// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! A dynamically-sized view into a contiguous sequence, `[T]`. //! //! Slices are a view into a block of memory represented as a pointer and a //! length. //! //! ``` //! // slicing a Vec //! let vec = vec![1, 2, 3]; //! let int_slice = &vec[..]; //! // coercing an array to a slice //! let str_slice: &[&str] = &["one", "two", "three"]; //! ``` //! //! Slices are either mutable or shared. The shared slice type is `&[T]`, //! while the mutable slice type is `&mut [T]`, where `T` represents the element //! type. For example, you can mutate the block of memory that a mutable slice //! points to: //! //! ``` //! let x = &mut [1, 2, 3]; //! x[1] = 7; //! assert_eq!(x, &[1, 7, 3]); //! ``` //! //! Here are some of the things this module contains: //! //! ## Structs //! //! There are several structs that are useful for slices, such as [`Iter`], which //! represents iteration over a slice. //! //! ## Trait Implementations //! //! There are several implementations of common traits for slices. Some examples //! include: //! //! * [`Clone`] //! * [`Eq`], [`Ord`] - for slices whose element type are [`Eq`] or [`Ord`]. //! * [`Hash`] - for slices whose element type is [`Hash`]. //! //! ## Iteration //! //! The slices implement `IntoIterator`. The iterator yields references to the //! slice elements. //! //! ``` //! let numbers = &[0, 1, 2]; //! for n in numbers { //! println!("{} is a number!", n); //! } //! ``` //! //! The mutable slice yields mutable references to the elements: //! //! ``` //! let mut scores = [7, 8, 9]; //! for score in &mut scores[..] { //! *score += 1; //! } //! ``` //! //! This iterator yields mutable references to the slice's elements, so while //! the element type of the slice is `i32`, the element type of the iterator is //! `&mut i32`. //! //! * [`.iter()`] and [`.iter_mut()`] are the explicit methods to return the default //! iterators. //! * Further methods that return iterators are [`.split()`], [`.splitn()`], //! [`.chunks()`], [`.windows()`] and more. //! //! *[See also the slice primitive type](../../std/primitive.slice.html).* //! //! [`Clone`]: ../../std/clone/trait.Clone.html //! [`Eq`]: ../../std/cmp/trait.Eq.html //! [`Ord`]: ../../std/cmp/trait.Ord.html //! [`Iter`]: struct.Iter.html //! [`Hash`]: ../../std/hash/trait.Hash.html //! [`.iter()`]: ../../std/primitive.slice.html#method.iter //! [`.iter_mut()`]: ../../std/primitive.slice.html#method.iter_mut //! [`.split()`]: ../../std/primitive.slice.html#method.split //! [`.splitn()`]: ../../std/primitive.slice.html#method.splitn //! [`.chunks()`]: ../../std/primitive.slice.html#method.chunks //! [`.windows()`]: ../../std/primitive.slice.html#method.windows #![stable(feature = "rust1", since = "1.0.0")] // Many of the usings in this module are only used in the test configuration. // It's cleaner to just turn off the unused_imports warning than to fix them. #![cfg_attr(test, allow(unused_imports, dead_code))] use alloc::boxed::Box; use core::cmp::Ordering::{self, Greater, Less}; use core::cmp; use core::mem::size_of; use core::mem; use core::ptr; use core::slice as core_slice; use borrow::{Borrow, BorrowMut, ToOwned}; use vec::Vec; #[stable(feature = "rust1", since = "1.0.0")] pub use core::slice::{Chunks, Windows}; #[stable(feature = "rust1", since = "1.0.0")] pub use core::slice::{Iter, IterMut}; #[stable(feature = "rust1", since = "1.0.0")] pub use core::slice::{SplitMut, ChunksMut, Split}; #[stable(feature = "rust1", since = "1.0.0")] pub use core::slice::{SplitN, RSplitN, SplitNMut, RSplitNMut}; #[stable(feature = "rust1", since = "1.0.0")] pub use core::slice::{from_raw_parts, from_raw_parts_mut}; //////////////////////////////////////////////////////////////////////////////// // Basic slice extension methods //////////////////////////////////////////////////////////////////////////////// // HACK(japaric) needed for the implementation of `vec!