use crate::indexed_vec::{Idx, IndexVec}; use smallvec::SmallVec; use std::fmt; use std::iter; use std::marker::PhantomData; use std::mem; use std::slice; pub type Word = u64; pub const WORD_BYTES: usize = mem::size_of::(); pub const WORD_BITS: usize = WORD_BYTES * 8; /// A fixed-size bitset type with a dense representation. It does not support /// resizing after creation; use `GrowableBitSet` for that. /// /// `T` is an index type, typically a newtyped `usize` wrapper, but it can also /// just be `usize`. /// /// All operations that involve an element will panic if the element is equal /// to or greater than the domain size. All operations that involve two bitsets /// will panic if the bitsets have differing domain sizes. #[derive(Clone, Eq, PartialEq, RustcDecodable, RustcEncodable)] pub struct BitSet { domain_size: usize, words: Vec, marker: PhantomData, } impl BitSet { /// Creates a new, empty bitset with a given `domain_size`. #[inline] pub fn new_empty(domain_size: usize) -> BitSet { let num_words = num_words(domain_size); BitSet { domain_size, words: vec![0; num_words], marker: PhantomData, } } /// Creates a new, filled bitset with a given `domain_size`. #[inline] pub fn new_filled(domain_size: usize) -> BitSet { let num_words = num_words(domain_size); let mut result = BitSet { domain_size, words: vec![!0; num_words], marker: PhantomData, }; result.clear_excess_bits(); result } /// Gets the domain size. pub fn domain_size(&self) -> usize { self.domain_size } /// Clear all elements. #[inline] pub fn clear(&mut self) { for word in &mut self.words { *word = 0; } } /// Clear excess bits in the final word. fn clear_excess_bits(&mut self) { let num_bits_in_final_word = self.domain_size % WORD_BITS; if num_bits_in_final_word > 0 { let mask = (1 << num_bits_in_final_word) - 1; let final_word_idx = self.words.len() - 1; self.words[final_word_idx] &= mask; } } /// Efficiently overwrite `self` with `other`. pub fn overwrite(&mut self, other: &BitSet) { assert!(self.domain_size == other.domain_size); self.words.clone_from_slice(&other.words); } /// Count the number of set bits in the set. pub fn count(&self) -> usize { self.words.iter().map(|e| e.count_ones() as usize).sum() } /// Returns `true` if `self` contains `elem`. #[inline] pub fn contains(&self, elem: T) -> bool { assert!(elem.index() < self.domain_size); let (word_index, mask) = word_index_and_mask(elem); (self.words[word_index] & mask) != 0 } /// Is `self` is a (non-strict) superset of `other`? #[inline] pub fn superset(&self, other: &BitSet) -> bool { assert_eq!(self.domain_size, other.domain_size); self.words.iter().zip(&other.words).all(|(a, b)| (a & b) == *b) } /// Is the set empty? #[inline] pub fn is_empty(&self) -> bool { self.words.iter().all(|a| *a == 0) } /// Insert `elem`. Returns whether the set has changed. #[inline] pub fn insert(&mut self, elem: T) -> bool { assert!(elem.index() < self.domain_size); let (word_index, mask) = word_index_and_mask(elem); let word_ref = &mut self.words[word_index]; let word = *word_ref; let new_word = word | mask; *word_ref = new_word; new_word != word } /// Sets all bits to true. pub fn insert_all(&mut self) { for word in &mut self.words { *word = !0; } self.clear_excess_bits(); } /// Returns `true` if the set has changed. #[inline] pub fn remove(&mut self, elem: T) -> bool { assert!