// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. #![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png", html_favicon_url = "https://doc.rust-lang.org/favicon.ico", html_root_url = "https://doc.rust-lang.org/nightly/")] #![feature(custom_attribute)] #![allow(unused_attributes)] #![recursion_limit="256"] #[macro_use] extern crate rustc; #[macro_use] extern crate log; extern crate rustc_data_structures; extern crate rustc_serialize; extern crate rustc_target; extern crate rustc_typeck; #[macro_use] extern crate syntax; extern crate syntax_pos; extern crate rls_data; extern crate rls_span; mod json_dumper; mod dump_visitor; #[macro_use] mod span_utils; mod sig; use rustc::hir; use rustc::hir::def::Def as HirDef; use rustc::hir::map::{Node, NodeTraitItem, NodeImplItem}; use rustc::hir::def_id::{DefId, LOCAL_CRATE}; use rustc::middle::cstore::ExternCrate; use rustc::session::config::CrateType::CrateTypeExecutable; use rustc::ty::{self, TyCtxt}; use rustc_typeck::hir_ty_to_ty; use std::cell::Cell; use std::default::Default; use std::env; use std::fs::File; use std::path::{Path, PathBuf}; use syntax::ast::{self, Attribute, NodeId, PatKind}; use syntax::parse::lexer::comments::strip_doc_comment_decoration; use syntax::parse::token; use syntax::print::pprust; use syntax::symbol::keywords; use syntax::visit::{self, Visitor}; use syntax::print::pprust::{arg_to_string, ty_to_string}; use syntax::codemap::MacroAttribute; use syntax_pos::*; use json_dumper::JsonDumper; use dump_visitor::DumpVisitor; use span_utils::SpanUtils; use rls_data::{Def, DefKind, ExternalCrateData, GlobalCrateId, MacroRef, Ref, RefKind, Relation, RelationKind, SpanData, Impl, ImplKind}; use rls_data::config::Config; pub struct SaveContext<'l, 'tcx: 'l> { tcx: TyCtxt<'l, 'tcx, 'tcx>, tables: &'l ty::TypeckTables<'tcx>, analysis: &'l ty::CrateAnalysis, span_utils: SpanUtils<'tcx>, config: Config, impl_counter: Cell, } #[derive(Debug)] pub enum Data { RefData(Ref), DefData(Def), RelationData(Relation, Impl), } impl<'l, 'tcx: 'l> SaveContext<'l, 'tcx> { fn span_from_span(&self, span: Span) -> SpanData { use rls_span::{Column, Row}; let cm = self.tcx.sess.codemap(); let start = cm.lookup_char_pos(span.lo()); let end = cm.lookup_char_pos(span.hi()); SpanData { file_name: start.file.name.clone().to_string().into(), byte_start: span.lo().0, byte_end: span.hi().0, line_start: Row::new_one_indexed(start.line as u32), line_end: Row::new_one_indexed(end.line as u32), column_start: Column::new_one_indexed(start.col.0 as u32 + 1), column_end: Column::new_one_indexed(end.col.0 as u32 + 1), } } // List external crates used by the current crate. pub fn get_external_crates(&self) -> Vec { let mut result = Vec::new(); for &n in self.tcx.crates().iter() { let span = match *self.tcx.extern_crate(n.as_def_id()) { Some(ExternCrate { span, .. }) => span, None => { debug!("Skipping crate {}, no data", n); continue; } }; let lo_loc = self.span_utils.sess.codemap().lookup_char_pos(span.lo()); result.push(ExternalCrateData { // FIXME: change file_name field to PathBuf in rls-data // https://github.com/nrc/rls-data/issues/7 file_name: SpanUtils::make_path_string(&lo_loc.file.name), num: n.as_u32(), id: GlobalCrateId { name: self.tcx.crate_name(n).to_string(), disambiguator: self.tcx.crate_disambiguator(n).to_fingerprint().as_value(), }, }); } result } pub fn get_extern_item_data(&self, item: &ast::ForeignItem) -> Option { let qualname = format!("::{}", self.tcx.node_path_str(item.id)); match item.node { ast::ForeignItemKind::Fn(ref decl, ref generics) => { let sub_span = self.span_utils .sub_span_after_keyword(item.span, keywords::Fn); filter!