` macro during testing // NB see the hack module in this file for more details #[cfg(test)] pub use self::hack::into_vec; // HACK(japaric) needed for the implementation of `Vec::clone` during testing // NB see the hack module in this file for more details #[cfg(test)] pub use self::hack::to_vec; // HACK(japaric): With cfg(test) `impl [T]` is not available, these three // functions are actually methods that are in `impl [T]` but not in // `core::slice::SliceExt` - we need to supply these functions for the // `test_permutations` test mod hack { use alloc::boxed::Box; use core::mem; #[cfg(test)] use string::ToString; use vec::Vec; pub fn into_vec(mut b: Box<[T]>) -> Vec { unsafe { let xs = Vec::from_raw_parts(b.as_mut_ptr(), b.len(), b.len()); mem::forget(b); xs } } #[inline] pub fn to_vec(s: &[T]) -> Vec where T: Clone { let mut vector = Vec::with_capacity(s.len()); vector.extend_from_slice(s); vector } } #[lang = "slice"] #[cfg(not(test))] impl [T] { /// Returns the number of elements in the slice. /// /// # Example /// /// ``` /// let a = [1, 2, 3]; /// assert_eq!(a.len(), 3); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn len(&self) -> usize { core_slice::SliceExt::len(self) } /// Returns true if the slice has a length of 0. /// /// # Example /// /// ``` /// let a = [1, 2, 3]; /// assert!(!a.is_empty()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn is_empty(&self) -> bool { core_slice::SliceExt::is_empty(self) } /// Returns the first element of a slice, or `None` if it is empty. /// /// # Examples /// /// ``` /// let v = [10, 40, 30]; /// assert_eq!(Some(&10), v.first()); /// /// let w: &[i32] = &[]; /// assert_eq!(None, w.first()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn first(&self) -> Option<&T> { core_slice::SliceExt::first(self) } /// Returns a mutable pointer to the first element of a slice, or `None` if it is empty. /// /// # Examples /// /// ``` /// let x = &mut [0, 1, 2]; /// /// if let Some(first) = x.first_mut() { /// *first = 5; /// } /// assert_eq!(x, &[5, 1, 2]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn first_mut(&mut self) -> Option<&mut T> { core_slice::SliceExt::first_mut(self) } /// Returns the first and all the rest of the elements of a slice. /// /// # Examples /// /// ``` /// let x = &[0, 1, 2]; /// /// if let Some((first, elements)) = x.split_first() { /// assert_eq!(first, &0); /// assert_eq!(elements, &[1, 2]); /// } /// ``` #[stable(feature = "slice_splits", since = "1.5.0")] #[inline] pub fn split_first(&self) -> Option<(&T, &[T])> { core_slice::SliceExt::split_first(self) } /// Returns the first and all the rest of the elements of a slice. /// /// # Examples /// /// ``` /// let x = &mut [0, 1, 2]; /// /// if let Some((first, elements)) = x.split_first_mut() { /// *first = 3; /// elements[0] = 4; /// elements[1] = 5; /// } /// assert_eq!(x, &[3, 4, 5]); /// ``` #[stable(feature = "slice_splits", since = "1.5.0")] #[inline] pub fn split_first_mut(&mut self) -> Option<(&mut T, &mut [T])> { core_slice::SliceExt::split_first_mut(self) } /// Returns the last and all the rest of the elements of a slice. /// /// # Examples /// /// ``` /// let x = &[0, 1, 2]; /// /// if let Some((last, elements)) = x.split_last() { /// assert_eq!(last, &2); /// assert_eq!(elements, &[0, 1]); /// } /// ``` #[stable(feature = "slice_splits", since = "1.5.0")] #[inline] pub fn split_last(&self) -> Option<(&T, &[T])> { core_slice::SliceExt::split_last(self) } /// Returns the last and all the rest of the elements of a slice. /// /// # Examples /// /// ``` /// let x = &mut [0, 1, 2]; /// /// if let Some((last, elements)) = x.split_last_mut() { /// *last = 3; /// elements[0] = 4; /// elements[1] = 5; /// } /// assert_eq!(x, &[4, 5, 3]); /// ``` #[stable(feature = "slice_splits", since = "1.5.0")] #[inline] pub fn split_last_mut(&mut self) -> Option<(&mut T, &mut [T])> { core_slice::SliceExt::split_last_mut(self) } /// Returns the last element of a slice, or `None` if it is empty. /// /// # Examples /// /// ``` /// let v = [10, 40, 30]; /// assert_eq!(Some(&30), v.last()); /// /// let w: &[i32] = &[]; /// assert_eq!(None, w.last()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn last(&self) -> Option<&T> { core_slice::SliceExt::last(self) } /// Returns a mutable pointer to the last item in the slice. /// /// # Examples /// /// ``` /// let x = &mut [0, 1, 2]; /// /// if let Some(last) = x.last_mut() { /// *last = 10; /// } /// assert_eq!(x, &[0, 1, 10]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn last_mut(&mut self) -> Option<&mut T> { core_slice::SliceExt::last_mut(self) } /// Returns the element of a slice at the given index, or `None` if the /// index is out of bounds. /// /// # Examples /// /// ``` /// let v = [10, 40, 30]; /// assert_eq!(Some(&40), v.get(1)); /// assert_eq!