// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use abi; use ast::{Ident, Generics, Expr}; use ast; use ast_util; use attr; use codemap::{Span, respan, Spanned, DUMMY_SP, Pos}; use ext::base::ExtCtxt; use owned_slice::OwnedSlice; use parse::token::special_idents; use parse::token::InternedString; use parse::token; use ptr::P; // Transitional reexports so qquote can find the paths it is looking for mod syntax { pub use ext; pub use parse; } pub trait AstBuilder { // paths fn path(&self, span: Span, strs: Vec ) -> ast::Path; fn path_ident(&self, span: Span, id: ast::Ident) -> ast::Path; fn path_global(&self, span: Span, strs: Vec ) -> ast::Path; fn path_all(&self, sp: Span, global: bool, idents: Vec , lifetimes: Vec, types: Vec> ) -> ast::Path; // types fn ty_mt(&self, ty: P, mutbl: ast::Mutability) -> ast::MutTy; fn ty(&self, span: Span, ty: ast::Ty_) -> P; fn ty_path(&self, ast::Path, Option>) -> P; fn ty_ident(&self, span: Span, idents: ast::Ident) -> P; fn ty_rptr(&self, span: Span, ty: P, lifetime: Option, mutbl: ast::Mutability) -> P; fn ty_ptr(&self, span: Span, ty: P, mutbl: ast::Mutability) -> P; fn ty_uniq(&self, span: Span, ty: P) -> P; fn ty_option(&self, ty: P) -> P; fn ty_infer(&self, sp: Span) -> P; fn ty_nil(&self) -> P; fn ty_vars(&self, ty_params: &OwnedSlice) -> Vec> ; fn ty_vars_global(&self, ty_params: &OwnedSlice) -> Vec> ; fn ty_field_imm(&self, span: Span, name: Ident, ty: P) -> ast::TypeField; fn typaram(&self, span: Span, id: ast::Ident, bounds: OwnedSlice, unbound: Option, default: Option>) -> ast::TyParam; fn trait_ref(&self, path: ast::Path) -> ast::TraitRef; fn typarambound(&self, path: ast::Path) -> ast::TyParamBound; fn lifetime(&self, span: Span, ident: ast::Name) -> ast::Lifetime; fn lifetime_def(&self, span: Span, name: ast::Name, bounds: Vec) -> ast::LifetimeDef; // statements fn stmt_expr(&self, expr: P) -> P; fn stmt_let(&self, sp: Span, mutbl: bool, ident: ast::Ident, ex: P) -> P; fn stmt_let_typed(&self, sp: Span, mutbl: bool, ident: ast::Ident, typ: P, ex: P) -> P; fn stmt_item(&self, sp: Span, item: P) -> P; // blocks fn block(&self, span: Span, stmts: Vec>, expr: Option>) -> P; fn block_expr(&self, expr: P) -> P; fn block_all(&self, span: Span, view_items: Vec, stmts: Vec>, expr: Option>) -> P; // expressions fn expr(&self, span: Span, node: ast::Expr_) -> P; fn expr_path(&self, path: ast::Path) -> P; fn expr_ident(&self, span: Span, id: ast::Ident) -> P; fn expr_self(&self, span: Span) -> P; fn expr_binary(&self, sp: Span, op: ast::BinOp, lhs: P, rhs: P) -> P; fn expr_deref(&self, sp: Span, e: P) -> P; fn expr_unary(&self, sp: Span, op: ast::UnOp, e: P) -> P; fn expr_addr_of(&self, sp: Span, e: P) -> P; fn expr_mut_addr_of(&self, sp: Span, e: P) -> P; fn expr_field_access(&self, span: Span, expr: P, ident: ast::Ident) -> P; fn expr_tup_field_access(&self, sp: Span, expr: P, idx: uint) -> P; fn expr_call(&self, span: Span, expr: P, args: Vec>) -> P; fn expr_call_ident(&self, span: Span, id: ast::Ident, args: Vec>) -> P; fn expr_call_global(&self, sp: Span, fn_path: Vec, args: Vec> ) -> P; fn expr_method_call(&self, span: Span, expr: P, ident: ast::Ident, args: Vec> ) -> P; fn expr_block(&self, b: P) -> P; fn expr_cast(&self, sp: Span, expr: P, ty: P) -> P; fn field_imm(&self, span: Span, name: Ident, e: P) -> ast::Field; fn expr_struct(&self, span: Span, path: ast::Path, fields: Vec) -> P; fn expr_struct_ident(&self, span: Span, id: ast::Ident, fields: Vec) -> P; fn expr_lit(&self, sp: Span, lit: ast::Lit_) -> P; fn expr_uint(&self, span: Span, i: uint) -> P; fn expr_int(&self, sp: Span, i: int) -> P; fn expr_u8(&self, sp: Span, u: u8) -> P; fn expr_bool(&self, sp: Span, value: bool) -> P; fn expr_vec(&self, sp: Span, exprs: Vec>) -> P; fn expr_vec_ng(&self, sp: Span) -> P; fn expr_vec_slice(&self, sp: Span, exprs: Vec>) -> P; fn expr_str(&self, sp: Span, s: InternedString) -> P; fn expr_some(&self, sp: Span, expr: P) -> P; fn expr_none(&self, sp: Span) -> P; fn expr_break(&self, sp: Span) -> P; fn expr_tuple(&self, sp: Span, exprs: Vec>) -> P; fn expr_fail(&self, span: Span, msg: InternedString) -> P; fn expr_unreachable(&self, span: Span) -> P; fn expr_ok(&self, span: Span, expr: P) -> P; fn expr_err(&self, span: Span, expr: P) -> P; fn expr_try(&self, span: Span, head: P) -> P; fn pat(&self, span: Span, pat: ast::Pat_) -> P; fn pat_wild(&self, span: Span) -> P; fn pat_lit(&self, span: Span, expr: P) -> P; fn pat_ident(&self, span: Span, ident: ast::Ident) -> P; fn pat_ident_binding_mode(&self, span: Span, ident: ast::Ident, bm: ast::BindingMode) -> P; fn pat_enum(&self, span: Span, path: ast::Path, subpats: Vec> ) -> P; fn pat_struct(&self, span: Span, path: ast::Path, field_pats: Vec ) -> P; fn pat_tuple(&self, span: Span, pats: Vec>) -> P; fn pat_some(&self, span: Span, pat: P) -> P; fn pat_none(&self, span: Span) -> P; fn pat_ok(&self, span: Span, pat: P) -> P; fn pat_err(&self, span: Span, pat: P) -> P; fn arm(&self, span: Span, pats: Vec>, expr: P) -> ast::Arm; fn arm_unreachable(&self, span: Span) -> ast::Arm; fn expr_match(&self, span: Span, arg: P, arms: Vec ) -> P; fn expr_if(&self, span: Span, cond: P, then: P, els: Option>) -> P; fn expr_loop(&self, span: Span, block: P) -> P; fn lambda_fn_decl(&self, span: Span, fn_decl: P, blk: P) -> P; fn lambda(&self, span: Span, ids: Vec , blk: P) -> P; fn lambda0(&self, span: Span, blk: P) -> P; fn lambda1(&self, span: Span, blk: P, ident: ast::Ident) -> P; fn lambda_expr(&self, span: Span, ids: Vec , blk: P) -> P; fn lambda_expr_0(&self, span: Span, expr: P) -> P; fn lambda_expr_1(&self, span: Span, expr: P, ident: ast::Ident) -> P; fn lambda_stmts(&self, span: Span, ids: Vec, blk: Vec>) -> P; fn lambda_stmts_0(&self, span: Span, stmts: Vec>) -> P; fn lambda_stmts_1(&self, span: Span, stmts: Vec>, ident: ast::Ident) -> P; // items fn item(&self, span: Span, name: Ident, attrs: Vec , node: ast::Item_) -> P; fn arg(&self, span: Span, name: Ident, ty: P) -> ast::Arg; // FIXME unused self fn fn_decl(&self, inputs: Vec , output: P) -> P; fn item_fn_poly(&self, span: Span, name: Ident, inputs: Vec , output: P, generics: Generics, body: P) -> P; fn item_fn(&self, span: Span, name: Ident, inputs: Vec , output: P, body: P) -> P; fn variant(&self, span: Span, name: Ident, tys: Vec> ) -> ast::Variant; fn item_enum_poly(&self, span: Span, name: Ident, enum_definition: ast::EnumDef, generics: Generics) -> P; fn item_enum(&self, span: Span, name: Ident, enum_def: ast::EnumDef) -> P; fn item_struct_poly(&self, span: Span, name: Ident, struct_def: ast::StructDef, generics: Generics) -> P; fn item_struct(&self, span: Span, name: Ident, struct_def: ast::StructDef) -> P; fn item_mod(&self, span: Span, inner_span: Span, name: Ident, attrs: Vec, vi: Vec , items: Vec> ) -> P; fn item_static(&self, span: Span, name: Ident, ty: P, mutbl: ast::Mutability, expr: P) -> P; fn item_const(&self, span: Span, name: Ident, ty: P, expr: P) -> P; fn item_ty_poly(&self, span: Span, name: Ident, ty: P, generics: Generics) -> P; fn item_ty(&self, span: Span, name: Ident, ty: P) -> P; fn attribute(&self, sp: Span, mi: P) -> ast::Attribute; fn meta_word(&self, sp: Span, w: InternedString) -> P; fn meta_list(&self, sp: Span, name: InternedString, mis: Vec> ) -> P; fn meta_name_value(&self, sp: Span, name: InternedString, value: ast::Lit_) -> P; fn view_use(&self, sp: Span, vis: ast::Visibility, vp: P) -> ast::ViewItem; fn view_use_simple(&self, sp: Span, vis: ast::Visibility, path: ast::Path) -> ast::ViewItem; fn view_use_simple_(&self, sp: Span, vis: ast::Visibility, ident: ast::Ident, path: ast::Path) -> ast::ViewItem; fn view_use_list(&self, sp: Span, vis: ast::Visibility, path: Vec , imports: &[ast::Ident]) -> ast::ViewItem; fn view_use_glob(&self, sp: Span, vis: ast::Visibility, path: Vec ) -> ast::ViewItem; } impl<'a> AstBuilder for ExtCtxt<'a> { fn path(&self, span: Span, strs: Vec ) -> ast::Path { self.path_all(span, false, strs, Vec::new(), Vec::new()) } fn path_ident(&self, span: Span, id: ast::Ident) -> ast::Path { self.path(span, vec!(id)) } fn path_global(&self, span: Span, strs: Vec ) -> ast::Path { self.path_all(span, true, strs, Vec::new(), Vec::new()) } fn path_all(&self, sp: Span, global: bool, mut idents: Vec , lifetimes: Vec, types: Vec> ) -> ast::Path { let last_identifier = idents.pop().unwrap(); let mut segments: Vec = idents.into_iter() .map(|ident| { ast::PathSegment { identifier: ident, lifetimes: Vec::new(), types: OwnedSlice::empty(), } }).collect(); segments.push(ast::PathSegment { identifier: last_identifier, lifetimes: lifetimes, types: OwnedSlice::from_vec(types), }); ast::Path { span: sp, global: global, segments: segments, } } fn ty_mt(&self, ty: P, mutbl: ast::Mutability) -> ast::MutTy { ast::MutTy { ty: ty, mutbl: mutbl } } fn ty(&self, span: Span, ty: ast::Ty_) -> P { P(ast::Ty { id: ast::DUMMY_NODE_ID, span: span, node: ty }) } fn ty_path(&self, path: ast::Path, bounds: Option>) -> P { self.ty(path.span, ast::TyPath(path, bounds, ast::DUMMY_NODE_ID)) } // Might need to take bounds as an argument in the future, if you ever want // to generate a bounded existential trait type. fn ty_ident(&self, span: Span, ident: ast::Ident) -> P { self.ty_path(self.path_ident(span, ident), None) } fn ty_rptr(&self, span: Span, ty: P, lifetime: Option, mutbl: ast::Mutability) -> P { self.ty(span, ast::TyRptr(lifetime, self.ty_mt(ty, mutbl))) } fn ty_ptr(&self, span: Span, ty: P, mutbl: ast::Mutability) -> P { self.ty(span, ast::TyPtr(self.ty_mt(ty, mutbl))) } fn ty_uniq(&self, span: Span, ty: P) -> P { self.ty(span, ast::TyUniq(ty)) } fn ty_option(&self, ty: P) -> P { self.ty_path( self.path_all(DUMMY_SP, true, vec!( self.ident_of("std"), self.ident_of("option"), self.ident_of("Option") ), Vec::new(), vec!( ty )), None) } fn ty_field_imm(&self, span: Span, name: Ident, ty: P) -> ast::TypeField { ast::TypeField { ident: name, mt: ast::MutTy { ty: ty, mutbl: ast::MutImmutable }, span: span, } } fn ty_infer(&self, span: Span) -> P { self.ty(span, ast::TyInfer) } fn ty_nil(&self) -> P { P(ast::Ty { id: ast::DUMMY_NODE_ID, node: ast::TyNil, span: DUMMY_SP, }) } fn typaram(&self, span: Span, id: ast::Ident, bounds: OwnedSlice, unbound: Option, default: Option>) -> ast::TyParam { ast::TyParam { ident: id, id: ast::DUMMY_NODE_ID, bounds: bounds, unbound: unbound, default: default, span: span } } // these are strange, and probably shouldn't be used outside of // pipes. Specifically, the global version possible generates // incorrect code. fn ty_vars(&self, ty_params: &OwnedSlice) -> Vec> { ty_params.iter().map(|p| self.ty_ident(DUMMY_SP, p.ident)).collect() } fn ty_vars_global(&self, ty_params: &OwnedSlice) -> Vec> { ty_params.iter().map(|p| self.ty_path( self.path_global(DUMMY_SP, vec!