(self.span_utils, sub_span, item.span, None); Some(Data::DefData(Def { kind: DefKind::Function, id: id_from_node_id(item.id, self), span: self.span_from_span(sub_span.unwrap()), name: item.ident.to_string(), qualname, value: make_signature(decl, generics), parent: None, children: vec![], decl_id: None, docs: self.docs_for_attrs(&item.attrs), sig: sig::foreign_item_signature(item, self), attributes: lower_attributes(item.attrs.clone(), self), })) } ast::ForeignItemKind::Static(ref ty, m) => { let keyword = if m { keywords::Mut } else { keywords::Static }; let sub_span = self.span_utils.sub_span_after_keyword(item.span, keyword); filter!(self.span_utils, sub_span, item.span, None); let id = ::id_from_node_id(item.id, self); let span = self.span_from_span(sub_span.unwrap()); Some(Data::DefData(Def { kind: DefKind::Static, id, span, name: item.ident.to_string(), qualname, value: ty_to_string(ty), parent: None, children: vec![], decl_id: None, docs: self.docs_for_attrs(&item.attrs), sig: sig::foreign_item_signature(item, self), attributes: lower_attributes(item.attrs.clone(), self), })) } // FIXME(plietar): needs a new DefKind in rls-data ast::ForeignItemKind::Ty => None, ast::ForeignItemKind::Macro(..) => None, } } pub fn get_item_data(&self, item: &ast::Item) -> Option { match item.node { ast::ItemKind::Fn(ref decl, .., ref generics, _) => { let qualname = format!("::{}", self.tcx.node_path_str(item.id)); let sub_span = self.span_utils .sub_span_after_keyword(item.span, keywords::Fn); filter!(self.span_utils, sub_span, item.span, None); Some(Data::DefData(Def { kind: DefKind::Function, id: id_from_node_id(item.id, self), span: self.span_from_span(sub_span.unwrap()), name: item.ident.to_string(), qualname, value: make_signature(decl, generics), parent: None, children: vec![], decl_id: None, docs: self.docs_for_attrs(&item.attrs), sig: sig::item_signature(item, self), attributes: lower_attributes(item.attrs.clone(), self), })) } ast::ItemKind::Static(ref typ, mt, _) => { let qualname = format!("::{}", self.tcx.node_path_str(item.id)); let keyword = match mt { ast::Mutability::Mutable => keywords::Mut, ast::Mutability::Immutable => keywords::Static, }; let sub_span = self.span_utils.sub_span_after_keyword(item.span, keyword); filter!(self.span_utils, sub_span, item.span, None); let id = id_from_node_id(item.id, self); let span = self.span_from_span(sub_span.unwrap()); Some(Data::DefData(Def { kind: DefKind::Static, id, span, name: item.ident.to_string(), qualname, value: ty_to_string(&typ), parent: None, children: vec![], decl_id: None, docs: self.docs_for_attrs(&item.attrs), sig: sig::item_signature(item, self), attributes: lower_attributes(item.attrs.clone(), self), })) } ast::ItemKind::Const(ref typ, _) => { let qualname = format!("::{}", self.tcx.node_path_str(item.id)); let sub_span = self.span_utils .sub_span_after_keyword(item.span, keywords::Const); filter!(self.span_utils, sub_span, item.span, None); let id = id_from_node_id(item.id, self); let span = self.span_from_span(sub_span.unwrap()); Some(Data::DefData(Def { kind: DefKind::Const, id, span, name: item.ident.to_string(), qualname, value: ty_to_string(typ), parent: None, children: vec![], decl_id: None, docs: self.docs_for_attrs(&item.attrs), sig: sig::item_signature(item, self), attributes: lower_attributes(item.attrs.clone(), self), })) } ast::ItemKind::Mod(ref m) => { let qualname = format!("::{}", self.tcx.node_path_str(item.id)); let cm = self.tcx.sess.codemap(); let filename = cm.span_to_filename(m.inner); let sub_span = self.span_utils .sub_span_after_keyword(item.span, keywords::Mod); filter!(self.span_utils, sub_span, item.span, None); Some(Data::DefData(Def { kind: DefKind::Mod, id: id_from_node_id(item.id, self), name: item.ident.to_string(), qualname, span: self.span_from_span(sub_span.unwrap()), value: filename.to_string(), parent: None, children: m.items .iter() .map(|i| id_from_node_id(i.id, self)) .collect(), decl_id: None, docs: self.docs_for_attrs(&item.attrs), sig: sig::item_signature(item, self), attributes: lower_attributes(item.attrs.clone(), self), })) } ast::ItemKind::Enum(ref def, _) => { let name = item.ident.to_string(); let qualname = format!