(elem.index() < self.domain_size); let (word_index, mask) = word_index_and_mask(elem); let word_ref = &mut self.words[word_index]; let word = *word_ref; let new_word = word & !mask; *word_ref = new_word; new_word != word } /// Sets `self = self | other` and returns `true` if `self` changed /// (i.e., if new bits were added). pub fn union(&mut self, other: &impl UnionIntoBitSet) -> bool { other.union_into(self) } /// Sets `self = self - other` and returns `true` if `self` changed. /// (i.e., if any bits were removed). pub fn subtract(&mut self, other: &impl SubtractFromBitSet) -> bool { other.subtract_from(self) } /// Sets `self = self & other` and return `true` if `self` changed. /// (i.e., if any bits were removed). pub fn intersect(&mut self, other: &BitSet) -> bool { assert_eq!(self.domain_size, other.domain_size); bitwise(&mut self.words, &other.words, |a, b| { a & b }) } /// Gets a slice of the underlying words. pub fn words(&self) -> &[Word] { &self.words } /// Iterates over the indices of set bits in a sorted order. #[inline] pub fn iter<'a>(&'a self) -> BitIter<'a, T> { BitIter { cur: None, iter: self.words.iter().enumerate(), marker: PhantomData, } } /// Duplicates the set as a hybrid set. pub fn to_hybrid(&self) -> HybridBitSet { // Note: we currently don't bother trying to make a Sparse set. HybridBitSet::Dense(self.to_owned()) } } /// This is implemented by all the bitsets so that BitSet::union() can be /// passed any type of bitset. pub trait UnionIntoBitSet { // Performs `other = other | self`. fn union_into(&self, other: &mut BitSet) -> bool; } /// This is implemented by all the bitsets so that BitSet::subtract() can be /// passed any type of bitset. pub trait SubtractFromBitSet { // Performs `other = other - self`. fn subtract_from(&self, other: &mut BitSet) -> bool; } impl UnionIntoBitSet for BitSet { fn union_into(&self, other: &mut BitSet) -> bool { assert_eq!(self.domain_size, other.domain_size); bitwise(&mut other.words, &self.words, |a, b| { a | b }) } } impl SubtractFromBitSet for BitSet { fn subtract_from(&self, other: &mut BitSet) -> bool { assert_eq!(self.domain_size, other.domain_size); bitwise(&mut other.words, &self.words, |a, b| { a & !b }) } } impl fmt::Debug for BitSet { fn fmt(&self, w: &mut fmt::Formatter<'_>) -> fmt::Result { w.debug_list() .entries(self.iter()) .finish() } } impl ToString for BitSet { fn to_string(&self) -> String { let mut result = String::new(); let mut sep = '['; // Note: this is a little endian printout of bytes. // i tracks how many bits we have printed so far. let mut i = 0; for word in &self.words { let mut word = *word; for _ in 0..WORD_BYTES { // for each byte in `word`: let remain = self.domain_size - i; // If less than a byte remains, then mask just that many bits. let mask = if remain <= 8 { (1 << remain) - 1 } else { 0xFF }; assert!(mask <= 0xFF); let byte = word & mask; result.push_str(&format!("{}{:02x}", sep, byte)); if remain <= 8 { break; } word >>= 8; i += 8; sep = '-'; } sep = '|'; } result.push(']'); result } } pub struct BitIter<'a, T: Idx> { cur: Option<(Word, usize)>, iter: iter::Enumerate>, marker: PhantomData } impl<'a, T: Idx> Iterator for BitIter<'a, T> { type Item = T; fn next(&mut self) -> Option { loop { if let Some((ref mut word, offset)) = self.cur { let bit_pos = word.trailing_zeros() as usize; if bit_pos != WORD_BITS { let bit = 1 << bit_pos; *word ^= bit; return Some(T::new(bit_pos + offset)) } } let (i, word) = self.iter.next()?; self.cur = Some((*word, WORD_BITS * i)); } } } pub trait BitSetOperator { /// Combine one bitset into another. fn join(&self, inout_set: &mut BitSet, in_set: &BitSet) -> bool; } #[inline] fn bitwise(out_vec: &mut [Word], in_vec: &[Word], op: Op) -> bool where Op: Fn(Word, Word) -> Word { assert_eq!