(None, v.get(3)); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn get(&self, index: usize) -> Option<&T> { core_slice::SliceExt::get(self, index) } /// Returns a mutable reference to the element at the given index. /// /// # Examples /// /// ``` /// let x = &mut [0, 1, 2]; /// /// if let Some(elem) = x.get_mut(1) { /// *elem = 42; /// } /// assert_eq!(x, &[0, 42, 2]); /// ``` /// or `None` if the index is out of bounds #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn get_mut(&mut self, index: usize) -> Option<&mut T> { core_slice::SliceExt::get_mut(self, index) } /// Returns a pointer to the element at the given index, without doing /// bounds checking. So use it very carefully! /// /// # Examples /// /// ``` /// let x = &[1, 2, 4]; /// /// unsafe { /// assert_eq!(x.get_unchecked(1), &2); /// } /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub unsafe fn get_unchecked(&self, index: usize) -> &T { core_slice::SliceExt::get_unchecked(self, index) } /// Returns an unsafe mutable pointer to the element in index. So use it /// very carefully! /// /// # Examples /// /// ``` /// let x = &mut [1, 2, 4]; /// /// unsafe { /// let elem = x.get_unchecked_mut(1); /// *elem = 13; /// } /// assert_eq!(x, &[1, 13, 4]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub unsafe fn get_unchecked_mut(&mut self, index: usize) -> &mut T { core_slice::SliceExt::get_unchecked_mut(self, index) } /// Returns an raw pointer to the slice's buffer. /// /// The caller must ensure that the slice outlives the pointer this /// function returns, or else it will end up pointing to garbage. /// /// Modifying the slice may cause its buffer to be reallocated, which /// would also make any pointers to it invalid. /// /// # Examples /// /// ``` /// let x = &[1, 2, 4]; /// let x_ptr = x.as_ptr(); /// /// unsafe { /// for i in 0..x.len() { /// assert_eq!(x.get_unchecked(i), &*x_ptr.offset(i as isize)); /// } /// } /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn as_ptr(&self) -> *const T { core_slice::SliceExt::as_ptr(self) } /// Returns an unsafe mutable pointer to the slice's buffer. /// /// The caller must ensure that the slice outlives the pointer this /// function returns, or else it will end up pointing to garbage. /// /// Modifying the slice may cause its buffer to be reallocated, which /// would also make any pointers to it invalid. /// /// # Examples /// /// ``` /// let x = &mut [1, 2, 4]; /// let x_ptr = x.as_mut_ptr(); /// /// unsafe { /// for i in 0..x.len() { /// *x_ptr.offset(i as isize) += 2; /// } /// } /// assert_eq!(x, &[3, 4, 6]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn as_mut_ptr(&mut self) -> *mut T { core_slice::SliceExt::as_mut_ptr(self) } /// Swaps two elements in a slice. /// /// # Arguments /// /// * a - The index of the first element /// * b - The index of the second element /// /// # Panics /// /// Panics if `a` or `b` are out of bounds. /// /// # Examples /// /// ``` /// let mut v = ["a", "b", "c", "d"]; /// v.swap(1, 3); /// assert!(v == ["a", "d", "c", "b"]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn swap(&mut self, a: usize, b: usize) { core_slice::SliceExt::swap(self, a, b) } /// Reverse the order of elements in a slice, in place. /// /// # Example /// /// ``` /// let mut v = [1, 2, 3]; /// v.reverse(); /// assert!(v == [3, 2, 1]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn reverse(&mut self) { core_slice::SliceExt::reverse(self) } /// Returns an iterator over the slice. /// /// # Examples /// /// ``` /// let x = &[1, 2, 4]; /// let mut iterator = x.iter(); /// /// assert_eq!(iterator.next(), Some(&1)); /// assert_eq!(iterator.next(), Some(&2)); /// assert_eq!(iterator.next(), Some(&4)); /// assert_eq!(iterator.next(), None); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn iter(&self) -> Iter { core_slice::SliceExt::iter(self) } /// Returns an iterator that allows modifying each value. /// /// # Examples /// /// ``` /// let x = &mut [1, 2, 4]; /// { /// let iterator = x.iter_mut(); /// /// for elem in iterator { /// *elem += 2; /// } /// } /// assert_eq!(x, &[3, 4, 6]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn iter_mut(&mut self) -> IterMut { core_slice::SliceExt::iter_mut(self) } /// Returns an iterator over all contiguous windows of length /// `size`. The windows overlap. If the slice is shorter than /// `size`, the iterator returns no values. /// /// # Panics /// /// Panics if `size` is 0. /// /// # Example /// /// ``` /// let slice = ['r', 'u', 's', 't']; /// let mut iter = slice.windows(2); /// assert_eq!