// A "shape" is a compact encoding of a type that is used by interpreted glue. // This substitutes for the runtime tags used by e.g. MLs. import lib::llvm::llvm; import lib::llvm::{True, False, ModuleRef, TypeRef, ValueRef}; import driver::session; import driver::session::session; import trans::base; import middle::trans::common::*; import back::abi; import middle::ty; import middle::ty::field; import syntax::ast; import syntax::ast_util::{dummy_sp, new_def_hash}; import syntax::util::interner; import util::ppaux::ty_to_str; import syntax::codemap::span; import dvec::{dvec, extensions}; import std::map::hashmap; import ty_ctxt = middle::ty::ctxt; type nominal_id = @{did: ast::def_id, tps: [ty::t]}; fn mk_nominal_id(tcx: ty::ctxt, did: ast::def_id, tps: [ty::t]) -> nominal_id { let tps_norm = tps.map { |t| ty::normalize_ty(tcx, t) }; @{did: did, tps: tps_norm} } fn hash_nominal_id(&&ri: nominal_id) -> uint { let mut h = 5381u; h *= 33u; h += ri.did.crate as uint; h *= 33u; h += ri.did.node as uint; for vec::each(ri.tps) {|t| h *= 33u; h += ty::type_id(t); } ret h; } fn eq_nominal_id(&&mi: nominal_id, &&ni: nominal_id) -> bool { if mi.did != ni.did { false } else { vec::all2(mi.tps, ni.tps) { |m_tp, n_tp| ty::type_id(m_tp) == ty::type_id(n_tp) } } } fn new_nominal_id_hash() -> hashmap { ret hashmap(hash_nominal_id, eq_nominal_id); } type enum_data = {did: ast::def_id, substs: ty::substs}; type ctxt = {mut next_tag_id: u16, pad: u16, tag_id_to_index: hashmap, tag_order: dvec, resources: interner::interner, llshapetablesty: TypeRef, llshapetables: ValueRef}; const shape_u8: u8 = 0u8; const shape_u16: u8 = 1u8; const shape_u32: u8 = 2u8; const shape_u64: u8 = 3u8; const shape_i8: u8 = 4u8; const shape_i16: u8 = 5u8; const shape_i32: u8 = 6u8; const shape_i64: u8 = 7u8; const shape_f32: u8 = 8u8; const shape_f64: u8 = 9u8; const shape_box: u8 = 10u8; const shape_vec: u8 = 11u8; const shape_enum: u8 = 12u8; const shape_struct: u8 = 17u8; const shape_box_fn: u8 = 18u8; const shape_res: u8 = 20u8; const shape_uniq: u8 = 22u8; const shape_opaque_closure_ptr: u8 = 23u8; // the closure itself. const shape_uniq_fn: u8 = 25u8; const shape_stack_fn: u8 = 26u8; const shape_bare_fn: u8 = 27u8; const shape_tydesc: u8 = 28u8; const shape_send_tydesc: u8 = 29u8; const shape_rptr: u8 = 31u8; const shape_fixedvec: u8 = 32u8; const shape_slice: u8 = 33u8; const shape_unboxed_vec: u8 = 34u8; fn mk_global(ccx: @crate_ctxt, name: str, llval: ValueRef, internal: bool) -> ValueRef { let llglobal = str::as_c_str(name, {|buf| lib::llvm::llvm::LLVMAddGlobal(ccx.llmod, val_ty(llval), buf) }); lib::llvm::llvm::LLVMSetInitializer(llglobal, llval); lib::llvm::llvm::LLVMSetGlobalConstant(llglobal, True); if internal { lib::llvm::SetLinkage(llglobal, lib::llvm::InternalLinkage); } ret llglobal; } // Computes a set of variants of a enum that are guaranteed to have size and // alignment at least as large as any other variant of the enum. This is an // important performance optimization. fn round_up(size: u16, align: u8) -> u16 { assert (align >= 1u8); let alignment = align as u16; ret size - 1u16 + alignment & !