// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. #![stable] //! Threadsafe reference-counted boxes (the `Arc` type). //! //! The `Arc` type provides shared ownership of an immutable value. Destruction is //! deterministic, and will occur as soon as the last owner is gone. It is marked as `Send` because //! it uses atomic reference counting. //! //! If you do not need thread-safety, and just need shared ownership, consider the [`Rc` //! type](../rc/struct.Rc.html). It is the same as `Arc`, but does not use atomics, making it //! both thread-unsafe as well as significantly faster when updating the reference count. //! //! The `downgrade` method can be used to create a non-owning `Weak` pointer to the box. A //! `Weak` pointer can be upgraded to an `Arc` pointer, but will return `None` if the value //! has already been dropped. //! //! For example, a tree with parent pointers can be represented by putting the nodes behind strong //! `Arc` pointers, and then storing the parent pointers as `Weak` pointers. //! //! # Examples //! //! Sharing some immutable data between tasks: //! //! ``` //! use std::sync::Arc; //! use std::thread::Thread; //! //! let five = Arc::new(5i); //! //! for i in range(0u, 10) { //! let five = five.clone(); //! //! Thread::spawn(move || { //! println!("{}", five); //! }).detach(); //! } //! ``` //! //! Sharing mutable data safely between tasks with a `Mutex`: //! //! ``` //! use std::sync::{Arc, Mutex}; //! use std::thread::Thread; //! //! let five = Arc::new(Mutex::new(5i)); //! //! for _ in range(0u, 10) { //! let five = five.clone(); //! //! Thread::spawn(move || { //! let mut number = five.lock().unwrap(); //! //! *number += 1; //! //! println!("{}", *number); // prints 6 //! }).detach(); //! } //! ``` use core::atomic; use core::atomic::Ordering::{Relaxed, Release, Acquire, SeqCst}; use core::borrow::BorrowFrom; use core::clone::Clone; use core::fmt::{self, Show}; use core::cmp::{Eq, Ord, PartialEq, PartialOrd, Ordering}; use core::default::Default; use core::marker::{Sync, Send}; use core::mem::{min_align_of, size_of, drop}; use core::mem; use core::nonzero::NonZero; use core::ops::{Drop, Deref}; use core::option::Option; use core::option::Option::{Some, None}; use core::ptr::{self, PtrExt}; use heap::deallocate; /// An atomically reference counted wrapper for shared state. /// /// # Example /// /// In this example, a large vector of floats is shared between several tasks. With simple pipes, /// without `Arc`, a copy would have to be made for each task. /// /// ```rust /// use std::sync::Arc; /// use std::thread::Thread; /// /// fn main() { /// let numbers: Vec<_> = range(0, 100u32).map(|i| i as f32).collect(); /// let shared_numbers = Arc::new(numbers); /// /// for _ in range(0u, 10) { /// let child_numbers = shared_numbers.clone(); /// /// Thread::spawn(move || { /// let local_numbers = child_numbers.as_slice(); /// /// // Work with the local numbers /// }).detach(); /// } /// } /// ``` #[unsafe_no_drop_flag] #[stable] pub struct Arc { // FIXME #12808: strange name to try to avoid interfering with // field accesses of the contained type via Deref _ptr: NonZero<*mut ArcInner>, } unsafe impl Send for Arc { } unsafe impl Sync for Arc { } /// A weak pointer to an `Arc`. /// /// Weak pointers will not keep the data inside of the `Arc` alive, and can be used to break cycles /// between `Arc` pointers. #[unsafe_no_drop_flag] #[experimental = "Weak pointers may not belong in this module."] pub struct Weak { // FIXME #12808: strange name to try to avoid interfering with // field accesses of the contained type via Deref _ptr: NonZero<*mut ArcInner>, } unsafe impl Send for Weak { } unsafe impl Sync for Weak { } struct ArcInner { strong: atomic::AtomicUint, weak: atomic::AtomicUint, data: T, } unsafe impl Send for ArcInner {} unsafe impl Sync for ArcInner {} impl Arc { /// Constructs a new `Arc`. /// /// # Examples /// /// ``` /// use std::sync::Arc; /// /// let five = Arc::new(5i); /// ``` #[inline] #[stable] pub fn new(data: T) -> Arc { // Start the weak pointer count as 1 which is the weak pointer that's // held by all the strong pointers (kinda), see std/rc.rs for more info let x = box ArcInner { strong: atomic::AtomicUint::new(1), weak: atomic::AtomicUint::new(1), data: data, }; Arc { _ptr: unsafe { NonZero::new(mem::transmute(x)) } } } /// Downgrades the `Arc` to a `Weak` reference. /// /// # Examples /// /// ``` /// use std::sync::Arc; /// /// let five = Arc::new(5i); /// /// let weak_five = five.downgrade(); /// ``` #[experimental = "Weak pointers may not belong in this module."] pub fn downgrade(&self) -> Weak { // See the clone() impl for why this is relaxed self.inner().weak.fetch_add(1, Relaxed); Weak { _ptr: self._ptr } } } impl Arc { #[inline] fn inner(&self) -> &ArcInner { // This unsafety is ok because while this arc is alive we're guaranteed that the inner // pointer is valid. Furthermore, we know that the `ArcInner` structure itself is `Sync` // because the inner data is `Sync` as well, so we're ok loaning out an immutable pointer // to these contents. unsafe { &**self._ptr } } } /// Get the number of weak references to this value. #[inline] #[experimental] pub fn weak_count(this: &Arc) -> uint { this.inner().weak.load(SeqCst) - 1 } /// Get the number of strong references to this value. #[inline] #[experimental] pub fn strong_count(this: &Arc) -> uint { this.inner().strong.load(SeqCst) } #[stable] impl Clone for Arc { /// Makes a clone of the `Arc`. /// /// This increases the strong reference count. /// /// # Examples /// /// ``` /// use std::sync::Arc; /// /// let five = Arc::new(5i); /// /// five.clone(); /// ``` #[inline] fn clone(&self) -> Arc { // Using a relaxed ordering is alright here, as knowledge of the original reference // prevents other threads from erroneously deleting the object. // // As explained in the [Boost documentation][1], Increasing the reference counter can // always be done with memory_order_relaxed: New references to an object can only be formed // from an existing reference, and passing an existing reference from one thread to another // must already provide any required synchronization. // // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html) self.inner().strong.fetch_add(1, Relaxed); Arc { _ptr: self._ptr } } } impl BorrowFrom> for T { fn borrow_from(owned: &Arc) -> &T { &**owned } } #[stable] impl Deref for Arc { type Target = T; #[inline] fn deref(&self) -> &T { &self.inner().data } } impl Arc { /// Make a mutable reference from the given `Arc`. /// /// This is also referred to as a copy-on-write operation because the inner data is cloned if /// the reference count is greater than one. /// /// # Examples /// /// ``` /// use std::sync::Arc; /// /// let mut five = Arc::new(5i); /// /// let mut_five = five.make_unique(); /// ``` #[inline] #[experimental] pub fn make_unique(&mut self) -> &mut T { // Note that we hold a strong reference, which also counts as a weak reference, so we only // clone if there is an additional reference of either kind. if self.inner().strong.load(SeqCst) != 1 || self.inner().weak.load(SeqCst) != 1 { *self = Arc::new((**self).clone()) } // This unsafety is ok because we're guaranteed that the pointer returned is the *only* // pointer that will ever be returned to T. Our reference count is guaranteed to be 1 at // this point, and we required the Arc itself to be `mut`, so we're returning the only // possible reference to the inner data. let