// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use llvm::{self, ValueRef}; use rustc::ty::{self, Ty}; use rustc::ty::cast::{CastTy, IntTy}; use rustc::ty::layout::{Layout, LayoutTyper}; use rustc::mir::tcx::LvalueTy; use rustc::mir; use rustc::middle::lang_items::ExchangeMallocFnLangItem; use rustc_apfloat::{ieee, Float, Status, Round}; use rustc_const_math::MAX_F32_PLUS_HALF_ULP; use std::{u128, i128}; use base; use builder::Builder; use callee; use common::{self, val_ty, C_bool, C_i32, C_u32, C_u64, C_null, C_usize, C_uint, C_big_integral}; use consts; use adt; use machine; use monomorphize; use type_::Type; use type_of; use tvec; use value::Value; use super::{MirContext, LocalRef}; use super::constant::const_scalar_checked_binop; use super::operand::{OperandRef, OperandValue}; use super::lvalue::LvalueRef; impl<'a, 'tcx> MirContext<'a, 'tcx> { pub fn trans_rvalue(&mut self, bcx: Builder<'a, 'tcx>, dest: LvalueRef<'tcx>, rvalue: &mir::Rvalue<'tcx>) -> Builder<'a, 'tcx> { debug!("trans_rvalue(dest.llval={:?}, rvalue={:?})", Value(dest.llval), rvalue); match *rvalue { mir::Rvalue::Use(ref operand) => { let tr_operand = self.trans_operand(&bcx, operand); // FIXME: consider not copying constants through stack. (fixable by translating // constants into OperandValue::Ref, why don’t we do that yet if we don’t?) self.store_operand(&bcx, dest.llval, dest.alignment.to_align(), tr_operand); bcx } mir::Rvalue::Cast(mir::CastKind::Unsize, ref source, cast_ty) => { let cast_ty = self.monomorphize(&cast_ty); if common::type_is_fat_ptr(bcx.ccx, cast_ty) { // into-coerce of a thin pointer to a fat pointer - just // use the operand path. let (bcx, temp) = self.trans_rvalue_operand(bcx, rvalue); self.store_operand(&bcx, dest.llval, dest.alignment.to_align(), temp); return bcx; } // Unsize of a nontrivial struct. I would prefer for // this to be eliminated by MIR translation, but // `CoerceUnsized` can be passed by a where-clause, // so the (generic) MIR may not be able to expand it. let operand = self.trans_operand(&bcx, source); let operand = operand.pack_if_pair(&bcx); let llref = match operand.val { OperandValue::Pair(..) => bug!(), OperandValue::Immediate(llval) => { // unsize from an immediate structure. We don't // really need a temporary alloca here, but // avoiding it would require us to have // `coerce_unsized_into` use extractvalue to // index into the struct, and this case isn't // important enough for it. debug!("trans_rvalue: creating ugly alloca"); let scratch = LvalueRef::alloca(&bcx, operand.ty, "__unsize_temp"); base::store_ty(&bcx, llval, scratch.llval, scratch.alignment, operand.ty); scratch } OperandValue::Ref(llref, align) => { LvalueRef::new_sized_ty(llref, operand.ty, align) } }; base::coerce_unsized_into(&bcx, &llref, &dest); bcx } mir::Rvalue::Repeat(ref elem, count) => { let dest_ty = dest.ty.to_ty(bcx.tcx()); // No need to inizialize memory of a zero-sized slice if common::type_is_zero_size(bcx.ccx, dest_ty) { return bcx; } let tr_elem = self.trans_operand(&bcx, elem); let size = count.as_u64(); let size = C_usize(bcx.ccx, size); let base = base::get_dataptr(&bcx, dest.llval); let align = dest.alignment.to_align(); if let OperandValue::Immediate(v) = tr_elem.val { // Use llvm.memset.p0i8.* to initialize all zero arrays if common::is_const_integral(v) && common::const_to_uint(v) == 0 { let align = align.unwrap_or_else(|| bcx.ccx.align_of(tr_elem.ty)); let align = C_i32(bcx.ccx, align as i32); let ty = type_of::type_of(bcx.ccx, dest_ty); let size = machine::llsize_of(bcx.ccx, ty); let fill = C_uint(Type::i8(bcx.ccx), 0); base::call_memset(&bcx, base, fill, size, align, false); return bcx; } // Use llvm.memset.p0i8.