(iter.next().unwrap(), &['r', 'u']); /// assert_eq!(iter.next().unwrap(), &['u', 's']); /// assert_eq!(iter.next().unwrap(), &['s', 't']); /// assert!(iter.next().is_none()); /// ``` /// /// If the slice is shorter than `size`: /// /// ``` /// let slice = ['f', 'o', 'o']; /// let mut iter = slice.windows(4); /// assert!(iter.next().is_none()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn windows(&self, size: usize) -> Windows { core_slice::SliceExt::windows(self, size) } /// Returns an iterator over `size` elements of the slice at a /// time. The chunks are slices and do not overlap. If `size` does /// not divide the length of the slice, then the last chunk will /// not have length `size`. /// /// # Panics /// /// Panics if `size` is 0. /// /// # Example /// /// ``` /// let slice = ['l', 'o', 'r', 'e', 'm']; /// let mut iter = slice.chunks(2); /// assert_eq!(iter.next().unwrap(), &['l', 'o']); /// assert_eq!(iter.next().unwrap(), &['r', 'e']); /// assert_eq!(iter.next().unwrap(), &['m']); /// assert!(iter.next().is_none()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn chunks(&self, size: usize) -> Chunks { core_slice::SliceExt::chunks(self, size) } /// Returns an iterator over `chunk_size` elements of the slice at a time. /// The chunks are mutable slices, and do not overlap. If `chunk_size` does /// not divide the length of the slice, then the last chunk will not /// have length `chunk_size`. /// /// # Panics /// /// Panics if `chunk_size` is 0. /// /// # Examples /// /// ``` /// let v = &mut [0, 0, 0, 0, 0]; /// let mut count = 1; /// /// for chunk in v.chunks_mut(2) { /// for elem in chunk.iter_mut() { /// *elem += count; /// } /// count += 1; /// } /// assert_eq!(v, &[1, 1, 2, 2, 3]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn chunks_mut(&mut self, chunk_size: usize) -> ChunksMut { core_slice::SliceExt::chunks_mut(self, chunk_size) } /// Divides one slice into two at an index. /// /// The first will contain all indices from `[0, mid)` (excluding /// the index `mid` itself) and the second will contain all /// indices from `[mid, len)` (excluding the index `len` itself). /// /// # Panics /// /// Panics if `mid > len`. /// /// # Examples /// /// ``` /// let v = [10, 40, 30, 20, 50]; /// let (v1, v2) = v.split_at(2); /// assert_eq!([10, 40], v1); /// assert_eq!([30, 20, 50], v2); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn split_at(&self, mid: usize) -> (&[T], &[T]) { core_slice::SliceExt::split_at(self, mid) } /// Divides one `&mut` into two at an index. /// /// The first will contain all indices from `[0, mid)` (excluding /// the index `mid` itself) and the second will contain all /// indices from `[mid, len)` (excluding the index `len` itself). /// /// # Panics /// /// Panics if `mid > len`. /// /// # Examples /// /// ``` /// let mut v = [1, 2, 3, 4, 5, 6]; /// /// // scoped to restrict the lifetime of the borrows /// { /// let (left, right) = v.split_at_mut(0); /// assert!(left == []); /// assert!(right == [1, 2, 3, 4, 5, 6]); /// } /// /// { /// let (left, right) = v.split_at_mut(2); /// assert!(left == [1, 2]); /// assert!(right == [3, 4, 5, 6]); /// } /// /// { /// let (left, right) = v.split_at_mut(6); /// assert!(left == [1, 2, 3, 4, 5, 6]); /// assert!(right == []); /// } /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn split_at_mut(&mut self, mid: usize) -> (&mut [T], &mut [T]) { core_slice::SliceExt::split_at_mut(self, mid) } /// Returns an iterator over subslices separated by elements that match /// `pred`. The matched element is not contained in the subslices. /// /// # Examples /// /// ``` /// let slice = [10, 40, 33, 20]; /// let mut iter = slice.split(|num| num % 3 == 0); /// /// assert_eq!(iter.next().unwrap(), &[10, 40]); /// assert_eq!(iter.next().unwrap(), &[20]); /// assert!(iter.next().is_none()); /// ``` /// /// If the first element is matched, an empty slice will be the first item /// returned by the iterator. Similarly, if the last element in the slice /// is matched, an empty slice will be the last item returned by the /// iterator: /// /// ``` /// let slice = [10, 40, 33]; /// let mut iter = slice.split(|num| num % 3 == 0); /// /// assert_eq!(iter.next().unwrap(), &[10, 40]); /// assert_eq!(iter.next().unwrap(), &[]); /// assert!