(p.ident)), None)).collect() } fn trait_ref(&self, path: ast::Path) -> ast::TraitRef { ast::TraitRef { path: path, ref_id: ast::DUMMY_NODE_ID, lifetimes: Vec::new(), } } fn typarambound(&self, path: ast::Path) -> ast::TyParamBound { ast::TraitTyParamBound(self.trait_ref(path)) } fn lifetime(&self, span: Span, name: ast::Name) -> ast::Lifetime { ast::Lifetime { id: ast::DUMMY_NODE_ID, span: span, name: name } } fn lifetime_def(&self, span: Span, name: ast::Name, bounds: Vec) -> ast::LifetimeDef { ast::LifetimeDef { lifetime: self.lifetime(span, name), bounds: bounds } } fn stmt_expr(&self, expr: P) -> P { P(respan(expr.span, ast::StmtSemi(expr, ast::DUMMY_NODE_ID))) } fn stmt_let(&self, sp: Span, mutbl: bool, ident: ast::Ident, ex: P) -> P { let pat = if mutbl { self.pat_ident_binding_mode(sp, ident, ast::BindByValue(ast::MutMutable)) } else { self.pat_ident(sp, ident) }; let local = P(ast::Local { ty: self.ty_infer(sp), pat: pat, init: Some(ex), id: ast::DUMMY_NODE_ID, span: sp, source: ast::LocalLet, }); let decl = respan(sp, ast::DeclLocal(local)); P(respan(sp, ast::StmtDecl(P(decl), ast::DUMMY_NODE_ID))) } fn stmt_let_typed(&self, sp: Span, mutbl: bool, ident: ast::Ident, typ: P, ex: P) -> P { let pat = if mutbl { self.pat_ident_binding_mode(sp, ident, ast::BindByValue(ast::MutMutable)) } else { self.pat_ident(sp, ident) }; let local = P(ast::Local { ty: typ, pat: pat, init: Some(ex), id: ast::DUMMY_NODE_ID, span: sp, source: ast::LocalLet, }); let decl = respan(sp, ast::DeclLocal(local)); P(respan(sp, ast::StmtDecl(P(decl), ast::DUMMY_NODE_ID))) } fn block(&self, span: Span, stmts: Vec>, expr: Option>) -> P { self.block_all(span, Vec::new(), stmts, expr) } fn stmt_item(&self, sp: Span, item: P) -> P { let decl = respan(sp, ast::DeclItem(item)); P(respan(sp, ast::StmtDecl(P(decl), ast::DUMMY_NODE_ID))) } fn block_expr(&self, expr: P) -> P { self.block_all(expr.span, Vec::new(), Vec::new(), Some(expr)) } fn block_all(&self, span: Span, view_items: Vec, stmts: Vec>, expr: Option>) -> P { P(ast::Block { view_items: view_items, stmts: stmts, expr: expr, id: ast::DUMMY_NODE_ID, rules: ast::DefaultBlock, span: span, }) } fn expr(&self, span: Span, node: ast::Expr_) -> P { P(ast::Expr { id: ast::DUMMY_NODE_ID, node: node, span: span, }) } fn expr_path(&self, path: ast::Path) -> P { self.expr(path.span, ast::ExprPath(path)) } fn expr_ident(&self, span: Span, id: ast::Ident) -> P { self.expr_path(self.path_ident(span, id)) } fn expr_self(&self, span: Span) -> P { self.expr_ident(span, special_idents::self_) } fn expr_binary(&self, sp: Span, op: ast::BinOp, lhs: P, rhs: P) -> P { self.expr(sp, ast::ExprBinary(op, lhs, rhs)) } fn expr_deref(&self, sp: Span, e: P) -> P { self.expr_unary(sp, ast::UnDeref, e) } fn expr_unary(&self, sp: Span, op: ast::UnOp, e: P) -> P { self.expr(sp, ast::ExprUnary(op, e)) } fn expr_field_access(&self, sp: Span, expr: P, ident: ast::Ident) -> P { let field_name = token::get_ident(ident); let field_span = Span { lo: sp.lo - Pos::from_uint(field_name.get().len()), hi: sp.hi, expn_id: sp.expn_id, }; let id = Spanned { node: ident, span: field_span }; self.expr(sp, ast::ExprField(expr, id, Vec::new())) } fn expr_tup_field_access(&self, sp: Span, expr: P, idx: uint) -> P { let field_span = Span { lo: sp.lo - Pos::from_uint(idx.to_string().len()), hi: sp.hi, expn_id: sp.expn_id, }; let id = Spanned { node: idx, span: field_span }; self.expr(sp, ast::ExprTupField(expr, id, Vec::new())) } fn expr_addr_of(&self, sp: Span, e: P) -> P { self.expr(sp, ast::ExprAddrOf(ast::MutImmutable, e)) } fn expr_mut_addr_of(&self, sp: Span, e: P) -> P { self.expr(sp, ast::ExprAddrOf(ast::MutMutable, e)) } fn expr_call(&self, span: Span, expr: P, args: Vec>) -> P { self.expr(span, ast::ExprCall(expr, args)) } fn expr_call_ident(&self, span: Span, id: ast::Ident, args: Vec>) -> P { self.expr(span, ast::ExprCall(self.expr_ident(span, id), args)) } fn expr_call_global(&self, sp: Span, fn_path: Vec , args: Vec> ) -> P { let pathexpr = self.expr_path(self.path_global(sp, fn_path)); self.expr_call(sp, pathexpr, args) } fn expr_method_call(&self, span: Span, expr: P, ident: ast::Ident, mut args: Vec> ) -> P { let id = Spanned { node: ident, span: span }; args.insert(0, expr); self.expr(span, ast::ExprMethodCall(id, Vec::new(), args)) } fn expr_block(&self, b: P) -> P { self.expr(b.span, ast::ExprBlock(b)) } fn field_imm(&self, span: Span, name: Ident, e: P) -> ast::Field { ast::Field { ident: respan(span, name), expr: e, span: span } } fn expr_struct(&self, span: Span, path: ast::Path, fields: Vec) -> P { self.expr(span, ast::ExprStruct(path, fields, None)) } fn expr_struct_ident(&self, span: Span, id: ast::Ident, fields: Vec) -> P { self.expr_struct(span, self.path_ident(span, id), fields) } fn expr_lit(&self, sp: Span, lit: ast::Lit_) -> P { self.expr(sp, ast::ExprLit(P(respan(sp, lit)))) } fn expr_uint(&self, span: Span, i: uint) -> P { self.expr_lit(span, ast::LitInt(i as u64, ast::UnsignedIntLit(ast::TyU))) } fn expr_int(&self, sp: Span, i: int) -> P { self.expr_lit(sp, ast::LitInt(i as u64, ast::SignedIntLit(ast::TyI, ast::Sign::new(i)))) } fn expr_u8(&self, sp: Span, u: u8) -> P { self.expr_lit(sp, ast::LitInt(u as u64, ast::UnsignedIntLit(ast::TyU8))) } fn expr_bool(&self, sp: Span, value: bool) -> P { self.expr_lit(sp, ast::LitBool(value)) } fn expr_vec(&self, sp: Span, exprs: Vec>) -> P { self.expr(sp, ast::ExprVec(exprs)) } fn expr_vec_ng(&self, sp: Span) -> P { self.expr_call_global(sp, vec!(self.ident_of("std"), self.ident_of("vec"), self.ident_of("Vec"), self.ident_of("new")), Vec::new()) } fn expr_vec_slice(&self, sp: Span, exprs: Vec>) -> P { self.expr_addr_of(sp, self.expr_vec(sp, exprs)) } fn expr_str(&self, sp: Span, s: InternedString) -> P { self.expr_lit(sp, ast::LitStr(s, ast::CookedStr)) } fn expr_cast(&self, sp: Span, expr: P, ty: P) -> P { self.expr(sp, ast::ExprCast(expr, ty)) } fn expr_some(&self, sp: Span, expr: P) -> P { let some = vec!( self.ident_of("std"), self.ident_of("option"), self.ident_of("Some")); self.expr_call_global(sp, some, vec!(expr)) } fn expr_none(&self, sp: Span) -> P { let none = self.path_global(sp, vec!