* to initialize byte arrays if common::val_ty(v) == Type::i8(bcx.ccx) { let align = align.unwrap_or_else(|| bcx.ccx.align_of(tr_elem.ty)); let align = C_i32(bcx.ccx, align as i32); base::call_memset(&bcx, base, v, size, align, false); return bcx; } } tvec::slice_for_each(&bcx, base, tr_elem.ty, size, |bcx, llslot, loop_bb| { self.store_operand(bcx, llslot, align, tr_elem); bcx.br(loop_bb); }) } mir::Rvalue::Aggregate(ref kind, ref operands) => { match **kind { mir::AggregateKind::Adt(adt_def, variant_index, substs, active_field_index) => { dest.trans_set_discr(&bcx, variant_index); for (i, operand) in operands.iter().enumerate() { let op = self.trans_operand(&bcx, operand); // Do not generate stores and GEPis for zero-sized fields. if !common::type_is_zero_size(bcx.ccx, op.ty) { let mut val = LvalueRef::new_sized( dest.llval, dest.ty, dest.alignment); let field_index = active_field_index.unwrap_or(i); val.ty = LvalueTy::Downcast { adt_def, substs: self.monomorphize(&substs), variant_index, }; let (lldest_i, align) = val.trans_field_ptr(&bcx, field_index); self.store_operand(&bcx, lldest_i, align.to_align(), op); } } }, _ => { // If this is a tuple or closure, we need to translate GEP indices. let layout = bcx.ccx.layout_of(dest.ty.to_ty(bcx.tcx())); let get_memory_index = |i| { if let Layout::Univariant { ref variant, .. } = *layout { adt::struct_llfields_index(variant, i) } else { i } }; let alignment = dest.alignment; for (i, operand) in operands.iter().enumerate() { let op = self.trans_operand(&bcx, operand); // Do not generate stores and GEPis for zero-sized fields. if !common::type_is_zero_size(bcx.ccx, op.ty) { // Note: perhaps this should be StructGep, but // note that in some cases the values here will // not be structs but arrays. let i = get_memory_index(i); let dest = bcx.gepi(dest.llval, &[0, i]); self.store_operand(&bcx, dest, alignment.to_align(), op); } } } } bcx } _ => { assert!(self.rvalue_creates_operand(rvalue)); let (bcx, temp) = self.trans_rvalue_operand(bcx, rvalue); self.store_operand(&bcx, dest.llval, dest.alignment.to_align(), temp); bcx } } } pub fn trans_rvalue_operand(&mut self, bcx: Builder<'a, 'tcx>, rvalue: &mir::Rvalue<'tcx>) -> (Builder<'a, 'tcx>, OperandRef<'tcx>) { assert!(self.rvalue_creates_operand(rvalue), "cannot trans {:?} to operand", rvalue); match *rvalue { mir::Rvalue::Cast(ref kind, ref source, cast_ty) => { let operand = self.trans_operand(&bcx, source); debug!("cast operand is {:?}", operand); let cast_ty = self.monomorphize(&cast_ty); let val = match *kind { mir::CastKind::ReifyFnPointer => { match operand.ty.sty { ty::TyFnDef(def_id, substs) => { OperandValue::Immediate( callee::resolve_and_get_fn(bcx.ccx, def_id, substs)) } _ => { bug!("{} cannot be reified to a fn ptr", operand.ty) } } } mir::CastKind::ClosureFnPointer => { match operand.ty.sty { ty::TyClosure(def_id, substs) => { let instance = monomorphize::resolve_closure( bcx.ccx.tcx(), def_id, substs, ty::ClosureKind::FnOnce); OperandValue::Immediate(callee::get_fn(bcx.ccx, instance)) } _ => { bug!("{} cannot be cast to a fn ptr", operand.ty) } } } mir::CastKind::UnsafeFnPointer => { // this is a no-op at the LLVM level operand.val } mir::CastKind::Unsize => { // unsize targets other than to a fat pointer currently // can't be operands. assert!(common::type_is_fat_ptr(bcx.ccx, cast_ty)); match operand.val { OperandValue::Pair(lldata, llextra) => { // unsize from a fat pointer - this is a // "trait-object-to-supertrait" coercion, for // example, // &'a fmt::Debug+Send => &'a fmt::Debug, // So we need to pointercast the base to ensure // the types match up. let llcast_ty = type_of::fat_ptr_base_ty(bcx.ccx, cast_ty); let lldata = bcx.pointercast(lldata, llcast_ty); OperandValue::Pair(lldata, llextra) } OperandValue::Immediate(lldata) => { // "standard" unsize let (lldata, llextra) = base::unsize_thin_ptr(&bcx, lldata, operand.ty, cast_ty); OperandValue::Pair(lldata, llextra) } OperandValue::Ref(..) => { bug!