(iter.next().is_none()); /// ``` /// /// If two matched elements are directly adjacent, an empty slice will be /// present between them: /// /// ``` /// let slice = [10, 6, 33, 20]; /// let mut iter = slice.split(|num| num % 3 == 0); /// /// assert_eq!(iter.next().unwrap(), &[10]); /// assert_eq!(iter.next().unwrap(), &[]); /// assert_eq!(iter.next().unwrap(), &[20]); /// assert!(iter.next().is_none()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn split(&self, pred: F) -> Split where F: FnMut(&T) -> bool { core_slice::SliceExt::split(self, pred) } /// Returns an iterator over mutable subslices separated by elements that /// match `pred`. The matched element is not contained in the subslices. /// /// # Examples /// /// ``` /// let mut v = [10, 40, 30, 20, 60, 50]; /// /// for group in v.split_mut(|num| *num % 3 == 0) { /// group[0] = 1; /// } /// assert_eq!(v, [1, 40, 30, 1, 60, 1]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn split_mut(&mut self, pred: F) -> SplitMut where F: FnMut(&T) -> bool { core_slice::SliceExt::split_mut(self, pred) } /// Returns an iterator over subslices separated by elements that match /// `pred`, limited to returning at most `n` items. The matched element is /// not contained in the subslices. /// /// The last element returned, if any, will contain the remainder of the /// slice. /// /// # Examples /// /// Print the slice split once by numbers divisible by 3 (i.e. `[10, 40]`, /// `[20, 60, 50]`): /// /// ``` /// let v = [10, 40, 30, 20, 60, 50]; /// /// for group in v.splitn(2, |num| *num % 3 == 0) { /// println!("{:?}", group); /// } /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn splitn(&self, n: usize, pred: F) -> SplitN where F: FnMut(&T) -> bool { core_slice::SliceExt::splitn(self, n, pred) } /// Returns an iterator over subslices separated by elements that match /// `pred`, limited to returning at most `n` items. The matched element is /// not contained in the subslices. /// /// The last element returned, if any, will contain the remainder of the /// slice. /// /// # Examples /// /// ``` /// let mut v = [10, 40, 30, 20, 60, 50]; /// /// for group in v.splitn_mut(2, |num| *num % 3 == 0) { /// group[0] = 1; /// } /// assert_eq!(v, [1, 40, 30, 1, 60, 50]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn splitn_mut(&mut self, n: usize, pred: F) -> SplitNMut where F: FnMut(&T) -> bool { core_slice::SliceExt::splitn_mut(self, n, pred) } /// Returns an iterator over subslices separated by elements that match /// `pred` limited to returning at most `n` items. This starts at the end of /// the slice and works backwards. The matched element is not contained in /// the subslices. /// /// The last element returned, if any, will contain the remainder of the /// slice. /// /// # Examples /// /// Print the slice split once, starting from the end, by numbers divisible /// by 3 (i.e. `[50]`, `[10, 40, 30, 20]`): /// /// ``` /// let v = [10, 40, 30, 20, 60, 50]; /// /// for group in v.rsplitn(2, |num| *num % 3 == 0) { /// println!("{:?}", group); /// } /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn rsplitn(&self, n: usize, pred: F) -> RSplitN where F: FnMut(&T) -> bool { core_slice::SliceExt::rsplitn(self, n, pred) } /// Returns an iterator over subslices separated by elements that match /// `pred` limited to returning at most `n` items. This starts at the end of /// the slice and works backwards. The matched element is not contained in /// the subslices. /// /// The last element returned, if any, will contain the remainder of the /// slice. /// /// # Examples /// /// ``` /// let mut s = [10, 40, 30, 20, 60, 50]; /// /// for group in s.rsplitn_mut(2, |num| *num % 3 == 0) { /// group[0] = 1; /// } /// assert_eq!(s, [1, 40, 30, 20, 60, 1]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn rsplitn_mut(&mut self, n: usize, pred: F) -> RSplitNMut where F: FnMut(&T) -> bool { core_slice::SliceExt::rsplitn_mut(self, n, pred) } /// Returns true if the slice contains an element with the given value. /// /// # Examples /// /// ``` /// let v = [10, 40, 30]; /// assert!(v.contains(&30)); /// assert!(!v.contains(&50)); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn contains(&self, x: &T) -> bool where T: PartialEq { core_slice::SliceExt::contains(self, x) } /// Returns true if `needle` is a prefix of the slice. /// /// # Examples /// /// ``` /// let v = [10, 40, 30]; /// assert!(v.starts_with(&[10])); /// assert!(v.starts_with(&[10, 40])); /// assert!(!v.starts_with(&[50])); /// assert!