(out_vec.len(), in_vec.len()); let mut changed = false; for (out_elem, in_elem) in out_vec.iter_mut().zip(in_vec.iter()) { let old_val = *out_elem; let new_val = op(old_val, *in_elem); *out_elem = new_val; changed |= old_val != new_val; } changed } const SPARSE_MAX: usize = 8; /// A fixed-size bitset type with a sparse representation and a maximum of /// `SPARSE_MAX` elements. The elements are stored as a sorted `SmallVec` with /// no duplicates; although `SmallVec` can spill its elements to the heap, that /// never happens within this type because of the `SPARSE_MAX` limit. /// /// This type is used by `HybridBitSet`; do not use directly. #[derive(Clone, Debug)] pub struct SparseBitSet { domain_size: usize, elems: SmallVec<[T; SPARSE_MAX]>, } impl SparseBitSet { fn new_empty(domain_size: usize) -> Self { SparseBitSet { domain_size, elems: SmallVec::new() } } fn len(&self) -> usize { self.elems.len() } fn is_empty(&self) -> bool { self.elems.len() == 0 } fn contains(&self, elem: T) -> bool { assert!(elem.index() < self.domain_size); self.elems.contains(&elem) } fn insert(&mut self, elem: T) -> bool { assert!(elem.index() < self.domain_size); let changed = if let Some(i) = self.elems.iter().position(|&e| e >= elem) { if self.elems[i] == elem { // `elem` is already in the set. false } else { // `elem` is smaller than one or more existing elements. self.elems.insert(i, elem); true } } else { // `elem` is larger than all existing elements. self.elems.push(elem); true }; assert!(self.len() <= SPARSE_MAX); changed } fn remove(&mut self, elem: T) -> bool { assert!(elem.index() < self.domain_size); if let Some(i) = self.elems.iter().position(|&e| e == elem) { self.elems.remove(i); true } else { false } } fn to_dense(&self) -> BitSet { let mut dense = BitSet::new_empty(self.domain_size); for elem in self.elems.iter() { dense.insert(*elem); } dense } fn iter(&self) -> slice::Iter<'_, T> { self.elems.iter() } } impl UnionIntoBitSet for SparseBitSet { fn union_into(&self, other: &mut BitSet) -> bool { assert_eq!(self.domain_size, other.domain_size); let mut changed = false; for elem in self.iter() { changed |= other.insert(*elem); } changed } } impl SubtractFromBitSet for SparseBitSet { fn subtract_from(&self, other: &mut BitSet) -> bool { assert_eq!(self.domain_size, other.domain_size); let mut changed = false; for elem in self.iter() { changed |= other.remove(*elem); } changed } } /// A fixed-size bitset type with a hybrid representation: sparse when there /// are up to a `SPARSE_MAX` elements in the set, but dense when there are more /// than `SPARSE_MAX`. /// /// This type is especially efficient for sets that typically have a small /// number of elements, but a large `domain_size`, and are cleared frequently. /// /// `T` is an index type, typically a newtyped `usize` wrapper, but it can also /// just be `usize`. /// /// All operations that involve an element will panic if the element is equal /// to or greater than the domain size. All operations that involve two bitsets /// will panic if the bitsets have differing domain sizes. #[derive(Clone, Debug)] pub enum HybridBitSet { Sparse(SparseBitSet), Dense(BitSet), } impl HybridBitSet { pub fn new_empty(domain_size: usize) -> Self { HybridBitSet::Sparse(SparseBitSet::new_empty(domain_size)) } fn domain_size(&self) -> usize { match self { HybridBitSet::Sparse(sparse) => sparse.domain_size, HybridBitSet::Dense(dense) => dense.domain_size, } } pub fn clear(&mut self) { let domain_size = self.domain_size(); *self = HybridBitSet::new_empty(domain_size); } pub fn contains(&self, elem: T) -> bool { match self { HybridBitSet::Sparse(sparse) => sparse.contains(elem), HybridBitSet::Dense(dense) => dense.contains(elem), } } pub fn superset(&self, other: &HybridBitSet) -> bool { match (self, other) { (HybridBitSet::Dense(self_dense), HybridBitSet::Dense(other_dense)) => { self_dense.superset(other_dense) } _ => { assert!