//! This module is concerned with finding methods that a given type provides. //! For details about how this works in rustc, see the method lookup page in the //! [rustc guide](https://rust-lang.github.io/rustc-guide/method-lookup.html) //! and the corresponding code mostly in librustc_typeck/check/method/probe.rs. use std::sync::Arc; use arrayvec::ArrayVec; use rustc_hash::FxHashMap; use crate::{ HirDatabase, Module, Crate, Name, Function, Trait, impl_block::{ImplId, ImplBlock, ImplItem}, ty::{Ty, TypeCtor}, nameres::CrateModuleId, resolve::Resolver, traits::TraitItem, generics::HasGenericParams, ty::primitive::{UncertainIntTy, UncertainFloatTy} }; use super::{TraitRef, Canonical, autoderef}; /// This is used as a key for indexing impls. #[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)] pub enum TyFingerprint { Apply(TypeCtor), } impl TyFingerprint { /// Creates a TyFingerprint for looking up an impl. Only certain types can /// have impls: if we have some `struct S`, we can have an `impl S`, but not /// `impl &S`. Hence, this will return `None` for reference types and such. fn for_impl(ty: &Ty) -> Option { match ty { Ty::Apply(a_ty) => Some(TyFingerprint::Apply(a_ty.ctor)), _ => None, } } } #[derive(Debug, PartialEq, Eq)] pub struct CrateImplBlocks { /// To make sense of the CrateModuleIds, we need the source root. krate: Crate, impls: FxHashMap>, impls_by_trait: FxHashMap>, } impl CrateImplBlocks { pub fn lookup_impl_blocks<'a>(&'a self, ty: &Ty) -> impl Iterator + 'a { let fingerprint = TyFingerprint::for_impl(ty); fingerprint.and_then(|f| self.impls.get(&f)).into_iter().flat_map(|i| i.iter()).map( move |(module_id, impl_id)| { let module = Module { krate: self.krate, module_id: *module_id }; ImplBlock::from_id(module, *impl_id) }, ) } pub fn lookup_impl_blocks_for_trait<'a>( &'a self, tr: &Trait, ) -> impl Iterator + 'a { self.impls_by_trait.get(&tr).into_iter().flat_map(|i| i.iter()).map( move |(module_id, impl_id)| { let module = Module { krate: self.krate, module_id: *module_id }; ImplBlock::from_id(module, *impl_id) }, ) } fn collect_recursive(&mut self, db: &impl HirDatabase, module: &Module) { let module_impl_blocks = db.impls_in_module(module.clone()); for (impl_id, _) in module_impl_blocks.impls.iter() { let impl_block = ImplBlock::from_id(module_impl_blocks.module, impl_id); let target_ty = impl_block.target_ty(db); if impl_block.target_trait(db).is_some() { if let Some(tr) = impl_block.target_trait_ref(db) { self.impls_by_trait .entry(tr.trait_) .or_insert_with(Vec::new) .push((module.module_id, impl_id)); } } else { if let Some(target_ty_fp) = TyFingerprint::for_impl(&target_ty) { self.impls .entry(target_ty_fp) .or_insert_with(Vec::new) .push((module.module_id, impl_id)); } } } for child in module.children(db) { self.collect_recursive(db, &child); } } pub(crate) fn impls_in_crate_query( db: &impl HirDatabase, krate: Crate, ) -> Arc { let mut crate_impl_blocks = CrateImplBlocks { krate, impls: FxHashMap::default(), impls_by_trait: FxHashMap::default(), }; if let Some(module) = krate.root_module(db) { crate_impl_blocks.collect_recursive(db, &module); } Arc::new(crate_impl_blocks) } } fn def_crates(db: &impl HirDatabase, cur_crate: Crate, ty: &Ty) -> Option> { macro_rules! lang_item_crate { ($db:expr, $cur_crate:expr, $($name:expr),+ $(,)?) => {{ let mut v = ArrayVec::<[Crate; 2]>::new(); $( v.push($db.lang_item($cur_crate, $name.into())?.krate($db)?); )+ Some(v) }}; } match ty { Ty::Apply(a_ty) => match a_ty.ctor { TypeCtor::Adt(def_id) => Some(std::iter::once(def_id.krate(db)?).collect()), TypeCtor::Bool => lang_item_crate![db, cur_crate, "bool"], TypeCtor::Char => lang_item_crate![db, cur_crate, "char"], TypeCtor::Float(UncertainFloatTy::Known(f)) => { lang_item_crate![db, cur_crate, f.ty_to_string()] } TypeCtor::Int(UncertainIntTy::Known(i)) => { lang_item_crate![db, cur_crate, i.ty_to_string()] } TypeCtor::Str => lang_item_crate![db, cur_crate, "str"], TypeCtor::Slice => lang_item_crate![db, cur_crate, "slice_alloc", "slice"], _ => None, }, _ => None, } } /// Look up the method