("::{}", self.tcx.node_path_str(item.id)); let sub_span = self.span_utils .sub_span_after_keyword(item.span, keywords::Enum); filter!(self.span_utils, sub_span, item.span, None); let variants_str = def.variants .iter() .map(|v| v.node.ident.to_string()) .collect::>() .join(", "); let value = format!("{}::{{{}}}", name, variants_str); Some(Data::DefData(Def { kind: DefKind::Enum, id: id_from_node_id(item.id, self), span: self.span_from_span(sub_span.unwrap()), name, qualname, value, parent: None, children: def.variants .iter() .map(|v| id_from_node_id(v.node.data.id(), self)) .collect(), decl_id: None, docs: self.docs_for_attrs(&item.attrs), sig: sig::item_signature(item, self), attributes: lower_attributes(item.attrs.to_owned(), self), })) } ast::ItemKind::Impl(.., ref trait_ref, ref typ, ref impls) => { if let ast::TyKind::Path(None, ref path) = typ.node { // Common case impl for a struct or something basic. if generated_code(path.span) { return None; } let sub_span = self.span_utils.sub_span_for_type_name(path.span); filter!(self.span_utils, sub_span, typ.span, None); let impl_id = self.next_impl_id(); let span = self.span_from_span(sub_span.unwrap()); let type_data = self.lookup_ref_id(typ.id); type_data.map(|type_data| { Data::RelationData(Relation { kind: RelationKind::Impl { id: impl_id, }, span: span.clone(), from: id_from_def_id(type_data), to: trait_ref .as_ref() .and_then(|t| self.lookup_ref_id(t.ref_id)) .map(id_from_def_id) .unwrap_or(null_id()), }, Impl { id: impl_id, kind: match *trait_ref { Some(_) => ImplKind::Direct, None => ImplKind::Inherent, }, span: span, value: String::new(), parent: None, children: impls .iter() .map(|i| id_from_node_id(i.id, self)) .collect(), docs: String::new(), sig: None, attributes: vec![], }) }) } else { None } } _ => { // FIXME bug!(); } } } pub fn get_field_data(&self, field: &ast::StructField, scope: NodeId) -> Option { if let Some(ident) = field.ident { let name = ident.to_string(); let qualname = format!("::{}::{}", self.tcx.node_path_str(scope), ident); let sub_span = self.span_utils .sub_span_before_token(field.span, token::Colon); filter!(self.span_utils, sub_span, field.span, None); let def_id = self.tcx.hir.local_def_id(field.id); let typ = self.tcx.type_of(def_id).to_string(); let id = id_from_node_id(field.id, self); let span = self.span_from_span(sub_span.unwrap()); Some(Def { kind: DefKind::Field, id, span, name, qualname, value: typ, parent: Some(id_from_node_id(scope, self)), children: vec![], decl_id: None, docs: self.docs_for_attrs(&field.attrs), sig: sig::field_signature(field, self), attributes: lower_attributes(field.attrs.clone(), self), }) } else { None } } // FIXME would be nice to take a MethodItem here, but the ast provides both // trait and impl flavours, so the caller must do the disassembly. pub fn get_method_data(&self, id: ast::NodeId, name: ast::Name, span: Span) -> Option { // The qualname for a method is the trait name or name of the struct in an impl in // which the method is declared in, followed by the method's name. let (qualname, parent_scope, decl_id, docs, attributes) = match self.tcx.impl_of_method(self.tcx.hir.local_def_id(id)) { Some(impl_id) => match self.tcx.hir.get_if_local(impl_id) { Some(Node::NodeItem(item)) => match item.node { hir::ItemImpl(.., ref ty, _) => { let mut qualname = String::from("<"); qualname.push_str(&self.tcx.hir.node_to_pretty_string(ty.id)); let mut trait_id = self.tcx.trait_id_of_impl(impl_id); let mut decl_id = None; let mut docs = String::new(); let mut attrs = vec![]; if let Some(NodeImplItem(item)) = self.tcx.hir.find(id) { docs = self.docs_for_attrs(&item.attrs); attrs = item.attrs.to_vec(); } if let Some(def_id) = trait_id { // A method in a trait impl. qualname.push_str(" as "); qualname.push_str(&self.tcx.item_path_str(def_id)); self.tcx .associated_items(def_id) .find(|item| item.ident.name == name) .map(|item| decl_id = Some(item.def_id)); } qualname.push_str(">"); (qualname, trait_id, decl_id, docs, attrs) } _ => { span_bug!