(self.domain_size() == other.domain_size()); other.iter().all(|elem| self.contains(elem)) } } } pub fn is_empty(&self) -> bool { match self { HybridBitSet::Sparse(sparse) => sparse.is_empty(), HybridBitSet::Dense(dense) => dense.is_empty(), } } pub fn insert(&mut self, elem: T) -> bool { // No need to check `elem` against `self.domain_size` here because all // the match cases check it, one way or another. match self { HybridBitSet::Sparse(sparse) if sparse.len() < SPARSE_MAX => { // The set is sparse and has space for `elem`. sparse.insert(elem) } HybridBitSet::Sparse(sparse) if sparse.contains(elem) => { // The set is sparse and does not have space for `elem`, but // that doesn't matter because `elem` is already present. false } HybridBitSet::Sparse(sparse) => { // The set is sparse and full. Convert to a dense set. let mut dense = sparse.to_dense(); let changed = dense.insert(elem); assert!(changed); *self = HybridBitSet::Dense(dense); changed } HybridBitSet::Dense(dense) => dense.insert(elem), } } pub fn insert_all(&mut self) { let domain_size = self.domain_size(); match self { HybridBitSet::Sparse(_) => { *self = HybridBitSet::Dense(BitSet::new_filled(domain_size)); } HybridBitSet::Dense(dense) => dense.insert_all(), } } pub fn remove(&mut self, elem: T) -> bool { // Note: we currently don't bother going from Dense back to Sparse. match self { HybridBitSet::Sparse(sparse) => sparse.remove(elem), HybridBitSet::Dense(dense) => dense.remove(elem), } } pub fn union(&mut self, other: &HybridBitSet) -> bool { match self { HybridBitSet::Sparse(self_sparse) => { match other { HybridBitSet::Sparse(other_sparse) => { // Both sets are sparse. Add the elements in // `other_sparse` to `self` one at a time. This // may or may not cause `self` to be densified. assert_eq!(self.domain_size(), other.domain_size()); let mut changed = false; for elem in other_sparse.iter() { changed |= self.insert(*elem); } changed } HybridBitSet::Dense(other_dense) => { // `self` is sparse and `other` is dense. Densify // `self` and then do the bitwise union. let mut new_dense = self_sparse.to_dense(); let changed = new_dense.union(other_dense); *self = HybridBitSet::Dense(new_dense); changed } } } HybridBitSet::Dense(self_dense) => self_dense.union(other), } } /// Converts to a dense set, consuming itself in the process. pub fn to_dense(self) -> BitSet { match self { HybridBitSet::Sparse(sparse) => sparse.to_dense(), HybridBitSet::Dense(dense) => dense, } } pub fn iter(&self) -> HybridIter<'_, T> { match self { HybridBitSet::Sparse(sparse) => HybridIter::Sparse(sparse.iter()), HybridBitSet::Dense(dense) => HybridIter::Dense(dense.iter()), } } } impl UnionIntoBitSet for HybridBitSet { fn union_into(&self, other: &mut BitSet) -> bool { match self { HybridBitSet::Sparse(sparse) => sparse.union_into(other), HybridBitSet::Dense(dense) => dense.union_into(other), } } } impl SubtractFromBitSet for HybridBitSet { fn subtract_from(&self, other: &mut BitSet) -> bool { match self { HybridBitSet::Sparse(sparse) => sparse.subtract_from(other), HybridBitSet::Dense(dense) => dense.subtract_from(other), } } } pub enum HybridIter<'a, T: Idx> { Sparse(slice::Iter<'a, T>), Dense(BitIter<'a, T>), } impl<'a, T: Idx> Iterator for HybridIter<'a, T> { type Item = T; fn next(&mut self) -> Option { match self { HybridIter::Sparse(sparse) => sparse.next().map(|e| *e), HybridIter::Dense(dense) => dense.next(), } } } /// A resizable bitset type with a dense representation. /// /// `T` is an index type, typically a newtyped `usize` wrapper, but it can also /// just be `usize`. /// /// All operations that