(alignment - 1u16); } type size_align = {size: u16, align: u8}; enum enum_kind { tk_unit, // 1 variant, no data tk_enum, // N variants, no data tk_newtype, // 1 variant, data tk_complex // N variants, no data } fn enum_kind(ccx: @crate_ctxt, did: ast::def_id) -> enum_kind { let variants = ty::enum_variants(ccx.tcx, did); if vec::any(*variants) {|v| vec::len(v.args) > 0u} { if vec::len(*variants) == 1u { tk_newtype } else { tk_complex } } else { if vec::len(*variants) <= 1u { tk_unit } else { tk_enum } } } // Returns the code corresponding to the pointer size on this architecture. fn s_int(tcx: ty_ctxt) -> u8 { ret alt tcx.sess.targ_cfg.arch { session::arch_x86 { shape_i32 } session::arch_x86_64 { shape_i64 } session::arch_arm { shape_i32 } }; } fn s_uint(tcx: ty_ctxt) -> u8 { ret alt tcx.sess.targ_cfg.arch { session::arch_x86 { shape_u32 } session::arch_x86_64 { shape_u64 } session::arch_arm { shape_u32 } }; } fn s_float(tcx: ty_ctxt) -> u8 { ret alt tcx.sess.targ_cfg.arch { session::arch_x86 { shape_f64 } session::arch_x86_64 { shape_f64 } session::arch_arm { shape_f64 } }; } fn s_variant_enum_t(tcx: ty_ctxt) -> u8 { ret s_int(tcx); } fn s_tydesc(_tcx: ty_ctxt) -> u8 { ret shape_tydesc; } fn s_send_tydesc(_tcx: ty_ctxt) -> u8 { ret shape_send_tydesc; } fn mk_ctxt(llmod: ModuleRef) -> ctxt { let llshapetablesty = trans::common::T_named_struct("shapes"); let llshapetables = str::as_c_str("shapes", {|buf| lib::llvm::llvm::LLVMAddGlobal(llmod, llshapetablesty, buf) }); ret {mut next_tag_id: 0u16, pad: 0u16, tag_id_to_index: new_nominal_id_hash(), tag_order: dvec(), resources: interner::mk(hash_nominal_id, eq_nominal_id), llshapetablesty: llshapetablesty, llshapetables: llshapetables}; } fn add_bool(&dest: [u8], val: bool) { dest += [if val { 1u8 } else { 0u8 }]; } fn add_u16(&dest: [u8], val: u16) { dest += [(val & 0xffu16) as u8, (val >> 8u16) as u8]; } fn add_substr(&dest: [u8], src: [u8]) { add_u16(dest, vec::len(src) as u16); dest += src; } fn shape_of(ccx: @crate_ctxt, t: ty::t) -> [u8] { alt ty::get(t).struct { ty::ty_nil | ty::ty_bool | ty::ty_uint(ast::ty_u8) | ty::ty_bot { [shape_u8] } ty::ty_int(ast::ty_i) { [s_int(ccx.tcx)] } ty::ty_float(ast::ty_f) { [s_float(ccx.tcx)] } ty::ty_uint(ast::ty_u) | ty::ty_ptr(_) { [s_uint(ccx.tcx)] } ty::ty_type { [s_tydesc(ccx.tcx)] } ty::ty_int(ast::ty_i8) { [shape_i8] } ty::ty_uint(ast::ty_u16) { [shape_u16] } ty::ty_int(ast::ty_i16) { [shape_i16] } ty::ty_uint(ast::ty_u32) { [shape_u32] } ty::ty_int(ast::ty_i32) | ty::ty_int(ast::ty_char) { [shape_i32] } ty::ty_uint(ast::ty_u64) { [shape_u64] } ty::ty_int(ast::ty_i64) { [shape_i64] } ty::ty_float(ast::ty_f32) { [shape_f32] } ty::ty_float(ast::ty_f64) { [shape_f64] } ty::ty_estr(ty::vstore_uniq) | ty::ty_str { // FIXME: we want to emit this as a unique pointer to an unboxed vec, // but it doesn't work at the moment, since trans doesn't put // tydescs in string boxes... let mut s = [shape_vec]; add_bool(s, true); // type is POD let unit_ty = ty::mk_mach_uint(ccx.tcx, ast::ty_u8); add_substr(s, shape_of(ccx, unit_ty)); s } ty::ty_enum(did, substs) { alt enum_kind(ccx, did) { tk_unit { [s_variant_enum_t(ccx.tcx)] } tk_enum { [s_variant_enum_t(ccx.tcx)] } tk_newtype | tk_complex { let mut s = [shape_enum], id; let nom_id = mk_nominal_id(ccx.tcx, did, substs.tps); alt