanup::CleanupMethods; use middle::trans::common::*; use middle::trans::datum::*; use middle::trans::expr::{Dest, Ignore, SaveIn}; use middle::trans::expr; use middle::trans::glue; use middle::trans::machine; use middle::trans::machine::{nonzero_llsize_of, llsize_of_alloc}; use middle::trans::type_::Type; use middle::trans::type_of; use middle::ty; use util::ppaux::ty_to_string; use syntax::ast; use syntax::parse::token::InternedString; fn get_len(bcx: Block, vptr: ValueRef) -> ValueRef { let _icx = push_ctxt("tvec::get_lenl"); Load(bcx, expr::get_len(bcx, vptr)) } fn get_dataptr(bcx: Block, vptr: ValueRef) -> ValueRef { let _icx = push_ctxt("tvec::get_dataptr"); Load(bcx, expr::get_dataptr(bcx, vptr)) } pub fn pointer_add_byte(bcx: Block, ptr: ValueRef, bytes: ValueRef) -> ValueRef { let _icx = push_ctxt("tvec::pointer_add_byte"); let old_ty = val_ty(ptr); let bptr = PointerCast(bcx, ptr, Type::i8p(bcx.ccx())); return PointerCast(bcx, InBoundsGEP(bcx, bptr, [bytes]), old_ty); } pub fn make_drop_glue_unboxed<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, vptr: ValueRef, unit_ty: ty::t, should_deallocate: bool) -> Block<'blk, 'tcx> { let not_null = IsNotNull(bcx, vptr); with_cond(bcx, not_null, |bcx| { let ccx = bcx.ccx(); let tcx = bcx.tcx(); let _icx = push_ctxt("tvec::make_drop_glue_unboxed"); let dataptr = get_dataptr(bcx, vptr); let bcx = if ty::type_needs_drop(tcx, unit_ty) { let len = get_len(bcx, vptr); iter_vec_raw(bcx, dataptr, unit_ty, len, glue::drop_ty) } else { bcx }; if should_deallocate { let llty = type_of::type_of(ccx, unit_ty); let unit_size = llsize_of_alloc(ccx, llty); if unit_size != 0 { let len = get_len(bcx, vptr); let not_empty = ICmp(bcx, llvm::IntNE, len, C_uint(ccx, 0)); with_cond(bcx, not_empty, |bcx| { let llalign = C_uint(ccx, machine::llalign_of_min(ccx, llty) as uint); let size = Mul(bcx, C_uint(ccx, unit_size as uint), len); glue::trans_exchange_free_dyn(bcx, dataptr, size, llalign) }) } else { bcx } } else { bcx } }) } pub struct VecTypes { pub unit_ty: ty::t, pub llunit_ty: Type, pub llunit_size: ValueRef, pub llunit_alloc_size: u64 } impl VecTypes { pub fn to_string(&self, ccx: &CrateContext) -> String { format!("VecTypes {{unit_ty={}, llunit_ty={}, \ llunit_size={}, llunit_alloc_size={}}}", ty_to_string(ccx.tcx(), self.unit_ty), ccx.tn().type_to_string(self.llunit_ty), ccx.tn().val_to_string(self.llunit_size), self.llunit_alloc_size) } } pub fn trans_fixed_vstore<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, expr: &ast::Expr, dest: expr::Dest) -> Block<'blk, 'tcx> { //! // // [...] allocates a fixed-size array and moves it around "by value". // In this case, it means that the caller has already given us a location // to store the array of the suitable size, so all we have to do is // generate the content. debug!("trans_fixed_vstore(expr={}, dest={:?})", bcx.expr_to_string(expr), dest.to_string(bcx.ccx())); let vt = vec_types_from_expr(bcx, expr); return match dest { Ignore => write_content(bcx, &vt, expr, expr, dest), SaveIn(lldest) => { // lldest will have type *[T x N], but we want the type *T, // so use GEP to convert: let lldest = GEPi(bcx, lldest, [0, 0]); write_content(bcx, &vt, expr, expr, SaveIn(lldest)) } }; } pub fn trans_slice_vec<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, slice_expr: &ast::Expr, content_expr: &ast::Expr) -> DatumBlock<'blk, 'tcx, Expr> { /*! * &[...] allocates memory on the stack and writes the values into it, * returning the vector (the caller must make the reference). "..." is * similar except that the memory can be statically allocated and we return * a reference (strings are always by-ref). */ let fcx = bcx.fcx; let ccx = fcx.ccx; let mut bcx = bcx; debug!