involve an element will panic if the element is equal /// to or greater than the domain size. #[derive(Clone, Debug, PartialEq)] pub struct GrowableBitSet { bit_set: BitSet, } impl GrowableBitSet { /// Ensure that the set can hold at least `min_domain_size` elements. pub fn ensure(&mut self, min_domain_size: usize) { if self.bit_set.domain_size < min_domain_size { self.bit_set.domain_size = min_domain_size; } let min_num_words = num_words(min_domain_size); if self.bit_set.words.len() < min_num_words { self.bit_set.words.resize(min_num_words, 0) } } pub fn new_empty() -> GrowableBitSet { GrowableBitSet { bit_set: BitSet::new_empty(0) } } pub fn with_capacity(bits: usize) -> GrowableBitSet { GrowableBitSet { bit_set: BitSet::new_empty(bits) } } /// Returns `true` if the set has changed. #[inline] pub fn insert(&mut self, elem: T) -> bool { self.ensure(elem.index() + 1); self.bit_set.insert(elem) } #[inline] pub fn contains(&self, elem: T) -> bool { let (word_index, mask) = word_index_and_mask(elem); if let Some(word) = self.bit_set.words.get(word_index) { (word & mask) != 0 } else { false } } } /// A fixed-size 2D bit matrix type with a dense representation. /// /// `R` and `C` are index types used to identify rows and columns respectively; /// typically newtyped `usize` wrappers, but they can also just be `usize`. /// /// All operations that involve a row and/or column index will panic if the /// index exceeds the relevant bound. #[derive(Clone, Debug)] pub struct BitMatrix { num_rows: usize, num_columns: usize, words: Vec, marker: PhantomData<(R, C)>, } impl BitMatrix { /// Creates a new `rows x columns` matrix, initially empty. pub fn new(num_rows: usize, num_columns: usize) -> BitMatrix { // For every element, we need one bit for every other // element. Round up to an even number of words. let words_per_row = num_words(num_columns); BitMatrix { num_rows, num_columns, words: vec![0; num_rows * words_per_row], marker: PhantomData, } } /// The range of bits for a given row. fn range(&self, row: R) -> (usize, usize) { let words_per_row = num_words(self.num_columns); let start = row.index() * words_per_row; (start, start + words_per_row) } /// Sets the cell at `(row, column)` to true. Put another way, insert /// `column` to the bitset for `row`. /// /// Returns `true` if this changed the matrix. pub fn insert(&mut self, row: R, column: C) -> bool { assert!(row.index() < self.num_rows && column.index() < self.num_columns); let (start, _) = self.range(row); let (word_index, mask) = word_index_and_mask(column); let words = &mut self.words[..]; let word = words[start + word_index]; let new_word = word | mask; words[start + word_index] = new_word; word != new_word } /// Do the bits from `row` contain `column`? Put another way, is /// the matrix cell at `(row, column)` true? Put yet another way, /// if the matrix represents (transitive) reachability, can /// `row` reach `column`? pub fn contains(&self, row: R, column: C) -> bool { assert!(row.index() < self.num_rows && column.index() < self.num_columns); let (start, _) = self.range(row); let (word_index, mask) = word_index_and_mask(column); (self.words[start + word_index] & mask) != 0 } /// Returns those indices that are true in rows `a` and `b`. This /// is an O(n) operation where `n` is the number of elements /// (somewhat independent from the actual size of the /// intersection, in particular). pub fn intersect_rows(&self, row1: R, row2: R) -> Vec { assert!