ccx.shape_cx.tag_id_to_index.find(nom_id) { none { id = ccx.shape_cx.next_tag_id; ccx.shape_cx.tag_id_to_index.insert(nom_id, id); ccx.shape_cx.tag_order.push({did: did, substs: substs}); ccx.shape_cx.next_tag_id += 1u16; } some(existing_id) { id = existing_id; } } add_u16(s, id as u16); // Hack: always encode 0 tps, since the shape glue format // hasn't changed since we started monomorphizing. add_u16(s, 0_u16); s } } } ty::ty_estr(ty::vstore_box) | ty::ty_evec(_, ty::vstore_box) | ty::ty_box(_) | ty::ty_opaque_box { [shape_box] } ty::ty_uniq(mt) { let mut s = [shape_uniq]; add_substr(s, shape_of(ccx, mt.ty)); s } ty::ty_unboxed_vec(mt) { let mut s = [shape_unboxed_vec]; add_bool(s, ty::type_is_pod(ccx.tcx, mt.ty)); add_substr(s, shape_of(ccx, mt.ty)); s } ty::ty_evec(mt, ty::vstore_uniq) | ty::ty_vec(mt) { shape_of(ccx, ty::mk_imm_uniq(ccx.tcx, ty::mk_unboxed_vec(ccx.tcx, mt))) } ty::ty_estr(ty::vstore_fixed(n)) { let mut s = [shape_fixedvec]; let u8_t = ty::mk_mach_uint(ccx.tcx, ast::ty_u8); assert (n + 1u) <= 0xffffu; add_u16(s, (n + 1u) as u16); add_bool(s, true); add_substr(s, shape_of(ccx, u8_t)); s } ty::ty_evec(mt, ty::vstore_fixed(n)) { let mut s = [shape_fixedvec]; assert n <= 0xffffu; add_u16(s, n as u16); add_bool(s, ty::type_is_pod(ccx.tcx, mt.ty)); add_substr(s, shape_of(ccx, mt.ty)); s } ty::ty_estr(ty::vstore_slice(r)) { let mut s = [shape_slice]; let u8_t = ty::mk_mach_uint(ccx.tcx, ast::ty_u8); add_bool(s, true); // is_pod add_bool(s, true); // is_str add_substr(s, shape_of(ccx, u8_t)); s } ty::ty_evec(mt, ty::vstore_slice(r)) { let mut s = [shape_slice]; add_bool(s, ty::type_is_pod(ccx.tcx, mt.ty)); add_bool(s, false); // is_str add_substr(s, shape_of(ccx, mt.ty)); s } ty::ty_rec(fields) { let mut s = [shape_struct], sub = []; for vec::each(fields) {|f| sub += shape_of(ccx, f.mt.ty); } add_substr(s, sub); s } ty::ty_tup(elts) { let mut s = [shape_struct], sub = []; for vec::each(elts) {|elt| sub += shape_of(ccx, elt); } add_substr(s, sub); s } ty::ty_iface(_, _) { [shape_box_fn] } ty::ty_class(did, substs) { // same as records, unless there's a dtor let tps = substs.tps; let m_dtor_did = ty::ty_dtor(ccx.tcx, did); let mut s = if option::is_some(m_dtor_did) { [shape_res] } else { [shape_struct] }; let mut sub = []; option::iter(m_dtor_did) {|dtor_did| let ri = @{did: dtor_did, tps: tps}; let id = interner::intern(ccx.shape_cx.resources, ri); add_u16(s, id as u16); // Hack: always encode 0 tps, since the shape glue format // hasn't changed since we started monomorphizing. add_u16(s, 0_u16); }; for ty::class_items_as_mutable_fields(ccx.tcx, did, substs).each {|f| sub += shape_of(ccx, f.mt.ty); } add_substr(s, sub); s } ty::ty_rptr(_, mt) { let mut s = [shape_rptr]; add_substr(s, shape_of(ccx, mt.ty)); s } ty::ty_res(did, raw_subt, substs) { #debug["ty_res(%?, %?, %?)", did, ty_to_str(ccx.tcx, raw_subt), substs.tps.map({|t| ty_to_str(ccx.tcx, t) })]; for substs.tps.each() {|t| assert !ty::type_has_params(t); } let subt = ty::subst(ccx.tcx, substs, raw_subt); let tps = substs.tps; let ri = @{did: did, tps: tps}; let id = interner::intern(ccx.shape_cx.resources, ri); let mut s = [shape_res]; add_u16(s, id as u16); // Hack: always encode 0 tps, since the shape glue format // hasn't changed since we started monomorphizing. add_u16(s, 0_u16); add_substr(s, shape_of(ccx, subt)); s } ty::ty_param(*) { ccx.tcx.sess.bug("non-monomorphized type parameter"); } ty::ty_fn({proto: ast::proto_box, _}) { [shape_box_fn] } ty::ty_fn({proto: ast::proto_uniq, _}) { [shape_uniq_fn] } ty::ty_fn({proto: ast::proto_block, _}) | ty::ty_fn({proto: ast::proto_any, _}) { [shape_stack_fn] } ty::ty_fn({proto: ast::proto_bare, _}) { [shape_bare_fn] } ty::ty_opaque_closure_ptr(_) { [shape_opaque_closure_ptr] } ty::ty_constr(inner_t, _) { shape_of(ccx, inner_t) } ty::ty_var(_) | ty::ty_var_integral(_) | ty::ty_self { ccx.sess.bug("shape_of: unexpected type struct found"); } } } fn shape_of_variant(ccx: @crate_ctxt, v: ty::variant_info) -> [u8] { let mut s = []; for vec::each(v.args) {|t| s += shape_of(ccx, t); } ret s; } fn gen_enum_shapes(ccx: @crate_ctxt) -> ValueRef { // Loop over all the enum variants and write their shapes into a // data buffer. As we do this, it's possible for us to discover // new enums, so we must do this first. let mut data = []; let mut offsets = []; let mut i = 0u; let mut enum_variants = []; while i < ccx.shape_cx.tag_order.len() { let {did, substs} = ccx.shape_cx.tag_order[i]; let variants = @ty::substd_enum_variants(ccx.tcx, did, substs); vec::iter(*variants) {|v| offsets += [vec::len(data) as u16]; let variant_shape = shape_of_variant(ccx, v); add_substr(data, variant_shape); let zname = str::bytes(*v.name) + [0u8]; add_substr(data, zname); } enum_variants += [variants]; i += 1u; } // Now calculate the sizes of the header space (which contains offsets to // info records for each enum) and the info space (which contains offsets // to each variant shape). As we do so, build up the header. let mut header = []; let mut inf = []; let header_sz = 2u16 * ccx.shape_cx.next_tag_id; let data_sz = vec::len(data) as u16; let mut inf_sz = 0u16; for enum_variants.each { |variants| let num_variants = vec::len(*variants) as u16; add_u16(header, header_sz + inf_sz); inf_sz += 2u16 * (num_variants + 2u16) + 3u16; } // Construct the info tables, which contain offsets to the shape of each // variant. Also construct the largest-variant table for each enum, which // contains the variants that the size-of operation needs to look at. let mut lv_table = []; let mut i = 0u; for enum_variants.each { |variants| add_u16(inf, vec::len(*variants) as u16); // Construct the largest-variants table. add_u16(inf, header_sz + inf_sz + data_sz + (vec::len(lv_table) as u16)); let lv = largest_variants(ccx, variants); add_u16(lv_table, vec::len(lv) as u16); for vec::each(lv) {|v| add_u16(lv_table, v as u16); } // Determine whether the enum has dynamic size. assert !vec::any(*variants, {|v| vec::any(v.args, {|t| ty::type_has_params(t)}) }); // If we can, write in the static size and alignment of the enum. // Otherwise, write a placeholder. let size_align = compute_static_enum_size(ccx, lv, variants); // Write in the static size and alignment of the enum. add_u16(inf, size_align.size); inf += [size_align.align]; // Now write in the offset of each variant. for vec::each(*variants) {|_v| add_u16(inf, header_sz + inf_sz + offsets[i]); i += 1u; } } assert (i == vec::len(offsets)); assert (header_sz == vec::len(header) as u16); assert (inf_sz == vec::len(inf) as u16); assert (data_sz == vec::len(data) as u16); header += inf; header += data; header += lv_table; ret mk_global(ccx, "tag_shapes", C_bytes(header), true); /* tjc: Not annotating FIXMEs in this module because of #1498 */ fn largest_variants(ccx: @crate_ctxt, variants: @[ty::variant_info]) -> [uint] { // Compute the minimum and maximum size and alignment for each // variant. // // FIXME: We could do better here; e.g. we know that any // variant that contains (T,T) must be as least as large as // any variant that contains just T. let mut ranges = []; for vec::each(*variants) {|variant| let mut bounded = true; let mut min_size = 0u, min_align = 0u; for vec::each(variant.args) {|elem_t| if ty::type_has_params(elem_t) { // FIXME: We could do better here; this causes us to // conservatively assume that (int, T) has minimum size 0, // when in fact it has minimum size sizeof(int). bounded = false; } else { let llty = type_of::type_of(ccx, elem_t); min_size += llsize_of_real(ccx, llty); min_align += llalign_of_pref(ccx, llty); } } ranges += [{size: {min: min_size, bounded: bounded}, align: {min: min_align, bounded: bounded}}]; } // Initialize the candidate set to contain all variants. let mut candidates = [mut]; for vec::each(*variants) {|_v| candidates += [mut true]; } // Do a pairwise comparison among all variants still in the // candidate set. Throw out any variant that we know has size // and alignment at least as small as some other variant. let mut i = 0u; while i < vec::len(ranges) - 1u { if candidates[i] { let mut j = i + 1u; while j < vec::len(ranges) { if candidates[j] { if ranges[i].size.bounded && ranges[i].align.bounded && ranges[j].size.bounded && ranges[j].align.bounded { if ranges[i].size >= ranges[j].size && ranges[i].align >= ranges[j].align { // Throw out j. candidates[j] = false; } else if ranges[j].size >= ranges[i].size && ranges[j].align >= ranges[j].align { // Throw out i. candidates[i] = false; } } } j += 1u; } } i += 1u; } // Return the resulting set. let mut result = []; let mut i = 0u; while i < vec::len(candidates) { if candidates[i] { result += [i]; } i += 1u; } ret result; } fn compute_static_enum_size(ccx: @crate_ctxt, largest_variants: [uint], variants: @[ty::variant_info]) -> size_align { let mut max_size = 0u16; let mut max_align = 1u8; for vec::each(largest_variants) {|vid| // We increment a "virtual data pointer" to compute the size. let mut lltys = []; for vec::each(variants[vid].args) {|typ| lltys += [type_of::type_of(ccx, typ)]; } let llty = trans::common::T_struct(lltys); let dp = llsize_of_real(ccx, llty) as u16; let variant_align = llalign_of_pref(ccx, llty) as u8; if max_size < dp { max_size = dp; } if max_align < variant_align { max_align = variant_align; } } // Add space for the enum if applicable. // FIXME (issue #792): This is wrong. If the enum starts with an // 8 byte aligned quantity, we don't align it. if vec::len(*variants) > 1u { let variant_t = T_enum_discrim(ccx); max_size += llsize_of_real(ccx, variant_t) as u16; let align = llalign_of_pref(ccx, variant_t) as