("by-ref operand {:?} in trans_rvalue_operand", operand); } } } mir::CastKind::Misc if common::type_is_fat_ptr(bcx.ccx, operand.ty) => { let ll_cast_ty = type_of::immediate_type_of(bcx.ccx, cast_ty); let ll_from_ty = type_of::immediate_type_of(bcx.ccx, operand.ty); if let OperandValue::Pair(data_ptr, meta_ptr) = operand.val { if common::type_is_fat_ptr(bcx.ccx, cast_ty) { let ll_cft = ll_cast_ty.field_types(); let ll_fft = ll_from_ty.field_types(); let data_cast = bcx.pointercast(data_ptr, ll_cft[0]); assert_eq!(ll_cft[1].kind(), ll_fft[1].kind()); OperandValue::Pair(data_cast, meta_ptr) } else { // cast to thin-ptr // Cast of fat-ptr to thin-ptr is an extraction of data-ptr and // pointer-cast of that pointer to desired pointer type. let llval = bcx.pointercast(data_ptr, ll_cast_ty); OperandValue::Immediate(llval) } } else { bug!("Unexpected non-Pair operand") } } mir::CastKind::Misc => { debug_assert!(common::type_is_immediate(bcx.ccx, cast_ty)); let r_t_in = CastTy::from_ty(operand.ty).expect("bad input type for cast"); let r_t_out = CastTy::from_ty(cast_ty).expect("bad output type for cast"); let ll_t_in = type_of::immediate_type_of(bcx.ccx, operand.ty); let ll_t_out = type_of::immediate_type_of(bcx.ccx, cast_ty); let llval = operand.immediate(); let l = bcx.ccx.layout_of(operand.ty); let signed = if let Layout::CEnum { signed, min, max, .. } = *l { if max > min { // We want `table[e as usize]` to not // have bound checks, and this is the most // convenient place to put the `assume`. base::call_assume(&bcx, bcx.icmp( llvm::IntULE, llval, C_uint(common::val_ty(llval), max) )); } signed } else { operand.ty.is_signed() }; let newval = match (r_t_in, r_t_out) { (CastTy::Int(_), CastTy::Int(_)) => { bcx.intcast(llval, ll_t_out, signed) } (CastTy::Float, CastTy::Float) => { let srcsz = ll_t_in.float_width(); let dstsz = ll_t_out.float_width(); if dstsz > srcsz { bcx.fpext(llval, ll_t_out) } else if srcsz > dstsz { bcx.fptrunc(llval, ll_t_out) } else { llval } } (CastTy::Ptr(_), CastTy::Ptr(_)) | (CastTy::FnPtr, CastTy::Ptr(_)) | (CastTy::RPtr(_), CastTy::Ptr(_)) => bcx.pointercast(llval, ll_t_out), (CastTy::Ptr(_), CastTy::Int(_)) | (CastTy::FnPtr, CastTy::Int(_)) => bcx.ptrtoint(llval, ll_t_out), (CastTy::Int(_), CastTy::Ptr(_)) => bcx.inttoptr(llval, ll_t_out), (CastTy::Int(_), CastTy::Float) => cast_int_to_float(&bcx, signed, llval, ll_t_in, ll_t_out), (CastTy::Float, CastTy::Int(IntTy::I)) => cast_float_to_int(&bcx, true, llval, ll_t_in, ll_t_out), (CastTy::Float, CastTy::Int(_)) => cast_float_to_int(&bcx, false, llval, ll_t_in, ll_t_out), _ => bug!("unsupported cast: {:?} to {:?}", operand.ty, cast_ty) }; OperandValue::Immediate(newval) } }; let operand = OperandRef { val, ty: cast_ty }; (bcx, operand) } mir::Rvalue::Ref(_, bk, ref lvalue) => { let tr_lvalue = self.trans_lvalue(&bcx, lvalue); let ty = tr_lvalue.ty.to_ty(bcx.tcx()); let ref_ty = bcx.tcx().mk_ref( bcx.tcx().types.re_erased, ty::TypeAndMut { ty: ty, mutbl: bk.to_mutbl_lossy() } ); // Note: lvalues are indirect, so storing the `llval` into the // destination effectively creates a reference. let operand = if !bcx.ccx.shared().type_has_metadata(ty) { OperandRef { val: OperandValue::Immediate(tr_lvalue.llval), ty: ref_ty, } } else { OperandRef { val: OperandValue::Pair(tr_lvalue.llval, tr_lvalue.llextra), ty: ref_ty, } }; (bcx, operand) } mir::Rvalue::Len(ref lvalue) => { let size = self.evaluate_array_len(&bcx, lvalue); let operand = OperandRef { val: OperandValue::Immediate(size), ty: bcx.tcx().types.usize, }; (bcx, operand) } mir::Rvalue::BinaryOp(op, ref lhs, ref rhs) => { let lhs = self.trans_operand(&bcx, lhs); let rhs = self.trans_operand(&bcx, rhs); let llresult = if common::type_is_fat_ptr(bcx.ccx, lhs.ty) { match (lhs.val, rhs.val) { (OperandValue::Pair(lhs_addr, lhs_extra), OperandValue::Pair(rhs_addr, rhs_extra)) => { self.trans_fat_ptr_binop(&bcx, op, lhs_addr, lhs_extra, rhs_addr, rhs_extra, lhs.ty) } _ => bug!