(row1.index() < self.num_rows && row2.index() < self.num_rows); let (row1_start, row1_end) = self.range(row1); let (row2_start, row2_end) = self.range(row2); let mut result = Vec::with_capacity(self.num_columns); for (base, (i, j)) in (row1_start..row1_end).zip(row2_start..row2_end).enumerate() { let mut v = self.words[i] & self.words[j]; for bit in 0..WORD_BITS { if v == 0 { break; } if v & 0x1 != 0 { result.push(C::new(base * WORD_BITS + bit)); } v >>= 1; } } result } /// Adds the bits from row `read` to the bits from row `write`, and /// returns `true` if anything changed. /// /// This is used when computing transitive reachability because if /// you have an edge `write -> read`, because in that case /// `write` can reach everything that `read` can (and /// potentially more). pub fn union_rows(&mut self, read: R, write: R) -> bool { assert!(read.index() < self.num_rows && write.index() < self.num_rows); let (read_start, read_end) = self.range(read); let (write_start, write_end) = self.range(write); let words = &mut self.words[..]; let mut changed = false; for (read_index, write_index) in (read_start..read_end).zip(write_start..write_end) { let word = words[write_index]; let new_word = word | words[read_index]; words[write_index] = new_word; changed |= word != new_word; } changed } /// Iterates through all the columns set to true in a given row of /// the matrix. pub fn iter<'a>(&'a self, row: R) -> BitIter<'a, C> { assert!(row.index() < self.num_rows); let (start, end) = self.range(row); BitIter { cur: None, iter: self.words[start..end].iter().enumerate(), marker: PhantomData, } } } /// A fixed-column-size, variable-row-size 2D bit matrix with a moderately /// sparse representation. /// /// Initially, every row has no explicit representation. If any bit within a /// row is set, the entire row is instantiated as `Some()`. /// Furthermore, any previously uninstantiated rows prior to it will be /// instantiated as `None`. Those prior rows may themselves become fully /// instantiated later on if any of their bits are set. /// /// `R` and `C` are index types used to identify rows and columns respectively; /// typically newtyped `usize` wrappers, but they can also just be `usize`. #[derive(Clone, Debug)] pub struct SparseBitMatrix where R: Idx, C: Idx, { num_columns: usize, rows: IndexVec>>, } impl SparseBitMatrix { /// Creates a new empty sparse bit matrix with no rows or columns. pub fn new(num_columns: usize) -> Self { Self { num_columns, rows: IndexVec::new(), } } fn ensure_row(&mut self, row: R) -> &mut HybridBitSet { // Instantiate any missing rows up to and including row `row` with an // empty HybridBitSet. self.rows.ensure_contains_elem(row, || None); // Then replace row `row` with a full HybridBitSet if necessary. let num_columns = self.num_columns; self.rows[row].get_or_insert_with(|| HybridBitSet::new_empty(num_columns)) } /// Sets the cell at `(row, column)` to true. Put another way, insert /// `column` to the bitset for `row`. /// /// Returns `true` if this changed the matrix. pub fn insert(&mut self, row: R, column: C) -> bool { self.ensure_row(row).insert(column) } /// Do the bits from `row` contain `column`? Put another way, is /// the matrix cell at `(row, column)` true? Put yet another way, /// if the matrix represents (transitive) reachability, can /// `row` reach `column`? pub fn contains(&self, row: R, column: C) -> bool { self.row(row).map_or(false, |r| r.contains(column)) } /// Adds the bits from row `read` to the bits from row `write`, and /// returns `true` if anything changed. /// /// This is used when computing transitive reachability because if /// you have an edge `write -> read`, because in that case /// `write` can reach everything that `read` can (and /// potentially more). pub fn union_rows(&mut self, read: R, write: R) -> bool { if read == write || self.row(read).is_none() { return false; } self.ensure_row(write); if let (Some(read_row), Some(write_row)) = self.rows.pick2_mut(read, write) { write_row.union(read_row) } else { unreachable!