("trans_slice_vec(slice_expr={})", bcx.expr_to_string(slice_expr)); let vec_ty = node_id_type(bcx, slice_expr.id); // Handle the "..." case (returns a slice since strings are always unsized): match content_expr.node { ast::ExprLit(lit) => { match lit.node { ast::LitStr(ref s, _) => { let scratch = rvalue_scratch_datum(bcx, vec_ty, ""); bcx = trans_lit_str(bcx, content_expr, s.clone(), SaveIn(scratch.val)); return DatumBlock::new(bcx, scratch.to_expr_datum()); } _ => {} } } _ => {} } // Handle the &[...] case: let vt = vec_types_from_expr(bcx, content_expr); let count = elements_required(bcx, content_expr); debug!(" vt={}, count={:?}", vt.to_string(ccx), count); let llcount = C_uint(ccx, count); let fixed_ty = ty::mk_vec(bcx.tcx(), vt.unit_ty, Some(count)); let llfixed_ty = type_of::type_of(bcx.ccx(), fixed_ty).ptr_to(); let llfixed = if count == 0 { // Just create a zero-sized alloca to preserve // the non-null invariant of the inner slice ptr let llfixed = base::arrayalloca(bcx, vt.llunit_ty, llcount); BitCast(bcx, llfixed, llfixed_ty) } else { // Make a fixed-length backing array and allocate it on the stack. let llfixed = base::arrayalloca(bcx, vt.llunit_ty, llcount); // Arrange for the backing array to be cleaned up. let llfixed_casted = BitCast(bcx, llfixed, llfixed_ty); let cleanup_scope = cleanup::temporary_scope(bcx.tcx(), content_expr.id); fcx.schedule_lifetime_end(cleanup_scope, llfixed_casted); fcx.schedule_drop_mem(cleanup_scope, llfixed_casted, fixed_ty); // Generate the content into the backing array. bcx = write_content(bcx, &vt, slice_expr, content_expr, SaveIn(llfixed)); llfixed_casted }; immediate_rvalue_bcx(bcx, llfixed, vec_ty).to_expr_datumblock() } pub fn trans_lit_str<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, lit_expr: &ast::Expr, str_lit: InternedString, dest: Dest) -> Block<'blk, 'tcx> { /*! * Literal strings translate to slices into static memory. This is * different from trans_slice_vstore() above because it doesn't need to copy * the content anywhere. */ debug!("trans_lit_str(lit_expr={}, dest={})", bcx.expr_to_string(lit_expr), dest.to_string(bcx.ccx())); match dest { Ignore => bcx, SaveIn(lldest) => { unsafe { let bytes = str_lit.get().len(); let llbytes = C_uint(bcx.ccx(), bytes); let llcstr = C_cstr(bcx.ccx(), str_lit, false); let llcstr = llvm::LLVMConstPointerCast(llcstr, Type::i8p(bcx.ccx()).to_ref()); Store(bcx, llcstr, GEPi(bcx, lldest, [0u, abi::slice_elt_base])); Store(bcx, llbytes, GEPi(bcx, lldest, [0u, abi::slice_elt_len])); bcx } } } } pub fn trans_uniq_vec<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, uniq_expr: &ast::Expr, content_expr: &ast::Expr) -> DatumBlock<'blk, 'tcx, Expr> { /*! * Box<[...]> and "...".to_string() allocate boxes in the exchange heap and write * the array elements into them. */ debug!