( span, "Container {:?} for method {} not an impl?", impl_id, id ); } }, r => { span_bug!( span, "Container {:?} for method {} is not a node item {:?}", impl_id, id, r ); } }, None => match self.tcx.trait_of_item(self.tcx.hir.local_def_id(id)) { Some(def_id) => { let mut docs = String::new(); let mut attrs = vec![]; if let Some(NodeTraitItem(item)) = self.tcx.hir.find(id) { docs = self.docs_for_attrs(&item.attrs); attrs = item.attrs.to_vec(); } ( format!("::{}", self.tcx.item_path_str(def_id)), Some(def_id), None, docs, attrs, ) } None => { debug!("Could not find container for method {} at {:?}", id, span); // This is not necessarily a bug, if there was a compilation error, // the tables we need might not exist. return None; } }, }; let qualname = format!("{}::{}", qualname, name); let sub_span = self.span_utils.sub_span_after_keyword(span, keywords::Fn); filter!(self.span_utils, sub_span, span, None); Some(Def { kind: DefKind::Method, id: id_from_node_id(id, self), span: self.span_from_span(sub_span.unwrap()), name: name.to_string(), qualname, // FIXME you get better data here by using the visitor. value: String::new(), parent: parent_scope.map(|id| id_from_def_id(id)), children: vec![], decl_id: decl_id.map(|id| id_from_def_id(id)), docs, sig: None, attributes: lower_attributes(attributes, self), }) } pub fn get_trait_ref_data(&self, trait_ref: &ast::TraitRef) -> Option { self.lookup_ref_id(trait_ref.ref_id).and_then(|def_id| { let span = trait_ref.path.span; if generated_code(span) { return None; } let sub_span = self.span_utils.sub_span_for_type_name(span).or(Some(span)); filter!(self.span_utils, sub_span, span, None); let span = self.span_from_span(sub_span.unwrap()); Some(Ref { kind: RefKind::Type, span, ref_id: id_from_def_id(def_id), }) }) } pub fn get_expr_data(&self, expr: &ast::Expr) -> Option { let hir_node = self.tcx.hir.expect_expr(expr.id); let ty = self.tables.expr_ty_adjusted_opt(&hir_node); if ty.is_none() || ty.unwrap().sty == ty::TyError { return None; } match expr.node { ast::ExprKind::Field(ref sub_ex, ident) => { let hir_node = match self.tcx.hir.find(sub_ex.id) { Some(Node::NodeExpr(expr)) => expr, _ => { debug!( "Missing or weird node for sub-expression {} in {:?}", sub_ex.id, expr ); return None; } }; match self.tables.expr_ty_adjusted(&hir_node).sty { ty::TyAdt(def, _) if !def.is_enum() => { let variant = &def.non_enum_variant(); let index = self.tcx.find_field_index(ident, variant).unwrap(); let sub_span = self.span_utils.span_for_last_ident(expr.span); filter!(self.span_utils, sub_span, expr.span, None); let span = self.span_from_span(sub_span.unwrap()); return Some(Data::RefData(Ref { kind: RefKind::Variable, span, ref_id: id_from_def_id(variant.fields[index].did), })); } ty::TyTuple(..) => None, _ => { debug!("Expected struct or union type, found {:?}", ty); None } } } ast::ExprKind::Struct(ref path, ..) => { match self.tables.expr_ty_adjusted(&hir_node).sty { ty::TyAdt(def, _) if !def.is_enum() => { let sub_span = self.span_utils.span_for_last_ident(path.span); filter!(self.span_utils, sub_span, path.span, None); let span = self.span_from_span(sub_span.unwrap()); Some(Data::RefData(Ref { kind: RefKind::Type, span, ref_id: id_from_def_id(def.did), })) } _ => { // FIXME ty could legitimately be an enum, but then we will fail // later if we try to look up the fields. debug!("expected struct or union, found {:?