inner = unsafe { &mut **self._ptr }; &mut inner.data } } #[unsafe_destructor] #[stable] impl Drop for Arc { /// Drops the `Arc`. /// /// This will decrement the strong reference count. If the strong reference count becomes zero /// and the only other references are `Weak` ones, `drop`s the inner value. /// /// # Examples /// /// ``` /// use std::sync::Arc; /// /// { /// let five = Arc::new(5i); /// /// // stuff /// /// drop(five); // explict drop /// } /// { /// let five = Arc::new(5i); /// /// // stuff /// /// } // implicit drop /// ``` fn drop(&mut self) { // This structure has #[unsafe_no_drop_flag], so this drop glue may run more than once (but // it is guaranteed to be zeroed after the first if it's run more than once) let ptr = *self._ptr; if ptr.is_null() { return } // Because `fetch_sub` is already atomic, we do not need to synchronize with other threads // unless we are going to delete the object. This same logic applies to the below // `fetch_sub` to the `weak` count. if self.inner().strong.fetch_sub(1, Release) != 1 { return } // This fence is needed to prevent reordering of use of the data and deletion of the data. // Because it is marked `Release`, the decreasing of the reference count synchronizes with // this `Acquire` fence. This means that use of the data happens before decreasing the // reference count, which happens before this fence, which happens before the deletion of // the data. // // As explained in the [Boost documentation][1], // // > It is important to enforce any possible access to the object in one thread (through an // > existing reference) to *happen before* deleting the object in a different thread. This // > is achieved by a "release" operation after dropping a reference (any access to the // > object through this reference must obviously happened before), and an "acquire" // > operation before deleting the object. // // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html) atomic::fence(Acquire); // Destroy the data at this time, even though we may not free the box allocation itself // (there may still be weak pointers lying around). unsafe { drop(ptr::read(&self.inner().data)); } if self.inner().weak.fetch_sub(1, Release) == 1 { atomic::fence(Acquire); unsafe { deallocate(ptr as *mut u8, size_of::>(), min_align_of::>()) } } } } #[experimental = "Weak pointers may not belong in this module."] impl Weak { /// Upgrades a weak reference to a strong reference. /// /// Upgrades the `Weak` reference to an `Arc`, if possible. /// /// Returns `None` if there were no strong references and the data was destroyed. /// /// # Examples /// /// ``` /// use std::sync::Arc; /// /// let five = Arc::new(5i); /// /// let weak_five = five.downgrade(); /// /// let strong_five: Option> = weak_five.upgrade(); /// ``` pub fn upgrade(&self) -> Option> { // We use a CAS loop to increment the strong count instead of a fetch_add because once the // count hits 0 is must never be above 0. let inner = self.inner(); loop { let n = inner.strong.load(SeqCst); if n == 0 { return None } let old = inner.strong.compare_and_swap(n, n + 1, SeqCst); if old == n { return Some(Arc { _ptr: self._ptr }) } } } #[inline] fn inner(&self) -> &ArcInner { // See comments above for why this is "safe" unsafe { &**self._ptr } } } #[experimental = "Weak pointers may not belong in this module."] impl Clone for Weak { /// Makes a clone of the `Weak`. /// /// This increases the weak reference count. /// /// # Examples /// /// ``` /// use std::sync::Arc; /// /// let weak_five = Arc::new(5i).downgrade(); /// /// weak_five.clone(); /// ``` #[inline] fn clone(&self) -> Weak { // See comments in Arc::clone() for why this is relaxed self.inner().weak.fetch_add(1, Relaxed); Weak { _ptr: self._ptr } } } #[unsafe_destructor] #[stable] impl Drop for Weak { /// Drops the `Weak`. /// /// This will decrement the weak reference count. /// /// # Examples /// /// ``` /// use std::sync::Arc; /// /// { /// let five = Arc::new(5i); /// let weak_five = five.downgrade(); /// /// // stuff /// /// drop(weak_five); // explict drop /// } /// { /// let five = Arc::new(5i); /// let weak_five = five.downgrade(); /// /// // stuff /// /// } // implicit drop /// ``` fn drop(&mut self) { let ptr = *self._ptr; // see comments above for why this check is here if ptr.is_null() { return } // If we find out that we were the last weak pointer, then its time to deallocate the data // entirely. See the discussion in Arc::drop() about the memory orderings if self.inner().weak.fetch_sub(1, Release) == 1 { atomic::fence(Acquire); unsafe { deallocate(ptr as *mut u8, size_of::>(), min_align_of::>()) } } } } #[stable] impl PartialEq for Arc { /// Equality for two `Arc`s. /// /// Two `Arc`s are equal if their inner value are equal. /// /// # Examples /// /// ``` /// use std::sync::Arc; /// /// let five = Arc::new(5i); /// /// five == Arc::new(5i); /// ``` fn eq(&self, other: &Arc) -> bool { *(*self) == *(*other) } /// Inequality for two `Arc`s. /// /// Two `Arc`s are unequal if their inner value are unequal. /// /// # Examples /// /// ``` /// use std::sync::Arc; /// /// let five = Arc::new(5i); /// /// five != Arc::new(5i); /// ``` fn ne(&self, other: &Arc) -> bool { *(*self) != *(*other) } } #[stable] impl PartialOrd for Arc { /// Partial comparison for two `Arc`s. /// /// The two are compared by calling `partial_cmp()` on their inner values. /// /// # Examples /// /// ``` /// use std::sync::Arc; /// /// let five = Arc::new(5i); /// /// five.partial_cmp(&Arc::new(5i)); /// ``` fn partial_cmp(&self, other: &Arc) -> Option { (**self).partial_cmp(&**other) } /// Less-than comparison for two `Arc`s. /// /// The two are compared by calling `<` on their inner values. /// /// # Examples /// /// ``` /// use std::sync::Arc; /// /// let five = Arc::new(5i); /// /// five < Arc::new(5i); /// ``` fn lt(&self, other: &Arc) -> bool { *(*self) < *(*other) } /// 'Less-than or equal to' comparison for two `Arc`s. /// /// The two are compared by calling `<=` on their inner values. /// /// # Examples /// /// ``` /// use std::sync::Arc; /// /// let five = Arc::new(5i); /// /// five <= Arc::new(5i); /// ``` fn le(&self, other: &Arc) -> bool { *(*self) <= *(*other) } /// Greater-than comparison for two `Arc`s. /// /// The two are compared by calling `>` on their inner values. /// /// # Examples /// /// ``` /// use std::sync::Arc; /// /// let five = Arc::new(5i); /// /// five > Arc::new(5i); /// ``` fn gt(&self, other: &Arc) -> bool { *(*self) > *(*other) } /// 'Greater-than or equal to' comparison for two `Arc`s. /// /// The two are compared by calling `>=` on their inner values. /// /// # Examples /// /// ``` /// use std::sync::Arc; /// /// let five = Arc::new(5i); /// /// five >= Arc::new(5i); /// ``` fn ge(&self, other: &Arc) -> bool { *(*self) >= *(*other) } } #[stable] impl Ord for Arc { fn cmp(&self, other: &Arc) -> Ordering { (**self).cmp(&**other) } } #[stable] impl Eq for Arc {} impl fmt::Show for Arc { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { (**self).fmt(f) } } #[stable] impl Default for Arc { #[stable] fn default() -> Arc { Arc::new(Default::default()) } } #[cfg(test)] #[allow(experimental)] mod tests { use std::clone::Clone; use std::sync::mpsc::channel; use std::mem::drop; use std::ops::Drop; use std::option::Option; use std::option::Option::{Some, None}; use std::sync::atomic; use std::sync::atomic::Ordering::{Acquire, SeqCst}; use std::thread::Thread; use std::vec::Vec; use super::{Arc, Weak, weak_count, strong_count}; use std::sync::Mutex; struct Canary(*mut atomic::AtomicUint); impl Drop for Canary { fn drop(&mut self) { unsafe { match *self { Canary(c) => { (*c).fetch_add(1, SeqCst); } } } } } #[test] fn manually_share_arc() { let v = vec!