( self.ident_of("std"), self.ident_of("option"), self.ident_of("None"))); self.expr_path(none) } fn expr_break(&self, sp: Span) -> P { self.expr(sp, ast::ExprBreak(None)) } fn expr_tuple(&self, sp: Span, exprs: Vec>) -> P { self.expr(sp, ast::ExprTup(exprs)) } fn expr_fail(&self, span: Span, msg: InternedString) -> P { let loc = self.codemap().lookup_char_pos(span.lo); let expr_file = self.expr_str(span, token::intern_and_get_ident(loc.file .name .as_slice())); let expr_line = self.expr_uint(span, loc.line); let expr_file_line_tuple = self.expr_tuple(span, vec!(expr_file, expr_line)); let expr_file_line_ptr = self.expr_addr_of(span, expr_file_line_tuple); self.expr_call_global( span, vec!( self.ident_of("std"), self.ident_of("rt"), self.ident_of("begin_unwind")), vec!( self.expr_str(span, msg), expr_file_line_ptr)) } fn expr_unreachable(&self, span: Span) -> P { self.expr_fail(span, InternedString::new( "internal error: entered unreachable code")) } fn expr_ok(&self, sp: Span, expr: P) -> P { let ok = vec!( self.ident_of("std"), self.ident_of("result"), self.ident_of("Ok")); self.expr_call_global(sp, ok, vec!(expr)) } fn expr_err(&self, sp: Span, expr: P) -> P { let err = vec!( self.ident_of("std"), self.ident_of("result"), self.ident_of("Err")); self.expr_call_global(sp, err, vec!(expr)) } fn expr_try(&self, sp: Span, head: P) -> P { let ok = self.ident_of("Ok"); let ok_path = self.path_ident(sp, ok); let err = self.ident_of("Err"); let err_path = self.path_ident(sp, err); let binding_variable = self.ident_of("__try_var"); let binding_pat = self.pat_ident(sp, binding_variable); let binding_expr = self.expr_ident(sp, binding_variable); // Ok(__try_var) pattern let ok_pat = self.pat_enum(sp, ok_path, vec!(binding_pat.clone())); // Err(__try_var) (pattern and expression resp.) let err_pat = self.pat_enum(sp, err_path, vec!(binding_pat)); let err_inner_expr = self.expr_call_ident(sp, err, vec!(binding_expr.clone())); // return Err(__try_var) let err_expr = self.expr(sp, ast::ExprRet(Some(err_inner_expr))); // Ok(__try_var) => __try_var let ok_arm = self.arm(sp, vec!(ok_pat), binding_expr); // Err(__try_var) => return Err(__try_var) let err_arm = self.arm(sp, vec!(err_pat), err_expr); // match head { Ok() => ..., Err() => ... } self.expr_match(sp, head, vec!(ok_arm, err_arm)) } fn pat(&self, span: Span, pat: ast::Pat_) -> P { P(ast::Pat { id: ast::DUMMY_NODE_ID, node: pat, span: span }) } fn pat_wild(&self, span: Span) -> P { self.pat(span, ast::PatWild(ast::PatWildSingle)) } fn pat_lit(&self, span: Span, expr: P) -> P { self.pat(span, ast::PatLit(expr)) } fn pat_ident(&self, span: Span, ident: ast::Ident) -> P { self.pat_ident_binding_mode(span, ident, ast::BindByValue(ast::MutImmutable)) } fn pat_ident_binding_mode(&self, span: Span, ident: ast::Ident, bm: ast::BindingMode) -> P { let pat = ast::PatIdent(bm, Spanned{span: span, node: ident}, None); self.pat(span, pat) } fn pat_enum(&self, span: Span, path: ast::Path, subpats: Vec>) -> P { let pat = ast::PatEnum(path, Some(subpats)); self.pat(span, pat) } fn pat_struct(&self, span: Span, path: ast::Path, field_pats: Vec) -> P { let pat = ast::PatStruct(path, field_pats, false); self.pat(span, pat) } fn pat_tuple(&self, span: Span, pats: Vec>) -> P { let pat = ast::PatTup(pats); self.pat(span, pat) } fn pat_some(&self, span: Span, pat: P) -> P { let some = vec!( self.ident_of("std"), self.ident_of("option"), self.ident_of("Some")); let path = self.path_global(span, some); self.pat_enum(span, path, vec!(pat)) } fn pat_none(&self, span: Span) -> P { let some = vec!