() } } else { self.trans_scalar_binop(&bcx, op, lhs.immediate(), rhs.immediate(), lhs.ty) }; let operand = OperandRef { val: OperandValue::Immediate(llresult), ty: op.ty(bcx.tcx(), lhs.ty, rhs.ty), }; (bcx, operand) } mir::Rvalue::CheckedBinaryOp(op, ref lhs, ref rhs) => { let lhs = self.trans_operand(&bcx, lhs); let rhs = self.trans_operand(&bcx, rhs); let result = self.trans_scalar_checked_binop(&bcx, op, lhs.immediate(), rhs.immediate(), lhs.ty); let val_ty = op.ty(bcx.tcx(), lhs.ty, rhs.ty); let operand_ty = bcx.tcx().intern_tup(&[val_ty, bcx.tcx().types.bool], false); let operand = OperandRef { val: result, ty: operand_ty }; (bcx, operand) } mir::Rvalue::UnaryOp(op, ref operand) => { let operand = self.trans_operand(&bcx, operand); let lloperand = operand.immediate(); let is_float = operand.ty.is_fp(); let llval = match op { mir::UnOp::Not => bcx.not(lloperand), mir::UnOp::Neg => if is_float { bcx.fneg(lloperand) } else { bcx.neg(lloperand) } }; (bcx, OperandRef { val: OperandValue::Immediate(llval), ty: operand.ty, }) } mir::Rvalue::Discriminant(ref lvalue) => { let discr_ty = rvalue.ty(&*self.mir, bcx.tcx()); let discr = self.trans_lvalue(&bcx, lvalue) .trans_get_discr(&bcx, discr_ty); (bcx, OperandRef { val: OperandValue::Immediate(discr), ty: discr_ty }) } mir::Rvalue::NullaryOp(mir::NullOp::SizeOf, ty) => { assert!(bcx.ccx.shared().type_is_sized(ty)); let val = C_usize(bcx.ccx, bcx.ccx.size_of(ty)); let tcx = bcx.tcx(); (bcx, OperandRef { val: OperandValue::Immediate(val), ty: tcx.types.usize, }) } mir::Rvalue::NullaryOp(mir::NullOp::Box, content_ty) => { let content_ty: Ty<'tcx> = self.monomorphize(&content_ty); let llty = type_of::type_of(bcx.ccx, content_ty); let llsize = machine::llsize_of(bcx.ccx, llty); let align = bcx.ccx.align_of(content_ty); let llalign = C_usize(bcx.ccx, align as u64); let llty_ptr = llty.ptr_to(); let box_ty = bcx.tcx().mk_box(content_ty); // Allocate space: let def_id = match bcx.tcx().lang_items().require(ExchangeMallocFnLangItem) { Ok(id) => id, Err(s) => { bcx.sess().fatal(&format!("allocation of `{}` {}", box_ty, s)); } }; let instance = ty::Instance::mono(bcx.tcx(), def_id); let r = callee::get_fn(bcx.ccx, instance); let val = bcx.pointercast(bcx.call(r, &[llsize, llalign], None), llty_ptr); let operand = OperandRef { val: OperandValue::Immediate(val), ty: box_ty, }; (bcx, operand) } mir::Rvalue::Use(ref operand) => { let operand = self.trans_operand(&bcx, operand); (bcx, operand) } mir::Rvalue::Repeat(..) | mir::Rvalue::Aggregate(..) => { // According to `rvalue_creates_operand`, only ZST // aggregate rvalues are allowed to be operands. let ty = rvalue.ty(self.mir, self.ccx.tcx()); (bcx, OperandRef::new_zst(self.ccx, self.monomorphize(&ty))) } } } fn evaluate_array_len(&mut self, bcx: &Builder<'a, 'tcx>, lvalue: &mir::Lvalue<'tcx>) -> ValueRef { // ZST are passed as operands and require special handling // because trans_lvalue() panics if Local is operand. if let mir::Lvalue::Local(index) = *lvalue { if let LocalRef::Operand(Some(op)) = self.locals[index] { if common::type_is_zero_size(bcx.ccx, op.ty) { if let ty::TyArray(_, n) = op.ty.sty { let n = n.val.to_const_int().unwrap().to_u64().unwrap(); return common::C_usize(bcx.ccx, n); } } } } // use common size calculation for non zero-sized types let tr_value = self.trans_lvalue(&bcx, lvalue); return tr_value.len(bcx.ccx); } pub fn trans_scalar_binop(&mut self, bcx: &Builder<'a, 'tcx>, op: mir::BinOp, lhs: ValueRef, rhs: ValueRef, input_ty: Ty<'tcx>) -> ValueRef { let is_float = input_ty.is_fp(); let is_signed = input_ty.is_signed(); let is_nil = input_ty.is_nil(); let is_bool = input_ty.is_bool(); match op { mir::BinOp::Add => if is_float { bcx.fadd(lhs, rhs) } else { bcx.add(lhs, rhs) }, mir::BinOp::Sub => if is_float { bcx.fsub(lhs, rhs) } else { bcx.sub(lhs, rhs) }, mir::BinOp::Mul => if is_float { bcx.fmul(lhs, rhs) } else { bcx.mul(lhs, rhs) }, mir::BinOp::Div => if is_float { bcx.fdiv(lhs, rhs) } else if is_signed { bcx.sdiv(lhs, rhs) } else { bcx.udiv(lhs, rhs) }, mir::BinOp::Rem => if is_float { bcx.frem(lhs, rhs) } else if is_signed { bcx.srem(lhs, rhs) } else { bcx.urem(lhs, rhs) }, mir::BinOp::BitOr => bcx.or(lhs, rhs), mir::BinOp::BitAnd => bcx.and(lhs, rhs), mir::BinOp::BitXor => bcx.xor(lhs, rhs), mir::BinOp::Offset => bcx.inbounds_gep(lhs, &[rhs]), mir::BinOp::Shl => common::build_unchecked_lshift(bcx, lhs, rhs), mir::BinOp::Shr => common::build_unchecked_rshift(bcx, input_ty, lhs, rhs), mir::BinOp::Ne | mir::BinOp::Lt | mir::BinOp::Gt | mir::BinOp::Eq | mir::BinOp::Le | mir::BinOp::Ge => if is_nil { C_bool(bcx.ccx, match op { mir::BinOp::Ne | mir::BinOp::Lt | mir::BinOp::Gt => false, mir::BinOp::Eq | mir::BinOp::Le | mir::BinOp::Ge => true, _ => unreachable!() }) } else if is_float { bcx.fcmp( base::bin_op_to_fcmp_predicate(op.to_hir_binop()), lhs, rhs ) } else { let (lhs, rhs) = if is_bool { // FIXME(#36856) -- extend the bools into `i8` because // LLVM's i1 comparisons are broken. (bcx.zext(lhs, Type::i8(bcx.ccx)), bcx.zext(rhs, Type::i8(bcx.ccx))) } else { (lhs, rhs) }; bcx.icmp( base::bin_op_to_icmp_predicate(op.to_hir_binop(), is_signed), lhs, rhs ) } } } pub fn trans_fat_ptr_binop(&mut self, bcx: &Builder<'a, 'tcx>, op: mir::BinOp, lhs_addr: ValueRef, lhs_extra: ValueRef, rhs_addr: ValueRef, rhs_extra: ValueRef, _input_ty: Ty<'tcx>) -> ValueRef { match op { mir::BinOp::Eq => { bcx.and( bcx.icmp(llvm::IntEQ, lhs_addr, rhs_addr), bcx.icmp(llvm::IntEQ, lhs_extra, rhs_extra) ) } mir::BinOp::Ne => { bcx.or( bcx.icmp(llvm::IntNE, lhs_addr, rhs_addr), bcx.icmp(llvm::IntNE, lhs_extra, rhs_extra) ) } mir::BinOp::Le | mir::BinOp::Lt | mir::BinOp::Ge | mir::BinOp::Gt => { // a OP b ~ a.0 STRICT(OP) b.0 | (a.0 == b.0 && a.1 OP a.1) let (op, strict_op) = match op { mir::BinOp::Lt => (llvm::IntULT, llvm::IntULT), mir::BinOp::Le => (llvm::IntULE, llvm::IntULT), mir::BinOp::Gt => (llvm::IntUGT, llvm::IntUGT), mir::BinOp::Ge => (llvm::IntUGE, llvm::IntUGT), _ => bug!(), }; bcx.or( bcx.icmp(strict_op, lhs_addr, rhs_addr), bcx.and( bcx.icmp(llvm::IntEQ, lhs_addr, rhs_addr), bcx.icmp(op, lhs_extra, rhs_extra) ) ) } _ => { bug!("unexpected fat ptr binop"); } } } pub fn trans_scalar_checked_binop(&mut self, bcx: &Builder<'a, 'tcx>, op: mir::BinOp, lhs: ValueRef, rhs: ValueRef, input_ty: Ty<'tcx>) -> OperandValue { // This case can currently arise only from functions marked // with #[rustc_inherit_overflow_checks] and inlined from // another crate (mostly core::num generic/#[inline] fns), // while the current crate doesn't use overflow checks. if !bcx.ccx.check_overflow() { let val = self.trans_scalar_binop(bcx, op, lhs, rhs, input_ty); return OperandValue::Pair(val, C_bool(bcx.ccx, false)); } // First try performing the operation on constants, which // will only succeed if both operands are constant. // This is necessary to determine when an overflow Assert // will always panic at runtime, and produce a warning. if let Some((val, of)) = const_scalar_checked_binop(bcx.tcx(), op, lhs, rhs, input_ty) { return OperandValue::Pair(val, C_bool(bcx.ccx, of)); } let (val, of) = match op { // These are checked using intrinsics mir::BinOp::Add | mir::BinOp::Sub | mir::BinOp::Mul => { let oop = match op { mir::BinOp::Add => OverflowOp::Add, mir::BinOp::Sub => OverflowOp::Sub, mir::BinOp::Mul => OverflowOp::Mul, _ => unreachable!