(!v.starts_with(&[10, 50])); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn starts_with(&self, needle: &[T]) -> bool where T: PartialEq { core_slice::SliceExt::starts_with(self, needle) } /// Returns true if `needle` is a suffix of the slice. /// /// # Examples /// /// ``` /// let v = [10, 40, 30]; /// assert!(v.ends_with(&[30])); /// assert!(v.ends_with(&[40, 30])); /// assert!(!v.ends_with(&[50])); /// assert!(!v.ends_with(&[50, 30])); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn ends_with(&self, needle: &[T]) -> bool where T: PartialEq { core_slice::SliceExt::ends_with(self, needle) } /// Binary search a sorted slice for a given element. /// /// If the value is found then `Ok` is returned, containing the /// index of the matching element; if the value is not found then /// `Err` is returned, containing the index where a matching /// element could be inserted while maintaining sorted order. /// /// # Example /// /// Looks up a series of four elements. The first is found, with a /// uniquely determined position; the second and third are not /// found; the fourth could match any position in `[1, 4]`. /// /// ``` /// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; /// /// assert_eq!(s.binary_search(&13), Ok(9)); /// assert_eq!(s.binary_search(&4), Err(7)); /// assert_eq!(s.binary_search(&100), Err(13)); /// let r = s.binary_search(&1); /// assert!(match r { Ok(1...4) => true, _ => false, }); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn binary_search(&self, x: &T) -> Result where T: Ord { core_slice::SliceExt::binary_search(self, x) } /// Binary search a sorted slice with a comparator function. /// /// The comparator function should implement an order consistent /// with the sort order of the underlying slice, returning an /// order code that indicates whether its argument is `Less`, /// `Equal` or `Greater` the desired target. /// /// If a matching value is found then returns `Ok`, containing /// the index for the matched element; if no match is found then /// `Err` is returned, containing the index where a matching /// element could be inserted while maintaining sorted order. /// /// # Example /// /// Looks up a series of four elements. The first is found, with a /// uniquely determined position; the second and third are not /// found; the fourth could match any position in `[1, 4]`. /// /// ``` /// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; /// /// let seek = 13; /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9)); /// let seek = 4; /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7)); /// let seek = 100; /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13)); /// let seek = 1; /// let r = s.binary_search_by(|probe| probe.cmp(&seek)); /// assert!(match r { Ok(1...4) => true, _ => false, }); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result where F: FnMut(&'a T) -> Ordering { core_slice::SliceExt::binary_search_by(self, f) } /// Binary search a sorted slice with a key extraction function. /// /// Assumes that the slice is sorted by the key, for instance with /// [`sort_by_key`] using the same key extraction function. /// /// If a matching value is found then returns `Ok`, containing the /// index for the matched element; if no match is found then `Err` /// is returned, containing the index where a matching element could /// be inserted while maintaining sorted order. /// /// [`sort_by_key`]: #method.sort_by_key /// /// # Examples /// /// Looks up a series of four elements in a slice of pairs sorted by /// their second elements. The first is found, with a uniquely /// determined position; the second and third are not found; the /// fourth could match any position in `[1, 4]`. /// /// ``` /// let s = [(0, 0), (2, 1), (4, 1), (5, 1), (3, 1), /// (1, 2), (2, 3), (4, 5), (5, 8), (3, 13), /// (1, 21), (2, 34), (4, 55)]; /// /// assert_eq!(s.binary_search_by_key(&13, |&(a,b)| b), Ok(9)); /// assert_eq!(s.binary_search_by_key(&4, |&(a,b)| b), Err(7)); /// assert_eq!(s.binary_search_by_key(&100, |&(a,b)| b), Err(13)); /// let r = s.binary_search_by_key(&1, |&(a,b)| b); /// assert!(match r { Ok(1...4) => true, _ => false, }); /// ``` #[stable(feature = "slice_binary_search_by_key", since = "1.10.0")] #[inline] pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, f: F) -> Result where F: FnMut(&'a T) -> B, B: Ord { core_slice::SliceExt::binary_search_by_key(self, b, f) } /// This is equivalent to `self.sort_by(|a, b| a.cmp(b))`. /// /// This sort is stable and `O(n log n)` worst-case but allocates /// approximately `2 * n` where `n` is the length of `self`. /// /// # Examples /// /// ``` /// let mut v = [-5, 4, 1, -3, 2]; /// /// v.sort(); /// assert!