( self.ident_of("std"), self.ident_of("option"), self.ident_of("None")); let path = self.path_global(span, some); self.pat_enum(span, path, vec!()) } fn pat_ok(&self, span: Span, pat: P) -> P { let some = vec!( self.ident_of("std"), self.ident_of("result"), self.ident_of("Ok")); let path = self.path_global(span, some); self.pat_enum(span, path, vec!(pat)) } fn pat_err(&self, span: Span, pat: P) -> P { let some = vec!( self.ident_of("std"), self.ident_of("result"), self.ident_of("Err")); let path = self.path_global(span, some); self.pat_enum(span, path, vec!(pat)) } fn arm(&self, _span: Span, pats: Vec>, expr: P) -> ast::Arm { ast::Arm { attrs: vec!(), pats: pats, guard: None, body: expr } } fn arm_unreachable(&self, span: Span) -> ast::Arm { self.arm(span, vec!(self.pat_wild(span)), self.expr_unreachable(span)) } fn expr_match(&self, span: Span, arg: P, arms: Vec) -> P { self.expr(span, ast::ExprMatch(arg, arms, ast::MatchNormal)) } fn expr_if(&self, span: Span, cond: P, then: P, els: Option>) -> P { let els = els.map(|x| self.expr_block(self.block_expr(x))); self.expr(span, ast::ExprIf(cond, self.block_expr(then), els)) } fn expr_loop(&self, span: Span, block: P) -> P { self.expr(span, ast::ExprLoop(block, None)) } fn lambda_fn_decl(&self, span: Span, fn_decl: P, blk: P) -> P { self.expr(span, ast::ExprFnBlock(ast::CaptureByRef, fn_decl, blk)) } fn lambda(&self, span: Span, ids: Vec, blk: P) -> P { let fn_decl = self.fn_decl( ids.iter().map(|id| self.arg(span, *id, self.ty_infer(span))).collect(), self.ty_infer(span)); self.expr(span, ast::ExprFnBlock(ast::CaptureByRef, fn_decl, blk)) } fn lambda0(&self, span: Span, blk: P) -> P { self.lambda(span, Vec::new(), blk) } fn lambda1(&self, span: Span, blk: P, ident: ast::Ident) -> P { self.lambda(span, vec!(ident), blk) } fn lambda_expr(&self, span: Span, ids: Vec, expr: P) -> P { self.lambda(span, ids, self.block_expr(expr)) } fn lambda_expr_0(&self, span: Span, expr: P) -> P { self.lambda0(span, self.block_expr(expr)) } fn lambda_expr_1(&self, span: Span, expr: P, ident: ast::Ident) -> P { self.lambda1(span, self.block_expr(expr), ident) } fn lambda_stmts(&self, span: Span, ids: Vec, stmts: Vec>) -> P { self.lambda(span, ids, self.block(span, stmts, None)) } fn lambda_stmts_0(&self, span: Span, stmts: Vec>) -> P { self.lambda0(span, self.block(span, stmts, None)) } fn lambda_stmts_1(&self, span: Span, stmts: Vec>, ident: ast::Ident) -> P { self.lambda1(span, self.block(span, stmts, None), ident) } fn arg(&self, span: Span, ident: ast::Ident, ty: P) -> ast::Arg { let arg_pat = self.pat_ident(span, ident); ast::Arg { ty: ty, pat: arg_pat, id: ast::DUMMY_NODE_ID } } // FIXME unused self fn fn_decl(&self, inputs: Vec , output: P) -> P { P(ast::FnDecl { inputs: inputs, output: output, cf: ast::Return, variadic: false }) } fn item(&self, span: Span, name: Ident, attrs: Vec, node: ast::Item_) -> P { // FIXME: Would be nice if our generated code didn't violate // Rust coding conventions P(ast::Item { ident: name, attrs: attrs, id: ast::DUMMY_NODE_ID, node: node, vis: ast::Inherited, span: span }) } fn item_fn_poly(&self, span: Span, name: Ident, inputs: Vec , output: P, generics: Generics, body: P) -> P { self.item(span, name, Vec::new(), ast::ItemFn(self.fn_decl(inputs, output), ast::NormalFn, abi::Rust, generics, body)) } fn item_fn(&self, span: Span, name: Ident, inputs: Vec , output: P, body: P ) -> P { self.item_fn_poly( span, name, inputs, output, ast_util::empty_generics(), body) } fn