() }; let intrinsic = get_overflow_intrinsic(oop, bcx, input_ty); let res = bcx.call(intrinsic, &[lhs, rhs], None); (bcx.extract_value(res, 0), bcx.extract_value(res, 1)) } mir::BinOp::Shl | mir::BinOp::Shr => { let lhs_llty = val_ty(lhs); let rhs_llty = val_ty(rhs); let invert_mask = common::shift_mask_val(&bcx, lhs_llty, rhs_llty, true); let outer_bits = bcx.and(rhs, invert_mask); let of = bcx.icmp(llvm::IntNE, outer_bits, C_null(rhs_llty)); let val = self.trans_scalar_binop(bcx, op, lhs, rhs, input_ty); (val, of) } _ => { bug!("Operator `{:?}` is not a checkable operator", op) } }; OperandValue::Pair(val, of) } pub fn rvalue_creates_operand(&self, rvalue: &mir::Rvalue<'tcx>) -> bool { match *rvalue { mir::Rvalue::Ref(..) | mir::Rvalue::Len(..) | mir::Rvalue::Cast(..) | // (*) mir::Rvalue::BinaryOp(..) | mir::Rvalue::CheckedBinaryOp(..) | mir::Rvalue::UnaryOp(..) | mir::Rvalue::Discriminant(..) | mir::Rvalue::NullaryOp(..) | mir::Rvalue::Use(..) => // (*) true, mir::Rvalue::Repeat(..) | mir::Rvalue::Aggregate(..) => { let ty = rvalue.ty(self.mir, self.ccx.tcx()); let ty = self.monomorphize(&ty); common::type_is_zero_size(self.ccx, ty) } } // (*) this is only true if the type is suitable } } #[derive(Copy, Clone)] enum OverflowOp { Add, Sub, Mul } fn get_overflow_intrinsic(oop: OverflowOp, bcx: &Builder, ty: Ty) -> ValueRef { use syntax::ast::IntTy::*; use syntax::ast::UintTy::*; use rustc::ty::{TyInt, TyUint}; let tcx = bcx.tcx(); let new_sty = match ty.sty { TyInt(Is) => match &tcx.sess.target.target.target_pointer_width[..] { "16" => TyInt(I16), "32" => TyInt(I32), "64" => TyInt(I64), _ => panic!("unsupported target word size") }, TyUint(Us) => match &tcx.sess.target.target.target_pointer_width[..] { "16" => TyUint(U16), "32" => TyUint(U32), "64" => TyUint(U64), _ => panic!("unsupported target word size") }, ref t @ TyUint(_) | ref t @ TyInt(_) => t.clone(), _ => panic!("tried to get overflow intrinsic for op applied to non-int type") }; let name = match oop { OverflowOp::Add => match new_sty { TyInt(I8) => "llvm.sadd.with.overflow.i8", TyInt(I16) => "llvm.sadd.with.overflow.i16", TyInt(I32) => "llvm.sadd.with.overflow.i32", TyInt(I64) => "llvm.sadd.with.overflow.i64", TyInt(I128) => "llvm.sadd.with.overflow.i128", TyUint(U8) => "llvm.uadd.with.overflow.i8", TyUint(U16) => "llvm.uadd.with.overflow.i16", TyUint(U32) => "llvm.uadd.with.overflow.i32", TyUint(U64) => "llvm.uadd.with.overflow.i64", TyUint(U128) => "llvm.uadd.with.overflow.i128", _ => unreachable!(), }, OverflowOp::Sub => match new_sty { TyInt(I8) => "llvm.ssub.with.overflow.i8", TyInt(I16) => "llvm.ssub.with.overflow.i16", TyInt(I32) => "llvm.ssub.with.overflow.i32", TyInt(I64) => "llvm.ssub.with.overflow.i64", TyInt(I128) => "llvm.ssub.with.overflow.i128", TyUint(U8) => "llvm.usub.with.overflow.i8", TyUint(U16) => "llvm.usub.with.overflow.i16", TyUint(U32) => "llvm.usub.with.overflow.i32", TyUint(U64) => "llvm.usub.with.overflow.i64", TyUint(U128) => "llvm.usub.with.overflow.i128", _ => unreachable!