("trans_uniq_vec(uniq_expr={})", bcx.expr_to_string(uniq_expr)); let fcx = bcx.fcx; let ccx = fcx.ccx; // Handle "".to_string(). match content_expr.node { ast::ExprLit(lit) => { match lit.node { ast::LitStr(ref s, _) => { let llptrval = C_cstr(ccx, (*s).clone(), false); let llptrval = PointerCast(bcx, llptrval, Type::i8p(ccx)); let llsizeval = C_uint(ccx, s.get().len()); let typ = ty::mk_uniq(bcx.tcx(), ty::mk_str(bcx.tcx())); let lldestval = rvalue_scratch_datum(bcx, typ, ""); let alloc_fn = langcall(bcx, Some(lit.span), "", StrDupUniqFnLangItem); let bcx = callee::trans_lang_call( bcx, alloc_fn, [ llptrval, llsizeval ], Some(expr::SaveIn(lldestval.val))).bcx; return DatumBlock::new(bcx, lldestval).to_expr_datumblock(); } _ => {} } } _ => {} } let vt = vec_types_from_expr(bcx, content_expr); let count = elements_required(bcx, content_expr); debug!(" vt={}, count={:?}", vt.to_string(ccx), count); let vec_ty = node_id_type(bcx, uniq_expr.id); let llty = type_of::type_of(ccx, vt.unit_ty); let unit_sz = nonzero_llsize_of(ccx, llty); let llcount = if count < 4u { C_int(ccx, 4) } else { C_uint(ccx, count) }; let alloc = Mul(bcx, llcount, unit_sz); let llty_ptr = llty.ptr_to(); let align = C_uint(ccx, machine::llalign_of_min(ccx, llty) as uint); let Result { bcx: bcx, val: dataptr } = malloc_raw_dyn(bcx, llty_ptr, vec_ty, alloc, align); // Create a temporary scope lest execution should fail while // constructing the vector. let temp_scope = fcx.push_custom_cleanup_scope(); fcx.schedule_free_slice(cleanup::CustomScope(temp_scope), dataptr, alloc, align, cleanup::HeapExchange); debug!(" alloc_uniq_vec() returned dataptr={}, len={}", bcx.val_to_string(dataptr), count); let bcx = write_content(bcx, &vt, uniq_expr, content_expr, SaveIn(dataptr)); fcx.pop_custom_cleanup_scope(temp_scope); if ty::type_is_sized(bcx.tcx(), vec_ty) { immediate_rvalue_bcx(bcx, dataptr, vec_ty).to_expr_datumblock() } else { let scratch = rvalue_scratch_datum(bcx, vec_ty, ""); Store(bcx, dataptr, GEPi(bcx, scratch.val, [0u, abi::slice_elt_base])); Store(bcx, llcount, GEPi(bcx, scratch.val, [0u, abi::slice_elt_len])); DatumBlock::new(bcx, scratch.to_expr_datum()) } } pub fn write_content<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, vt: &VecTypes, vstore_expr: &ast::Expr, content_expr: &ast::Expr, dest: Dest) -> Block<'blk, 'tcx> { let _icx = push_ctxt("tvec::write_content"); let fcx = bcx.fcx; let mut bcx = bcx; debug!("write_content(vt={}, dest={}, vstore_expr={:?})", vt.to_string(bcx.ccx()), dest.to_string(bcx.ccx()), bcx.expr_to_string(vstore_expr)); match content_expr.node { ast::ExprLit(lit) => { match lit.node { ast::LitStr(ref s, _) => { match dest { Ignore => return bcx, SaveIn(lldest) => { let bytes = s.get().len(); let llbytes = C_uint(bcx.ccx(), bytes); let llcstr = C_cstr(bcx.ccx(), (*s).clone(), false); base::call_memcpy(bcx, lldest, llcstr, llbytes, 1); return bcx; } } } _ => { bcx.tcx().sess.span_bug(content_expr.span, "unexpected evec content"); } } } ast::ExprVec(ref elements) => { match dest { Ignore => { for element in elements.iter() { bcx = expr::trans_into(bcx, &**element, Ignore); } } SaveIn(lldest) => { let temp_scope = fcx.push_custom_cleanup_scope(); for (i, element) in elements.iter().enumerate() { let lleltptr = GEPi(bcx, lldest, [i]); debug!("writing index {:?} with lleltptr={:?