() } } /// Union a row, `from`, into the `into` row. pub fn union_into_row(&mut self, into: R, from: &HybridBitSet) -> bool { self.ensure_row(into).union(from) } /// Insert all bits in the given row. pub fn insert_all_into_row(&mut self, row: R) { self.ensure_row(row).insert_all(); } pub fn rows(&self) -> impl Iterator { self.rows.indices() } /// Iterates through all the columns set to true in a given row of /// the matrix. pub fn iter<'a>(&'a self, row: R) -> impl Iterator + 'a { self.row(row).into_iter().flat_map(|r| r.iter()) } pub fn row(&self, row: R) -> Option<&HybridBitSet> { if let Some(Some(row)) = self.rows.get(row) { Some(row) } else { None } } } #[inline] fn num_words(domain_size: T) -> usize { (domain_size.index() + WORD_BITS - 1) / WORD_BITS } #[inline] fn word_index_and_mask(elem: T) -> (usize, Word) { let elem = elem.index(); let word_index = elem / WORD_BITS; let mask = 1 << (elem % WORD_BITS); (word_index, mask) } #[test] fn test_new_filled() { for i in 0..128 { let idx_buf = BitSet::new_filled(i); let elems: Vec = idx_buf.iter().collect(); let expected: Vec = (0..i).collect(); assert_eq!(elems, expected); } } #[test] fn bitset_iter_works() { let mut bitset: BitSet = BitSet::new_empty(100); bitset.insert(1); bitset.insert(10); bitset.insert(19); bitset.insert(62); bitset.insert(63); bitset.insert(64); bitset.insert(65); bitset.insert(66); bitset.insert(99); assert_eq!( bitset.iter().collect::>(), [1, 10, 19, 62, 63, 64, 65, 66, 99] ); } #[test] fn bitset_iter_works_2() { let mut bitset: BitSet = BitSet::new_empty(320); bitset.insert(0); bitset.insert(127); bitset.insert(191); bitset.insert(255); bitset.insert(319); assert_eq!(bitset.iter().collect::>(), [0, 127, 191, 255, 319]); } #[test] fn union_two_sets() { let mut set1: BitSet = BitSet::new_empty(65); let mut set2: BitSet = BitSet::new_empty(65); assert!(set1.insert(3)); assert!(!set1.insert(3)); assert!(set2.insert(5)); assert!(set2.insert(64)); assert!(set1.union(&set2)); assert!(!set1.union(&set2)); assert!(set1.contains(3)); assert!(!set1.contains(4)); assert!(set1.contains(5)); assert!(!set1.contains(63)); assert!(set1.contains(64)); } #[test] fn hybrid_bitset() { let mut sparse038: HybridBitSet = HybridBitSet::new_empty(256); assert!(sparse038.is_empty()); assert!(sparse038.insert(0)); assert!(sparse038.insert(1)); assert!(sparse038.insert(8)); assert!(sparse038.insert(3)); assert!(!sparse038.insert(3)); assert!(sparse038.remove(1)); assert!(!sparse038.is_empty()); assert_eq!(sparse038.iter().collect::>(), [0, 3, 8]); for i in 0..256 { if i == 0 || i == 3 || i == 8 { assert!(sparse038.contains(i)); } else { assert!(!sparse038.contains(i)); } } let mut sparse01358 = sparse038.clone(); assert!(sparse01358.insert(1)); assert!(sparse01358.insert(5)); assert_eq!(sparse01358.iter().collect::>(), [0, 1, 3, 5, 8]); let mut dense10 = HybridBitSet::new_empty(256); for i in 0..10 { assert!(dense10.insert(i)); } assert!(!dense10.is_empty()); assert_eq!(dense10.iter().collect::>(), [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]); let mut dense256 = HybridBitSet::new_empty(256); assert!(dense256.is_empty()); dense256.insert_all(); assert!(!dense256.is_empty()); for i in 0..256 { assert!(dense256.contains(i)); } assert!(sparse038.superset(&sparse038)); // sparse + sparse (self) assert!(sparse01358.superset(&sparse038)); // sparse + sparse assert!(dense10.superset(&sparse038)); // dense + sparse assert!(dense10.superset(&dense10)); // dense + dense (self) assert!