(v == [-5, -3, 1, 2, 4]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn sort(&mut self) where T: Ord { self.sort_by(|a, b| a.cmp(b)) } /// Sorts the slice, in place, using `f` to extract a key by which to /// order the sort by. /// /// This sort is stable and `O(n log n)` worst-case but allocates /// approximately `2 * n`, where `n` is the length of `self`. /// /// # Examples /// /// ``` /// let mut v = [-5i32, 4, 1, -3, 2]; /// /// v.sort_by_key(|k| k.abs()); /// assert!(v == [1, 2, -3, 4, -5]); /// ``` #[stable(feature = "slice_sort_by_key", since = "1.7.0")] #[inline] pub fn sort_by_key(&mut self, mut f: F) where F: FnMut(&T) -> B, B: Ord { self.sort_by(|a, b| f(a).cmp(&f(b))) } /// Sorts the slice, in place, using `compare` to compare /// elements. /// /// This sort is stable and `O(n log n)` worst-case but allocates /// approximately `2 * n`, where `n` is the length of `self`. /// /// # Examples /// /// ``` /// let mut v = [5, 4, 1, 3, 2]; /// v.sort_by(|a, b| a.cmp(b)); /// assert!(v == [1, 2, 3, 4, 5]); /// /// // reverse sorting /// v.sort_by(|a, b| b.cmp(a)); /// assert!(v == [5, 4, 3, 2, 1]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn sort_by(&mut self, compare: F) where F: FnMut(&T, &T) -> Ordering { merge_sort(self, compare) } /// Copies the elements from `src` into `self`. /// /// The length of `src` must be the same as `self`. /// /// # Panics /// /// This function will panic if the two slices have different lengths. /// /// # Example /// /// ``` /// let mut dst = [0, 0, 0]; /// let src = [1, 2, 3]; /// /// dst.clone_from_slice(&src); /// assert!(dst == [1, 2, 3]); /// ``` #[stable(feature = "clone_from_slice", since = "1.7.0")] pub fn clone_from_slice(&mut self, src: &[T]) where T: Clone { core_slice::SliceExt::clone_from_slice(self, src) } /// Copies all elements from `src` into `self`, using a memcpy. /// /// The length of `src` must be the same as `self`. /// /// # Panics /// /// This function will panic if the two slices have different lengths. /// /// # Example /// /// ``` /// let mut dst = [0, 0, 0]; /// let src = [1, 2, 3]; /// /// dst.copy_from_slice(&src); /// assert_eq!(src, dst); /// ``` #[stable(feature = "copy_from_slice", since = "1.9.0")] pub fn copy_from_slice(&mut self, src: &[T]) where T: Copy { core_slice::SliceExt::copy_from_slice(self, src) } /// Copies `self` into a new `Vec`. /// /// # Examples /// /// ``` /// let s = [10, 40, 30]; /// let x = s.to_vec(); /// // Here, `s` and `x` can be modified independently. /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn to_vec(&self) -> Vec where T: Clone { // NB see hack module in this file hack::to_vec(self) } /// Converts `self` into a vector without clones or allocation. /// /// # Examples /// /// ``` /// let s: Box<[i32]> = Box::new([10, 40, 30]); /// let x = s.into_vec(); /// // `s` cannot be used anymore because it has been converted into `x`. /// /// assert_eq!(x, vec![10, 40, 30]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn into_vec(self: Box) -> Vec { // NB see hack module in this file hack::into_vec(self) } } //////////////////////////////////////////////////////////////////////////////// // Extension traits for slices over specific kinds of data //////////////////////////////////////////////////////////////////////////////// #[unstable(feature = "slice_concat_ext", reason = "trait should not have to exist", issue = "27747")] /// An extension trait for concatenating slices pub trait SliceConcatExt { #[unstable(feature = "slice_concat_ext", reason = "trait should not have to exist", issue = "27747")] /// The resulting type after concatenation type Output; /// Flattens a slice of `T` into a single value `Self::Output`. /// /// # Examples /// /// ``` /// assert_eq!(["hello", "world"].concat(), "helloworld"); /// ``` #[stable(feature = "rust1", since = "1.0.0")] fn concat(&self) -> Self::Output; /// Flattens a slice of `T` into a single value `Self::Output`, placing a /// given separator between each. /// /// # Examples /// /// ``` /// assert_eq!