with the given name, returning the actual autoderefed /// receiver type (but without autoref applied yet). pub(crate) fn lookup_method( ty: &Canonical, db: &impl HirDatabase, name: &Name, resolver: &Resolver, ) -> Option<(Ty, Function)> { iterate_method_candidates(ty, db, resolver, Some(name), |ty, f| Some((ty.clone(), f))) } // This would be nicer if it just returned an iterator, but that runs into // lifetime problems, because we need to borrow temp `CrateImplBlocks`. pub(crate) fn iterate_method_candidates( ty: &Canonical, db: &impl HirDatabase, resolver: &Resolver, name: Option<&Name>, mut callback: impl FnMut(&Ty, Function) -> Option, ) -> Option { // For method calls, rust first does any number of autoderef, and then one // autoref (i.e. when the method takes &self or &mut self). We just ignore // the autoref currently -- when we find a method matching the given name, // we assume it fits. // Also note that when we've got a receiver like &S, even if the method we // find in the end takes &self, we still do the autoderef step (just as // rustc does an autoderef and then autoref again). let krate = resolver.krate()?; for derefed_ty in autoderef::autoderef(db, resolver, ty.clone()) { if let Some(result) = iterate_inherent_methods(&derefed_ty, db, name, krate, &mut callback) { return Some(result); } if let Some(result) = iterate_trait_method_candidates(&derefed_ty, db, resolver, name, &mut callback) { return Some(result); } } None } fn iterate_trait_method_candidates( ty: &Canonical, db: &impl HirDatabase, resolver: &Resolver, name: Option<&Name>, mut callback: impl FnMut(&Ty, Function) -> Option, ) -> Option { let krate = resolver.krate()?; 'traits: for t in resolver.traits_in_scope(db) { let data = t.trait_data(db); // we'll be lazy about checking whether the type implements the // trait, but if we find out it doesn't, we'll skip the rest of the // iteration let mut known_implemented = false; for item in data.items() { if let TraitItem::Function(m) = *item { let data = m.data(db); if name.map_or(true, |name| data.name() == name) && data.has_self_param() { if !known_implemented { let trait_ref = canonical_trait_ref(db, t, ty.clone()); if db.implements(krate, trait_ref).is_none() { continue 'traits; } } known_implemented = true; if let Some(result) = callback(&ty.value, m) { return Some(result); } } } } } None } fn iterate_inherent_methods( ty: &Canonical, db: &impl HirDatabase, name: Option<&Name>, krate: Crate, mut callback: impl FnMut(&Ty, Function) -> Option, ) -> Option { for krate in def_crates(db, krate, &ty.value)? { let impls = db.impls_in_crate(krate); for impl_block in impls.lookup_impl_blocks(&ty.value) { for item in impl_block.items(db) { if let ImplItem::Method(f) = item { let data = f.data(db); if name.map_or(true, |name| data.name() == name) && data.has_self_param() { if let Some(result) = callback(&ty.value, f) { return Some(result); } } } } } } None } impl Ty { // This would be nicer if it just returned an iterator, but that runs into // lifetime problems, because we need to borrow temp `CrateImplBlocks`. pub fn iterate_impl_items( self, db: &impl HirDatabase, krate: Crate, mut callback: impl FnMut(ImplItem) -> Option, ) -> Option { for krate in def_crates(db, krate, &self)? { let impls = db.impls_in_crate(krate); for impl_block in impls.lookup_impl_blocks(&self) { for item in impl_block.items(db) { if let Some(result) = callback(item) { return Some(result); } } } } None } } /// This creates Substs for a trait with the given Self type and type variables /// for all other parameters, to query Chalk with it. fn canonical_trait_ref( db: &impl HirDatabase, trait_: Trait, self_ty: Canonical, ) -> Canonical { let mut substs = Vec::new(); let generics = trait_.generic_params(db); let num_vars = self_ty.num_vars; substs.push(self_ty.value); substs.extend( generics .params_including_parent() .into_iter() .skip(1) .enumerate() .map(|(i, _p)| Ty::Bound((i + num_vars) as u32)), ); Canonical { num_vars: substs.len() - 1 + self_ty.num_vars, value: TraitRef { trait_, substs: substs.into() }, } }