}", ty); None } } } ast::ExprKind::MethodCall(ref seg, ..) => { let expr_hir_id = self.tcx.hir.definitions().node_to_hir_id(expr.id); let method_id = match self.tables.type_dependent_defs().get(expr_hir_id) { Some(id) => id.def_id(), None => { debug!("Could not resolve method id for {:?}", expr); return None; } }; let (def_id, decl_id) = match self.tcx.associated_item(method_id).container { ty::ImplContainer(_) => (Some(method_id), None), ty::TraitContainer(_) => (None, Some(method_id)), }; let sub_span = seg.ident.span; filter!(self.span_utils, Some(sub_span), expr.span, None); let span = self.span_from_span(sub_span); Some(Data::RefData(Ref { kind: RefKind::Function, span, ref_id: def_id .or(decl_id) .map(|id| id_from_def_id(id)) .unwrap_or(null_id()), })) } ast::ExprKind::Path(_, ref path) => { self.get_path_data(expr.id, path).map(|d| Data::RefData(d)) } _ => { // FIXME bug!(); } } } pub fn get_path_def(&self, id: NodeId) -> HirDef { match self.tcx.hir.get(id) { Node::NodeTraitRef(tr) => tr.path.def, Node::NodeItem(&hir::Item { node: hir::ItemUse(ref path, _), .. }) | Node::NodeVisibility(&hir::Visibility::Restricted { ref path, .. }) => path.def, Node::NodeExpr(&hir::Expr { node: hir::ExprStruct(ref qpath, ..), .. }) | Node::NodeExpr(&hir::Expr { node: hir::ExprPath(ref qpath), .. }) | Node::NodePat(&hir::Pat { node: hir::PatKind::Path(ref qpath), .. }) | Node::NodePat(&hir::Pat { node: hir::PatKind::Struct(ref qpath, ..), .. }) | Node::NodePat(&hir::Pat { node: hir::PatKind::TupleStruct(ref qpath, ..), .. }) => { let hir_id = self.tcx.hir.node_to_hir_id(id); self.tables.qpath_def(qpath, hir_id) } Node::NodeBinding(&hir::Pat { node: hir::PatKind::Binding(_, canonical_id, ..), .. }) => HirDef::Local(canonical_id), Node::NodeTy(ty) => if let hir::Ty { node: hir::TyPath(ref qpath), .. } = *ty { match *qpath { hir::QPath::Resolved(_, ref path) => path.def, hir::QPath::TypeRelative(..) => { let ty = hir_ty_to_ty(self.tcx, ty); if let ty::TyProjection(proj) = ty.sty { return HirDef::AssociatedTy(proj.item_def_id); } HirDef::Err } } } else { HirDef::Err }, _ => HirDef::Err, } } pub fn get_path_data(&self, id: NodeId, path: &ast::Path) -> Option { // Returns true if the path is function type sugar, e.g., `Fn(A) -> B`. fn fn_type(path: &ast::Path) -> bool { if path.segments.len() != 1 { return false; } if let Some(ref generic_args) = path.segments[0].args { if let ast::GenericArgs::Parenthesized(_) = **generic_args { return true; } } false } if path.segments.is_empty() { return None; } let def = self.get_path_def(id); let last_seg = &path.segments[path.segments.len() - 1]; let sub_span = last_seg.ident.span; filter!(self.span_utils, Some(sub_span), path.span, None); match def { HirDef::Upvar(id, ..) | HirDef::Local(id) => { let span = self.span_from_span(sub_span); Some(Ref { kind: RefKind::Variable, span, ref_id: id_from_node_id(id, self), }) } HirDef::Static(..) | HirDef::Const(..) | HirDef::AssociatedConst(..) | HirDef::VariantCtor(..) => { let span = self.span_from_span(sub_span); Some(Ref { kind: RefKind::Variable, span, ref_id: id_from_def_id(def.def_id()), }) } HirDef::Trait(def_id) if fn_type(path) => { // Function type bounds are desugared in the parser, so we have to // special case them here. let fn_span = self.span_utils.span_for_first_ident(path.span); fn_span.map(|span| { Ref { kind: RefKind::Type, span: self.span_from_span(span), ref_id: id_from_def_id(def_id), } }) } HirDef::Struct(def_id) | HirDef::Variant(def_id, ..) | HirDef::Union(def_id) | HirDef::Enum(def_id) | HirDef::TyAlias(def_id) | HirDef::TyForeign(def_id) | HirDef::TraitAlias(def_id) | HirDef::AssociatedTy(def_id) | HirDef::Trait(def_id) | HirDef::Existential(def_id) | HirDef::TyParam(def_id) => { let span = self.span_from_span(sub_span); Some(Ref { kind: RefKind::Type, span, ref_id: id_from_def_id(def_id), }) } HirDef::StructCtor(def_id, _) => { // This