variant(&self, span: Span, name: Ident, tys: Vec> ) -> ast::Variant { let args = tys.into_iter().map(|ty| { ast::VariantArg { ty: ty, id: ast::DUMMY_NODE_ID } }).collect(); respan(span, ast::Variant_ { name: name, attrs: Vec::new(), kind: ast::TupleVariantKind(args), id: ast::DUMMY_NODE_ID, disr_expr: None, vis: ast::Public }) } fn item_enum_poly(&self, span: Span, name: Ident, enum_definition: ast::EnumDef, generics: Generics) -> P { self.item(span, name, Vec::new(), ast::ItemEnum(enum_definition, generics)) } fn item_enum(&self, span: Span, name: Ident, enum_definition: ast::EnumDef) -> P { self.item_enum_poly(span, name, enum_definition, ast_util::empty_generics()) } fn item_struct(&self, span: Span, name: Ident, struct_def: ast::StructDef) -> P { self.item_struct_poly( span, name, struct_def, ast_util::empty_generics() ) } fn item_struct_poly(&self, span: Span, name: Ident, struct_def: ast::StructDef, generics: Generics) -> P { self.item(span, name, Vec::new(), ast::ItemStruct(P(struct_def), generics)) } fn item_mod(&self, span: Span, inner_span: Span, name: Ident, attrs: Vec , vi: Vec , items: Vec> ) -> P { self.item( span, name, attrs, ast::ItemMod(ast::Mod { inner: inner_span, view_items: vi, items: items, }) ) } fn item_static(&self, span: Span, name: Ident, ty: P, mutbl: ast::Mutability, expr: P) -> P { self.item(span, name, Vec::new(), ast::ItemStatic(ty, mutbl, expr)) } fn item_const(&self, span: Span, name: Ident, ty: P, expr: P) -> P { self.item(span, name, Vec::new(), ast::ItemConst(ty, expr)) } fn item_ty_poly(&self, span: Span, name: Ident, ty: P, generics: Generics) -> P { self.item(span, name, Vec::new(), ast::ItemTy(ty, generics)) } fn item_ty(&self, span: Span, name: Ident, ty: P) -> P { self.item_ty_poly(span, name, ty, ast_util::empty_generics()) } fn attribute(&self, sp: Span, mi: P) -> ast::Attribute { respan(sp, ast::Attribute_ { id: attr::mk_attr_id(), style: ast::AttrOuter, value: mi, is_sugared_doc: false, }) } fn meta_word(&self, sp: Span, w: InternedString) -> P { P(respan(sp, ast::MetaWord(w))) } fn meta_list(&self, sp: Span, name: InternedString, mis: Vec> ) -> P { P(respan(sp, ast::MetaList(name, mis))) } fn meta_name_value(&self, sp: Span, name: InternedString, value: ast::Lit_) -> P { P(respan(sp, ast::MetaNameValue(name, respan(sp, value)))) } fn view_use(&self, sp: Span, vis: ast::Visibility, vp: P) -> ast::ViewItem { ast::ViewItem { node: ast::ViewItemUse(vp), attrs: Vec::new(), vis: vis, span: sp } } fn view_use_simple(&self, sp: Span, vis: ast::Visibility, path: ast::Path) -> ast::ViewItem { let last = path.segments.last().unwrap().identifier; self.view_use_simple_(sp, vis, last, path) } fn view_use_simple_(&self, sp: Span, vis: ast::Visibility, ident: ast::Ident, path: ast::Path) -> ast::ViewItem { self.view_use(sp, vis, P(respan(sp, ast::ViewPathSimple(ident, path, ast::DUMMY_NODE_ID)))) } fn view_use_list(&self, sp: Span, vis: ast::Visibility, path: Vec , imports: &[ast::Ident]) -> ast::ViewItem { let imports = imports.iter().map(|id| { respan(sp, ast::PathListIdent { name: *id, id: ast::DUMMY_NODE_ID }) }).collect(); self.view_use(sp, vis, P(respan(sp, ast::ViewPathList(self.path(sp, path), imports, ast::DUMMY_NODE_ID)))) } fn view_use_glob(&self, sp: Span, vis: ast::Visibility, path: Vec ) -> ast::ViewItem { self.view_use(sp, vis, P(respan(sp, ast::ViewPathGlob(self.path(sp, path), ast::DUMMY_NODE_ID)))) } }