u8; if max_align < align { max_align = align; } } ret {size: max_size, align: max_align}; } } fn gen_resource_shapes(ccx: @crate_ctxt) -> ValueRef { let mut dtors = []; let len = interner::len(ccx.shape_cx.resources); for uint::range(0u, len) {|i| let ri = interner::get(ccx.shape_cx.resources, i); for ri.tps.each() {|s| assert !ty::type_has_params(s); } dtors += [trans::base::get_res_dtor(ccx, ri.did, ri.tps)]; } ret mk_global(ccx, "resource_shapes", C_struct(dtors), true); } fn gen_shape_tables(ccx: @crate_ctxt) { let lltagstable = gen_enum_shapes(ccx); let llresourcestable = gen_resource_shapes(ccx); trans::common::set_struct_body(ccx.shape_cx.llshapetablesty, [val_ty(lltagstable), val_ty(llresourcestable)]); let lltables = C_named_struct(ccx.shape_cx.llshapetablesty, [lltagstable, llresourcestable]); lib::llvm::llvm::LLVMSetInitializer(ccx.shape_cx.llshapetables, lltables); lib::llvm::llvm::LLVMSetGlobalConstant(ccx.shape_cx.llshapetables, True); lib::llvm::SetLinkage(ccx.shape_cx.llshapetables, lib::llvm::InternalLinkage); } // ______________________________________________________________________ // compute sizeof / alignof type metrics = { bcx: block, sz: ValueRef, align: ValueRef }; type tag_metrics = { bcx: block, sz: ValueRef, align: ValueRef, payload_align: ValueRef }; // Returns the number of bytes clobbered by a Store to this type. fn llsize_of_store(cx: @crate_ctxt, t: TypeRef) -> uint { ret llvm::LLVMStoreSizeOfType(cx.td.lltd, t) as uint; } // Returns the number of bytes between successive elements of type T in an // array of T. This is the "ABI" size. It includes any ABI-mandated padding. fn llsize_of_alloc(cx: @crate_ctxt, t: TypeRef) -> uint { ret llvm::LLVMABISizeOfType(cx.td.lltd, t) as uint; } // Returns, as near as we can figure, the "real" size of a type. As in, the // bits in this number of bytes actually carry data related to the datum // with the type. Not junk, padding, accidentally-damaged words, or // whatever. Rounds up to the nearest byte though, so if you have a 1-bit // value, we return 1 here, not 0. Most of rustc works in bytes. fn llsize_of_real(cx: @crate_ctxt, t: TypeRef) -> uint { let nbits = llvm::LLVMSizeOfTypeInBits(cx.td.lltd, t) as uint; if nbits & 7u != 0u { // Not an even number of bytes, spills into "next" byte. 1u + (nbits >> 3) } else { nbits >> 3 } } // Returns the "default" size of t, which is calculated by casting null to a // *T and then doing gep(1) on it and measuring the result. Really, look in // the LLVM sources. It does that. So this is likely similar to the ABI size // (i.e. including alignment-padding), but goodness knows which alignment it // winds up using. Probably the ABI one? Not recommended. fn llsize_of(cx: @crate_ctxt, t: TypeRef) -> ValueRef { ret llvm::LLVMConstIntCast(lib::llvm::llvm::LLVMSizeOf(t), cx.int_type, False); } // Returns the preferred alignment of the given type for the current target. // The preffered alignment may be larger than the alignment used when // packing the type into structs. This will be used for things like // allocations inside a stack frame, which LLVM has a free hand in. fn llalign_of_pref(cx: @crate_ctxt, t: TypeRef) -> uint { ret