is a reference to a tuple struct where the def_id points // to an invisible constructor function. That is not a very useful // def, so adjust to point to the tuple struct itself. let span = self.span_from_span(sub_span); let parent_def_id = self.tcx.parent_def_id(def_id).unwrap(); Some(Ref { kind: RefKind::Type, span, ref_id: id_from_def_id(parent_def_id), }) } HirDef::Method(decl_id) => { let def_id = if decl_id.is_local() { let ti = self.tcx.associated_item(decl_id); self.tcx .associated_items(ti.container.id()) .find(|item| item.ident.name == ti.ident.name && item.defaultness.has_value()) .map(|item| item.def_id) } else { None }; let span = self.span_from_span(sub_span); Some(Ref { kind: RefKind::Function, span, ref_id: id_from_def_id(def_id.unwrap_or(decl_id)), }) } HirDef::Fn(def_id) => { let span = self.span_from_span(sub_span); Some(Ref { kind: RefKind::Function, span, ref_id: id_from_def_id(def_id), }) } HirDef::Mod(def_id) => { let span = self.span_from_span(sub_span); Some(Ref { kind: RefKind::Mod, span, ref_id: id_from_def_id(def_id), }) } HirDef::PrimTy(..) | HirDef::SelfTy(..) | HirDef::Label(..) | HirDef::Macro(..) | HirDef::GlobalAsm(..) | HirDef::Err => None, } } pub fn get_field_ref_data( &self, field_ref: &ast::Field, variant: &ty::VariantDef, ) -> Option { let index = self.tcx.find_field_index(field_ref.ident, variant).unwrap(); // We don't really need a sub-span here, but no harm done let sub_span = self.span_utils.span_for_last_ident(field_ref.ident.span); filter!(self.span_utils, sub_span, field_ref.ident.span, None); let span = self.span_from_span(sub_span.unwrap()); Some(Ref { kind: RefKind::Variable, span, ref_id: id_from_def_id(variant.fields[index].did), }) } /// Attempt to return MacroRef for any AST node. /// /// For a given piece of AST defined by the supplied Span and NodeId, /// returns None if the node is not macro-generated or the span is malformed, /// else uses the expansion callsite and callee to return some MacroRef. pub fn get_macro_use_data(&self, span: Span) -> Option { if !generated_code(span) { return None; } // Note we take care to use the source callsite/callee, to handle // nested expansions and ensure we only generate data for source-visible // macro uses. let callsite = span.source_callsite(); let callsite_span = self.span_from_span(callsite); let callee = span.source_callee()?; let callee_span = callee.def_site?; // Ignore attribute macros, their spans are usually mangled if let MacroAttribute(_) = callee.format { return None; } // If the callee is an imported macro from an external crate, need to get // the source span and name from the session, as their spans are localized // when read in, and no longer correspond to the source. if let Some(mac) = self.tcx .sess .imported_macro_spans .borrow() .get(&callee_span) { let &(ref mac_name, mac_span) = mac; let mac_span = self.span_from_span(mac_span); return Some(MacroRef { span: callsite_span, qualname: mac_name.clone(), // FIXME: generate the real qualname callee_span: mac_span, }); } let callee_span = self.span_from_span(callee_span); Some(MacroRef { span: callsite_span, qualname: callee.format.name().to_string(), // FIXME: generate the real qualname callee_span, }) } fn lookup_ref_id(&self, ref_id: NodeId) -> Option { match self.get_path_def(ref_id) { HirDef::PrimTy(_) | HirDef::SelfTy(..) | HirDef::Err => None, def => Some(def.def_id()), } } fn docs_for_attrs(&self, attrs: &[Attribute]) -> String { let mut result = String::new(); for attr in attrs { if attr.check_name("doc") { if let Some(val) = attr.value_str() { if attr.is_sugared_doc { result.push_str(&strip_doc_comment_decoration(&val.as_str())); } else { result.push_str(&val.as_str()); } result.push('\n'); } else if let