}", i, bcx.val_to_string(lleltptr)); bcx = expr::trans_into(bcx, &**element, SaveIn(lleltptr)); let scope = cleanup::CustomScope(temp_scope); fcx.schedule_lifetime_end(scope, lleltptr); fcx.schedule_drop_mem(scope, lleltptr, vt.unit_ty); } fcx.pop_custom_cleanup_scope(temp_scope); } } return bcx; } ast::ExprRepeat(ref element, ref count_expr) => { match dest { Ignore => { return expr::trans_into(bcx, &**element, Ignore); } SaveIn(lldest) => { let count = ty::eval_repeat_count(bcx.tcx(), &**count_expr); if count == 0 { return bcx; } // Some cleanup would be required in the case in which failure happens // during a copy. But given that copy constructors are not overridable, // this can only happen as a result of OOM. So we just skip out on the // cleanup since things would *probably* be broken at that point anyways. let elem = unpack_datum!(bcx, expr::trans(bcx, &**element)); assert!(!ty::type_moves_by_default(bcx.tcx(), elem.ty)); let bcx = iter_vec_loop(bcx, lldest, vt, C_uint(bcx.ccx(), count), |set_bcx, lleltptr, _| { elem.shallow_copy_and_take(set_bcx, lleltptr) }); elem.add_clean_if_rvalue(bcx, element.id); bcx } } } _ => { bcx.tcx().sess.span_bug(content_expr.span, "unexpected vec content"); } } } pub fn vec_types_from_expr(bcx: Block, vec_expr: &ast::Expr) -> VecTypes { let vec_ty = node_id_type(bcx, vec_expr.id); vec_types(bcx, ty::sequence_element_type(bcx.tcx(), vec_ty)) } pub fn vec_types(bcx: Block, unit_ty: ty::t) -> VecTypes { let ccx = bcx.ccx(); let llunit_ty = type_of::type_of(ccx, unit_ty); let llunit_size = nonzero_llsize_of(ccx, llunit_ty); let llunit_alloc_size = llsize_of_alloc(ccx, llunit_ty); VecTypes { unit_ty: unit_ty, llunit_ty: llunit_ty, llunit_size: llunit_size, llunit_alloc_size: llunit_alloc_size } } pub fn elements_required(bcx: Block, content_expr: &ast::Expr) -> uint { //! Figure out the number of elements we need to store this content match content_expr.node { ast::ExprLit(lit) => { match lit.node { ast::LitStr(ref s, _) => s.get().len(), _ => { bcx.tcx().sess.span_bug(content_expr.span, "unexpected evec content") } } }, ast::ExprVec(ref es) => es.len(), ast::ExprRepeat(_, ref count_expr) => { ty::eval_repeat_count(bcx.tcx(), &**count_expr) } _ => bcx.tcx().sess.span_bug(content_expr.span, "unexpected vec content") } } pub fn get_fixed_base_and_len(bcx: Block, llval: ValueRef, vec_length: uint) -> (ValueRef, ValueRef) { /*! * Converts a fixed-length vector into the slice pair. * The vector should be stored in `llval` which should be by ref. */ let ccx = bcx.ccx(); let base = expr::get_dataptr(bcx, llval); let len = C_uint(ccx, vec_length); (base, len) } fn get_slice_base_and_len(bcx: Block, llval: ValueRef) -> (ValueRef, ValueRef) { let base = Load(bcx, GEPi(bcx, llval, [0u, abi::slice_elt_base])); let len = Load(bcx, GEPi(bcx, llval, [0u, abi::slice_elt_len])); (base, len) } pub fn get_base_and_len(bcx: Block, llval: ValueRef, vec_ty: ty::t) -> (ValueRef, ValueRef) { /*! * Converts a vector into the slice pair. The vector should be * stored in `llval` which should be by-reference. If you have a * datum, you would probably prefer to call * `Datum::get_base_and_len()` which will handle any conversions * for you. */ let ccx = bcx.ccx(); match ty::get(vec_ty).sty { ty::ty_vec(_, Some(n)) => get_fixed_base_and_len(bcx, llval, n), ty::ty_open(ty) => match ty::get(ty).sty { ty::ty_vec(_, None) | ty::ty_str => get_slice_base_and_len(bcx, llval), _ => ccx.sess().bug("unexpected type in get_base_and_len") }, // Only used for pattern matching. ty::ty_uniq(ty) | ty::ty_rptr(_, ty::mt{ty, ..