(dense256.superset(&dense10)); // dense + dense let mut hybrid = sparse038; assert!(!sparse01358.union(&hybrid)); // no change assert!(hybrid.union(&sparse01358)); assert!(hybrid.superset(&sparse01358) && sparse01358.superset(&hybrid)); assert!(!dense10.union(&sparse01358)); assert!(!dense256.union(&dense10)); let mut dense = dense10; assert!(dense.union(&dense256)); assert!(dense.superset(&dense256) && dense256.superset(&dense)); assert!(hybrid.union(&dense256)); assert!(hybrid.superset(&dense256) && dense256.superset(&hybrid)); assert_eq!(dense256.iter().count(), 256); let mut dense0 = dense256; for i in 0..256 { assert!(dense0.remove(i)); } assert!(!dense0.remove(0)); assert!(dense0.is_empty()); } #[test] fn grow() { let mut set: GrowableBitSet = GrowableBitSet::with_capacity(65); for index in 0..65 { assert!(set.insert(index)); assert!(!set.insert(index)); } set.ensure(128); // Check if the bits set before growing are still set for index in 0..65 { assert!(set.contains(index)); } // Check if the new bits are all un-set for index in 65..128 { assert!(!set.contains(index)); } // Check that we can set all new bits without running out of bounds for index in 65..128 { assert!(set.insert(index)); assert!(!set.insert(index)); } } #[test] fn matrix_intersection() { let mut matrix: BitMatrix = BitMatrix::new(200, 200); // (*) Elements reachable from both 2 and 65. matrix.insert(2, 3); matrix.insert(2, 6); matrix.insert(2, 10); // (*) matrix.insert(2, 64); // (*) matrix.insert(2, 65); matrix.insert(2, 130); matrix.insert(2, 160); // (*) matrix.insert(64, 133); matrix.insert(65, 2); matrix.insert(65, 8); matrix.insert(65, 10); // (*) matrix.insert(65, 64); // (*) matrix.insert(65, 68); matrix.insert(65, 133); matrix.insert(65, 160); // (*) let intersection = matrix.intersect_rows(2, 64); assert!(intersection.is_empty()); let intersection = matrix.intersect_rows(2, 65); assert_eq!(intersection, &[10, 64, 160]); } #[test] fn matrix_iter() { let mut matrix: BitMatrix = BitMatrix::new(64, 100); matrix.insert(3, 22); matrix.insert(3, 75); matrix.insert(2, 99); matrix.insert(4, 0); matrix.union_rows(3, 5); let expected = [99]; let mut iter = expected.iter(); for i in matrix.iter(2) { let j = *iter.next().unwrap(); assert_eq!(i, j); } assert!(iter.next().is_none()); let expected = [22, 75]; let mut iter = expected.iter(); for i in matrix.iter(3) { let j = *iter.next().unwrap(); assert_eq!(i, j); } assert!(iter.next().is_none()); let expected = [0]; let mut iter = expected.iter(); for i in matrix.iter(4) { let j = *iter.next().unwrap(); assert_eq!(i, j); } assert!(iter.next().is_none()); let expected = [22, 75]; let mut iter = expected.iter(); for i in matrix.iter(5) { let j = *iter.next().unwrap(); assert_eq!(i, j); } assert!(iter.next().is_none()); } #[test] fn sparse_matrix_iter() { let mut matrix: SparseBitMatrix = SparseBitMatrix::new(100); matrix.insert(3, 22); matrix.insert(3, 75); matrix.insert(2, 99); matrix.insert(4, 0); matrix.union_rows(3, 5); let expected = [99]; let mut iter = expected.iter(); for i in matrix.iter(2) { let j = *iter.next().unwrap(); assert_eq!(i, j); } assert!(iter.next().is_none()); let expected = [22, 75]; let mut iter = expected.iter(); for i in matrix.iter(3) { let j = *iter.next().unwrap(); assert_eq!(i, j); } assert!(iter.next().is_none()); let expected = [0]; let mut iter = expected.iter(); for i in matrix.iter(4) { let j = *iter.next().unwrap(); assert_eq!(i, j); } assert!(iter.next().is_none()); let expected = [22, 75]; let mut iter = expected.iter(); for i in matrix.iter(5) { let j = *iter.next().unwrap(); assert_eq!(i, j); } assert!(iter.next().is_none()); }