Some(meta_list) = attr.meta_item_list() { meta_list.into_iter() .filter(|it| it.check_name("include")) .filter_map(|it| it.meta_item_list().map(|l| l.to_owned())) .flat_map(|it| it) .filter(|meta| meta.check_name("contents")) .filter_map(|meta| meta.value_str()) .for_each(|val| { result.push_str(&val.as_str()); result.push('\n'); }); } } } if !self.config.full_docs { if let Some(index) = result.find("\n\n") { result.truncate(index); } } result } fn next_impl_id(&self) -> u32 { let next = self.impl_counter.get(); self.impl_counter.set(next + 1); next } } fn make_signature(decl: &ast::FnDecl, generics: &ast::Generics) -> String { let mut sig = "fn ".to_owned(); if !generics.params.is_empty() { sig.push('<'); sig.push_str(&generics .params .iter() .map(|param| param.ident.to_string()) .collect::>() .join(", ")); sig.push_str("> "); } sig.push('('); sig.push_str(&decl.inputs .iter() .map(arg_to_string) .collect::>() .join(", ")); sig.push(')'); match decl.output { ast::FunctionRetTy::Default(_) => sig.push_str(" -> ()"), ast::FunctionRetTy::Ty(ref t) => sig.push_str(&format!(" -> {}", ty_to_string(t))), } sig } // An AST visitor for collecting paths (e.g., the names of structs) and formal // variables (idents) from patterns. struct PathCollector<'l> { collected_paths: Vec<(NodeId, &'l ast::Path)>, collected_idents: Vec<(NodeId, ast::Ident, ast::Mutability)>, } impl<'l> PathCollector<'l> { fn new() -> PathCollector<'l> { PathCollector { collected_paths: vec![], collected_idents: vec![], } } } impl<'l, 'a: 'l> Visitor<'a> for PathCollector<'l> { fn visit_pat(&mut self, p: &'a ast::Pat) { match p.node { PatKind::Struct(ref path, ..) => { self.collected_paths.push((p.id, path)); } PatKind::TupleStruct(ref path, ..) | PatKind::Path(_, ref path) => { self.collected_paths.push((p.id, path)); } PatKind::Ident(bm, ident, _) => { debug!( "PathCollector, visit ident in pat {}: {:?} {:?}", ident, p.span, ident.span ); let immut = match bm { // Even if the ref is mut, you can't change the ref, only // the data pointed at, so showing the initialising expression // is still worthwhile. ast::BindingMode::ByRef(_) => ast::Mutability::Immutable, ast::BindingMode::ByValue(mt) => mt, }; self.collected_idents .push((p.id, ident, immut)); } _ => {} } visit::walk_pat(self, p); } } /// Defines what to do with the results of saving the analysis. pub trait SaveHandler { fn save<'l, 'tcx>( &mut self, save_ctxt: SaveContext<'l, 'tcx>, krate: &ast::Crate, cratename: &str, ); } /// Dump the save-analysis results to a file. pub struct DumpHandler<'a> { odir: Option<&'a Path>, cratename: String, } impl<'a> DumpHandler<'a> { pub fn new(odir: Option<&'a Path>, cratename: &str) -> DumpHandler<'a> { DumpHandler { odir, cratename: cratename.to_owned(), } } fn output_file(&self, ctx: &SaveContext) -> File { let sess = &ctx.tcx.sess; let file_name = match ctx.config.output_file { Some(ref s) => PathBuf::from(s), None => { let mut root_path = match self.odir { Some(val) => val.join("save-analysis"), None => PathBuf::from("save-analysis-temp"), }; if let Err(e) = std::fs::create_dir_all(&root_path) { error!("Could not create directory {}: {}", root_path.display(), e); } let executable = sess.crate_types .borrow() .iter() .any(|ct| *ct == CrateTypeExecutable); let mut out_name = if executable { "".to_owned() } else { "lib".to_owned() }; out_name.push_str(&self.cratename); out_name.push_str(&sess.opts.cg.extra_filename); out_name.push_str(".json"); root_path.push(&out_name); root_path } }; info!("Writing output to {}", file_name.display()); let output_file = File::create(&file_name).unwrap_or_else( |e| sess.fatal(&format!