}) => match ty::get(ty).sty { ty::ty_vec(_, None) | ty::ty_str => get_slice_base_and_len(bcx, llval), ty::ty_vec(_, Some(n)) => { let base = GEPi(bcx, Load(bcx, llval), [0u, 0u]); (base, C_uint(ccx, n)) } _ => ccx.sess().bug("unexpected type in get_base_and_len"), }, _ => ccx.sess().bug("unexpected type in get_base_and_len"), } } pub type iter_vec_block<'a, 'blk, 'tcx> = |Block<'blk, 'tcx>, ValueRef, ty::t|: 'a -> Block<'blk, 'tcx>; pub fn iter_vec_loop<'a, 'blk, 'tcx>(bcx: Block<'blk, 'tcx>, data_ptr: ValueRef, vt: &VecTypes, count: ValueRef, f: iter_vec_block<'a, 'blk, 'tcx>) -> Block<'blk, 'tcx> { let _icx = push_ctxt("tvec::iter_vec_loop"); let fcx = bcx.fcx; let next_bcx = fcx.new_temp_block("expr_repeat: while next"); let loop_bcx = fcx.new_temp_block("expr_repeat"); let cond_bcx = fcx.new_temp_block("expr_repeat: loop cond"); let body_bcx = fcx.new_temp_block("expr_repeat: body: set"); let inc_bcx = fcx.new_temp_block("expr_repeat: body: inc"); Br(bcx, loop_bcx.llbb); let loop_counter = { // i = 0 let i = alloca(loop_bcx, bcx.ccx().int_type(), "__i"); Store(loop_bcx, C_uint(bcx.ccx(), 0), i); Br(loop_bcx, cond_bcx.llbb); i }; { // i < count let lhs = Load(cond_bcx, loop_counter); let rhs = count; let cond_val = ICmp(cond_bcx, llvm::IntULT, lhs, rhs); CondBr(cond_bcx, cond_val, body_bcx.llbb, next_bcx.llbb); } { // loop body let i = Load(body_bcx, loop_counter); let lleltptr = if vt.llunit_alloc_size == 0 { data_ptr } else { InBoundsGEP(body_bcx, data_ptr, [i]) }; let body_bcx = f(body_bcx, lleltptr, vt.unit_ty); Br(body_bcx, inc_bcx.llbb); } { // i += 1 let i = Load(inc_bcx, loop_counter); let plusone = Add(inc_bcx, i, C_uint(bcx.ccx(), 1)); Store(inc_bcx, plusone, loop_counter); Br(inc_bcx, cond_bcx.llbb); } next_bcx } pub fn iter_vec_raw<'a, 'blk, 'tcx>(bcx: Block<'blk, 'tcx>, data_ptr: ValueRef, unit_ty: ty::t, len: ValueRef, f: iter_vec_block<'a, 'blk, 'tcx>) -> Block<'blk, 'tcx> { let _icx = push_ctxt("tvec::iter_vec_raw"); let fcx = bcx.fcx; let vt = vec_types(bcx, unit_ty); let fill = Mul(bcx, len, vt.llunit_size); if vt.llunit_alloc_size == 0 { // Special-case vectors with elements of size 0 so they don't go out of bounds (#9890) iter_vec_loop(bcx, data_ptr, &vt, fill, f) } else { // Calculate the last pointer address we want to handle. // FIXME (#3729): Optimize this when the size of the unit type is // statically known to not use pointer casts, which tend to confuse // LLVM. let data_end_ptr = pointer_add_byte(bcx, data_ptr, fill); // Now perform the iteration. let header_bcx = fcx.new_temp_block("iter_vec_loop_header"); Br(bcx, header_bcx.llbb); let data_ptr = Phi(header_bcx, val_ty(data_ptr), [data_ptr], [bcx.llbb]); let not_yet_at_end = ICmp(header_bcx, llvm::IntULT, data_ptr, data_end_ptr); let body_bcx = fcx.new_temp_block("iter_vec_loop_body"); let next_bcx = fcx.new_temp_block("iter_vec_next"); CondBr(header_bcx, not_yet_at_end, body_bcx.llbb, next_bcx.llbb); let body_bcx = f(body_bcx, data_ptr, vt.unit_ty); AddIncomingToPhi(data_ptr, InBoundsGEP(body_bcx, data_ptr, [C_int(bcx.ccx(), 1)]), body_bcx.llbb); Br(body_bcx, header_bcx.llbb); next_bcx } }