(1, 2, 3, 4, 5, 6, 7, 8, 9, 10); let arc_v = Arc::new(v); let (tx, rx) = channel(); let _t = Thread::spawn(move || { let arc_v: Arc> = rx.recv().unwrap(); assert_eq!((*arc_v)[3], 4); }); tx.send(arc_v.clone()).unwrap(); assert_eq!((*arc_v)[2], 3); assert_eq!((*arc_v)[4], 5); } #[test] fn test_cowarc_clone_make_unique() { let mut cow0 = Arc::new(75u); let mut cow1 = cow0.clone(); let mut cow2 = cow1.clone(); assert!(75 == *cow0.make_unique()); assert!(75 == *cow1.make_unique()); assert!(75 == *cow2.make_unique()); *cow0.make_unique() += 1; *cow1.make_unique() += 2; *cow2.make_unique() += 3; assert!(76 == *cow0); assert!(77 == *cow1); assert!(78 == *cow2); // none should point to the same backing memory assert!(*cow0 != *cow1); assert!(*cow0 != *cow2); assert!(*cow1 != *cow2); } #[test] fn test_cowarc_clone_unique2() { let mut cow0 = Arc::new(75u); let cow1 = cow0.clone(); let cow2 = cow1.clone(); assert!(75 == *cow0); assert!(75 == *cow1); assert!(75 == *cow2); *cow0.make_unique() += 1; assert!(76 == *cow0); assert!(75 == *cow1); assert!(75 == *cow2); // cow1 and cow2 should share the same contents // cow0 should have a unique reference assert!(*cow0 != *cow1); assert!(*cow0 != *cow2); assert!(*cow1 == *cow2); } #[test] fn test_cowarc_clone_weak() { let mut cow0 = Arc::new(75u); let cow1_weak = cow0.downgrade(); assert!(75 == *cow0); assert!(75 == *cow1_weak.upgrade().unwrap()); *cow0.make_unique() += 1; assert!(76 == *cow0); assert!(cow1_weak.upgrade().is_none()); } #[test] fn test_live() { let x = Arc::new(5i); let y = x.downgrade(); assert!(y.upgrade().is_some()); } #[test] fn test_dead() { let x = Arc::new(5i); let y = x.downgrade(); drop(x); assert!(y.upgrade().is_none()); } #[test] fn weak_self_cyclic() { struct Cycle { x: Mutex>> } let a = Arc::new(Cycle { x: Mutex::new(None) }); let b = a.clone().downgrade(); *a.x.lock().unwrap() = Some(b); // hopefully we don't double-free (or leak)... } #[test] fn drop_arc() { let mut canary = atomic::AtomicUint::new(0); let x = Arc::new(Canary(&mut canary as *mut atomic::AtomicUint)); drop(x); assert!(canary.load(Acquire) == 1); } #[test] fn drop_arc_weak() { let mut canary = atomic::AtomicUint::new(0); let arc = Arc::new(Canary(&mut canary as *mut atomic::AtomicUint)); let arc_weak = arc.downgrade(); assert!(canary.load(Acquire) == 0); drop(arc); assert!(canary.load(Acquire) == 1); drop(arc_weak); } #[test] fn test_strong_count() { let a = Arc::new(0u32); assert!(strong_count(&a) == 1); let w = a.downgrade(); assert!(strong_count(&a) == 1); let b = w.upgrade().expect(""); assert!(strong_count(&b) == 2); assert!(strong_count(&a) == 2); drop(w); drop(a); assert!(strong_count(&b) == 1); let c = b.clone(); assert!(strong_count(&b) == 2); assert!(strong_count(&c) == 2); } #[test] fn test_weak_count() { let a = Arc::new(0u32); assert!(strong_count(&a) == 1); assert!(weak_count(&a) == 0); let w = a.downgrade(); assert!(strong_count(&a) == 1); assert!(weak_count(&a) == 1); let x = w.clone(); assert!(weak_count(&a) == 2); drop(w); drop(x); assert!(strong_count(&a) == 1); assert!(weak_count(&a) == 0); let c = a.clone(); assert!(strong_count(&a) == 2); assert!(weak_count(&a) == 0); let d = c.downgrade(); assert!(weak_count(&c) == 1); assert!(strong_count(&c) == 2); drop(a); drop(c); drop(d); } #[test] fn show_arc() { let a = Arc::new(5u32); assert!(format!("{}", a) == "5") } // Make sure deriving works with Arc #[derive(Eq, Ord, PartialEq, PartialOrd, Clone, Show, Default)] struct Foo { inner: Arc } }