("Could not open {}: {}", file_name.display(), e)), ); output_file } } impl<'a> SaveHandler for DumpHandler<'a> { fn save<'l, 'tcx>( &mut self, save_ctxt: SaveContext<'l, 'tcx>, krate: &ast::Crate, cratename: &str, ) { let output = &mut self.output_file(&save_ctxt); let mut dumper = JsonDumper::new(output, save_ctxt.config.clone()); let mut visitor = DumpVisitor::new(save_ctxt, &mut dumper); visitor.dump_crate_info(cratename, krate); visit::walk_crate(&mut visitor, krate); } } /// Call a callback with the results of save-analysis. pub struct CallbackHandler<'b> { pub callback: &'b mut FnMut(&rls_data::Analysis), } impl<'b> SaveHandler for CallbackHandler<'b> { fn save<'l, 'tcx>( &mut self, save_ctxt: SaveContext<'l, 'tcx>, krate: &ast::Crate, cratename: &str, ) { // We're using the JsonDumper here because it has the format of the // save-analysis results that we will pass to the callback. IOW, we are // using the JsonDumper to collect the save-analysis results, but not // actually to dump them to a file. This is all a bit convoluted and // there is certainly a simpler design here trying to get out (FIXME). let mut dumper = JsonDumper::with_callback(self.callback, save_ctxt.config.clone()); let mut visitor = DumpVisitor::new(save_ctxt, &mut dumper); visitor.dump_crate_info(cratename, krate); visit::walk_crate(&mut visitor, krate); } } pub fn process_crate<'l, 'tcx, H: SaveHandler>( tcx: TyCtxt<'l, 'tcx, 'tcx>, krate: &ast::Crate, analysis: &'l ty::CrateAnalysis, cratename: &str, config: Option, mut handler: H, ) { tcx.dep_graph.with_ignore(|| { assert!(analysis.glob_map.is_some()); info!("Dumping crate {}", cratename); let save_ctxt = SaveContext { tcx, tables: &ty::TypeckTables::empty(None), analysis, span_utils: SpanUtils::new(&tcx.sess), config: find_config(config), impl_counter: Cell::new(0), }; handler.save(save_ctxt, krate, cratename) }) } fn find_config(supplied: Option) -> Config { if let Some(config) = supplied { return config; } match env::var_os("RUST_SAVE_ANALYSIS_CONFIG") { Some(config_string) => rustc_serialize::json::decode(config_string.to_str().unwrap()) .expect("Could not deserialize save-analysis config"), None => Config::default(), } } // Utility functions for the module. // Helper function to escape quotes in a string fn escape(s: String) -> String { s.replace("\"", "\"\"") } // Helper function to determine if a span came from a // macro expansion or syntax extension. fn generated_code(span: Span) -> bool { span.ctxt() != NO_EXPANSION || span.is_dummy() } // DefId::index is a newtype and so the JSON serialisation is ugly. Therefore // we use our own Id which is the same, but without the newtype. fn id_from_def_id(id: DefId) -> rls_data::Id { rls_data::Id { krate: id.krate.as_u32(), index: id.index.as_raw_u32(), } } fn id_from_node_id(id: NodeId, scx: &SaveContext) -> rls_data::Id { let def_id = scx.tcx.hir.opt_local_def_id(id); def_id.map(|id| id_from_def_id(id)).unwrap_or_else(|| { // Create a *fake* `DefId` out of a `NodeId` by subtracting the `NodeId` // out of the maximum u32 value. This will work unless you have *billions* // of definitions in a single crate (very unlikely to actually happen). rls_data::Id { krate: LOCAL_CRATE.as_u32(), index: !id.as_u32(), } }) } fn null_id() -> rls_data::Id { rls_data::Id { krate: u32::max_value(), index: u32::max_value(), } } fn lower_attributes(attrs: Vec, scx: &SaveContext) -> Vec { attrs.into_iter() // Only retain real attributes. Doc comments are lowered separately. .filter(|attr| attr.path != "doc") .map(|mut attr| { // Remove the surrounding '#[..]' or '#![..]' of the pretty printed // attribute. First normalize all inner attribute (#![..]) to outer // ones (#[..]), then remove the two leading and the one trailing character. attr.style = ast::AttrStyle::Outer; let value = pprust::attribute_to_string(&attr); // This str slicing works correctly, because the leading and trailing characters // are in the ASCII range and thus exactly one byte each. let value = value[2..value.len()-1].to_string(); rls_data::Attribute { value, span: scx.span_from_span(attr.span), } }).collect() }