llvm::LLVMPreferredAlignmentOfType(cx.td.lltd, t) as uint; } // Returns the minimum alignment of a type required by the plattform. // This is the alignment that will be used for struct fields, arrays, // and similar ABI-mandated things. fn llalign_of_min(cx: @crate_ctxt, t: TypeRef) -> uint { ret llvm::LLVMABIAlignmentOfType(cx.td.lltd, t) as uint; } // Returns the "default" alignment of t, which is calculated by casting // null to a record containing a single-bit followed by a t value, then // doing gep(0,1) to get at the trailing (and presumably padded) t cell. fn llalign_of(cx: @crate_ctxt, t: TypeRef) -> ValueRef { ret llvm::LLVMConstIntCast(lib::llvm::llvm::LLVMAlignOf(t), cx.int_type, False); } // Computes the static size of a enum, without using mk_tup(), which is // bad for performance. // // FIXME: Migrate trans over to use this. // Computes the size of the data part of an enum. fn static_size_of_enum(cx: @crate_ctxt, t: ty::t) -> uint { if cx.enum_sizes.contains_key(t) { ret cx.enum_sizes.get(t); } alt ty::get(t).struct { ty::ty_enum(tid, substs) { // Compute max(variant sizes). let mut max_size = 0u; let variants = ty::enum_variants(cx.tcx, tid); for vec::each(*variants) {|variant| let tup_ty = simplify_type(cx.tcx, ty::mk_tup(cx.tcx, variant.args)); // Perform any type parameter substitutions. let tup_ty = ty::subst(cx.tcx, substs, tup_ty); // Here we possibly do a recursive call. let this_size = llsize_of_real(cx, type_of::type_of(cx, tup_ty)); if max_size < this_size { max_size = this_size; } } cx.enum_sizes.insert(t, max_size); ret max_size; } _ { cx.sess.bug("static_size_of_enum called on non-enum"); } } } // Creates a simpler, size-equivalent type. The resulting type is guaranteed // to have (a) the same size as the type that was passed in; (b) to be non- // recursive. This is done by replacing all boxes in a type with boxed unit // types. // This should reduce all pointers to some simple pointer type, to // ensure that we don't recurse endlessly when computing the size of a // nominal type that has pointers to itself in it. fn simplify_type(tcx: ty::ctxt, typ: ty::t) -> ty::t { fn nilptr(tcx: ty::ctxt) -> ty::t { ty::mk_ptr(tcx, {ty: ty::mk_nil(tcx), mutbl: ast::m_imm}) } fn simplifier(tcx: ty::ctxt, typ: ty::t) -> ty::t { alt ty::get(typ).struct { ty::ty_box(_) | ty::ty_opaque_box | ty::ty_uniq(_) | ty::ty_vec(_) | ty::ty_evec(_, ty::vstore_uniq) | ty::ty_evec(_, ty::vstore_box) | ty::ty_estr(ty::vstore_uniq) | ty::ty_estr(ty::vstore_box) | ty::ty_ptr(_) | ty::ty_rptr(_,_) { nilptr(tcx) } ty::ty_fn(_) { ty::mk_tup(tcx, [nilptr(tcx), nilptr(tcx)]) } ty::ty_res(_, sub, substs) { let sub1 = ty::subst(tcx, substs, sub); ty::mk_tup(tcx, [ty::mk_int(tcx), simplify_type(tcx, sub1)]) } ty::ty_evec(_, ty::vstore_slice(_)) | ty::ty_estr(ty::vstore_slice(_)) { ty::mk_tup(tcx, [nilptr(tcx), ty::mk_int(tcx)]) } _ { typ } } } ty::fold_ty(tcx, typ) {|t| simplifier(tcx, t) } } // Given a tag type `ty`, returns the offset of the payload. //fn tag_payload_offs(bcx: block, tag_id: ast::def_id, tps: [ty::t]) // -> ValueRef { // alt tag_kind(tag_id) { // tk_unit | tk_enum | tk_newtype { C_int(bcx.ccx(), 0) } // tk_complex { // compute_tag_metrics(tag_id, tps) // } // } //}