(), }, OverflowOp::Mul => match new_sty { TyInt(I8) => "llvm.smul.with.overflow.i8", TyInt(I16) => "llvm.smul.with.overflow.i16", TyInt(I32) => "llvm.smul.with.overflow.i32", TyInt(I64) => "llvm.smul.with.overflow.i64", TyInt(I128) => "llvm.smul.with.overflow.i128", TyUint(U8) => "llvm.umul.with.overflow.i8", TyUint(U16) => "llvm.umul.with.overflow.i16", TyUint(U32) => "llvm.umul.with.overflow.i32", TyUint(U64) => "llvm.umul.with.overflow.i64", TyUint(U128) => "llvm.umul.with.overflow.i128", _ => unreachable!(), }, }; bcx.ccx.get_intrinsic(&name) } fn cast_int_to_float(bcx: &Builder, signed: bool, x: ValueRef, int_ty: Type, float_ty: Type) -> ValueRef { // Most integer types, even i128, fit into [-f32::MAX, f32::MAX] after rounding. // It's only u128 -> f32 that can cause overflows (i.e., should yield infinity). // LLVM's uitofp produces undef in those cases, so we manually check for that case. let is_u128_to_f32 = !signed && int_ty.int_width() == 128 && float_ty.float_width() == 32; if is_u128_to_f32 { // All inputs greater or equal to (f32::MAX + 0.5 ULP) are rounded to infinity, // and for everything else LLVM's uitofp works just fine. let max = C_big_integral(int_ty, MAX_F32_PLUS_HALF_ULP); let overflow = bcx.icmp(llvm::IntUGE, x, max); let infinity_bits = C_u32(bcx.ccx, ieee::Single::INFINITY.to_bits() as u32); let infinity = consts::bitcast(infinity_bits, float_ty); bcx.select(overflow, infinity, bcx.uitofp(x, float_ty)) } else { if signed { bcx.sitofp(x, float_ty) } else { bcx.uitofp(x, float_ty) } } } fn cast_float_to_int(bcx: &Builder, signed: bool, x: ValueRef, float_ty: Type, int_ty: Type) -> ValueRef { let fptosui_result = if signed { bcx.fptosi(x, int_ty) } else { bcx.fptoui(x, int_ty) }; if !bcx.sess().opts.debugging_opts.saturating_float_casts { return fptosui_result; } // LLVM's fpto[su]i returns undef when the input x is infinite, NaN, or does not fit into the // destination integer type after rounding towards zero. This `undef` value can cause UB in // safe code (see issue #10184), so we implement a saturating conversion on top of it: // Semantically, the mathematical value of the input is rounded towards zero to the next // mathematical integer, and then the result is clamped into the range of the destination // integer type. Positive and negative infinity are mapped to the maximum and minimum value of // the destination integer type. NaN is mapped to 0. // // Define f_min and f_max as the largest and smallest (finite) floats that are exactly equal to // a value representable in int_ty. // They are exactly equal to int_ty::{MIN,MAX} if float_ty has enough significand bits. // Otherwise, int_ty::MAX must be rounded towards zero, as it is one less than a power of two. // int_ty::MIN, however, is either zero or a negative power of two and is thus exactly // representable. Note that this only works if float_ty's exponent range is sufficently large. // f16 or 256 bit integers would break this property. Right now the smallest float type is f32 // with exponents ranging up to 127, which is barely enough for i128::MIN = -2^127. // On the other hand, f_max works even if int_ty::MAX is greater than float_ty::MAX. Because // we're rounding towards zero, we just get float_ty::MAX (which is always an integer). // This already happens today with u128::MAX = 2^128 - 1 > f32::MAX. fn compute_clamp_bounds(signed: bool, int_ty: Type) -> (u128, u128) { let rounded_min = F::from_i128_r(int_min(signed, int_ty), Round::TowardZero); assert_eq!(rounded_min.status, Status::OK); let rounded_max = F::from_u128_r(int_max(signed, int_ty), Round::TowardZero); assert!(rounded_max.value.is_finite()); (rounded_min.value.to_bits(), rounded_max.value.to_bits()) } fn int_max(signed: bool, int_ty: Type) -> u128 { let shift_amount = 128 - int_ty.int_width(); if signed { i128::MAX as u128 >> shift_amount } else { u128::MAX >> shift_amount } } fn int_min(signed: bool, int_ty: Type) -> i128 { if signed { i128::MIN >> (128 - int_ty.int_width()) } else { 0 } } let float_bits_to_llval = |bits| { let bits_llval = match float_ty.float_width() { 32 => C_u32(bcx.ccx, bits as u32), 64 => C_u64(bcx.ccx, bits as u64), n => bug!("unsupported float width {}", n), }; consts::bitcast(bits_llval, float_ty) }; let (f_min, f_max) = match float_ty.float_width() { 32 => compute_clamp_bounds::(signed, int_ty), 64 => compute_clamp_bounds::(signed, int_ty), n => bug!("unsupported float width {}", n), }; let f_min = float_bits_to_llval(f_min); let f_max = float_bits_to_llval(f_max); // To implement saturation, we perform the following steps: // // 1. Cast x to an integer with fpto[su]i. This may result in undef. // 2. Compare x to f_min and f_max, and use the comparison results to select: // a) int_ty::MIN if x < f_min or x is NaN // b) int_ty::MAX if x > f_max // c) the result of fpto[su]i otherwise // 3. If x is NaN, return 0.0, otherwise return the result of step 2. // // This avoids resulting undef because values in range [f_min, f_max] by definition fit into the // destination type. It creates an undef temporary, but *producing* undef is not UB. Our use of // undef does not introduce any non-determinism either. // More importantly, the above procedure correctly implements saturating conversion. // Proof (sketch): // If x is NaN, 0 is returned by definition. // Otherwise, x is finite or infinite and thus can be compared with f_min and f_max. // This yields three cases to consider: // (1) if x in [f_min, f_max], the result of fpto[su]i is returned, which agrees with // saturating conversion for inputs in that range. // (2) if x > f_max, then x is larger than int_ty::MAX. This holds even if f_max is rounded // (i.e., if f_max < int_ty::MAX) because in those cases, nextUp(f_max) is already larger // than int_ty::MAX. Because x is larger than int_ty::MAX, the return value of int_ty::MAX // is correct. // (3) if x < f_min, then x is smaller than int_ty::MIN. As shown earlier, f_min exactly equals // int_ty::MIN and therefore the return value of int_ty::MIN is correct. // QED. // Step 1 was already performed above. // Step 2: We use two comparisons and two selects, with %s1 being the result: // %less_or_nan = fcmp ult %x, %f_min // %greater = fcmp olt %x, %f_max // %s0 = select %less_or_nan, int_ty::MIN, %fptosi_result // %s1 = select %greater, int_ty::MAX, %s0 // Note that %less_or_nan uses an *unordered* comparison. This comparison is true if the // operands are not comparable (i.e., if x is NaN). The unordered comparison ensures that s1 // becomes int_ty::MIN if x is NaN. // Performance note: Unordered comparison can be lowered to a "flipped" comparison and a // negation, and the negation can be merged into the select. Therefore, it not necessarily any // more expensive than a ordered ("normal") comparison. Whether these optimizations will be // performed is ultimately up to the backend, but at least x86 does perform them. let less_or_nan = bcx.fcmp(llvm::RealULT, x, f_min); let greater = bcx.fcmp(llvm::RealOGT, x, f_max); let int_max = C_big_integral(int_ty, int_max(signed, int_ty)); let int_min = C_big_integral(int_ty, int_min(signed, int_ty) as u128); let s0 = bcx.select(less_or_nan, int_min, fptosui_result); let s1 = bcx.select(greater, int_max, s0); // Step 3: NaN replacement. // For unsigned types, the above step already yielded int_ty::MIN == 0 if x is NaN. // Therefore we only need to execute this step for signed integer types. if signed { // LLVM has no isNaN predicate, so we use (x == x) instead bcx.select(bcx.fcmp(llvm::RealOEQ, x, x), s1, C_uint(int_ty, 0)) } else { s1 } }