(["hello", "world"].join(" "), "hello world"); /// ``` #[stable(feature = "rename_connect_to_join", since = "1.3.0")] fn join(&self, sep: &T) -> Self::Output; #[stable(feature = "rust1", since = "1.0.0")] #[rustc_deprecated(since = "1.3.0", reason = "renamed to join")] fn connect(&self, sep: &T) -> Self::Output; } #[unstable(feature = "slice_concat_ext", reason = "trait should not have to exist", issue = "27747")] impl> SliceConcatExt for [V] { type Output = Vec; fn concat(&self) -> Vec { let size = self.iter().fold(0, |acc, v| acc + v.borrow().len()); let mut result = Vec::with_capacity(size); for v in self { result.extend_from_slice(v.borrow()) } result } fn join(&self, sep: &T) -> Vec { let size = self.iter().fold(0, |acc, v| acc + v.borrow().len()); let mut result = Vec::with_capacity(size + self.len()); let mut first = true; for v in self { if first { first = false } else { result.push(sep.clone()) } result.extend_from_slice(v.borrow()) } result } fn connect(&self, sep: &T) -> Vec { self.join(sep) } } //////////////////////////////////////////////////////////////////////////////// // Standard trait implementations for slices //////////////////////////////////////////////////////////////////////////////// #[stable(feature = "rust1", since = "1.0.0")] impl Borrow<[T]> for Vec { fn borrow(&self) -> &[T] { &self[..] } } #[stable(feature = "rust1", since = "1.0.0")] impl BorrowMut<[T]> for Vec { fn borrow_mut(&mut self) -> &mut [T] { &mut self[..] } } #[stable(feature = "rust1", since = "1.0.0")] impl ToOwned for [T] { type Owned = Vec; #[cfg(not(test))] fn to_owned(&self) -> Vec { self.to_vec() } // HACK(japaric): with cfg(test) the inherent `[T]::to_vec`, which is required for this method // definition, is not available. Since we don't require this method for testing purposes, I'll // just stub it // NB see the slice::hack module in slice.rs for more information #[cfg(test)] fn to_owned(&self) -> Vec { panic!("not available with cfg(test)") } } //////////////////////////////////////////////////////////////////////////////// // Sorting //////////////////////////////////////////////////////////////////////////////// fn insertion_sort(v: &mut [T], mut compare: F) where F: FnMut(&T, &T) -> Ordering { let len = v.len() as isize; let buf_v = v.as_mut_ptr(); // 1 <= i < len; for i in 1..len { // j satisfies: 0 <= j <= i; let mut j = i; unsafe { // `i` is in bounds. let read_ptr = buf_v.offset(i) as *const T; // find where to insert, we need to do strict <, // rather than <=, to maintain stability. // 0 <= j - 1 < len, so .offset(j - 1) is in bounds. while j > 0 && compare(&*read_ptr, &*buf_v.offset(j - 1)) == Less { j -= 1; } // shift everything to the right, to make space to // insert this value. // j + 1 could be `len` (for the last `i`), but in // that case, `i == j` so we don't copy. The // `.offset(j)` is always in bounds. if i != j { let tmp = ptr::read(read_ptr); ptr::copy(&*buf_v.offset(j), buf_v.offset(j + 1), (i - j) as usize); ptr::copy_nonoverlapping(&tmp, buf_v.offset(j), 1); mem::forget(tmp); } } } } fn merge_sort(v: &mut [T], mut compare: F) where F: FnMut(&T, &T) -> Ordering { // warning: this wildly uses unsafe. const BASE_INSERTION: usize = 32; const LARGE_INSERTION: usize = 16; // FIXME #12092: smaller insertion runs seems to make sorting // vectors of large elements a little faster on some platforms, // but hasn't been tested/tuned extensively let insertion = if size_of::() <= 16 { BASE_INSERTION } else { LARGE_INSERTION }; let len = v.len(); // short vectors get sorted in-place via insertion sort to avoid allocations if len <= insertion { insertion_sort(v, compare); return; } // allocate some memory to use as scratch memory, we keep the // length 0 so we can keep shallow copies of the contents of `v` // without risking the dtors running on an object twice if // `compare` panics. let mut working_space = Vec::with_capacity(2 * len); // these both are buffers of length `len`. let mut buf_dat = working_space.as_mut_ptr(); let mut buf_tmp = unsafe { buf_dat.offset(len as isize) }; // length `len`. let buf_v = v.as_ptr(); // step 1. sort short runs with insertion sort. This takes the // values from `v` and sorts them into `buf_dat`, leaving that // with sorted runs of length INSERTION. // We could hardcode the sorting comparisons here, and we could // manipulate/step the pointers themselves, rather than repeatedly // .offset-ing. for start in (0..len).step_by(insertion) { // start <= i < len; for i in start..cmp::min(start + insertion, len) { // j satisfies: start <= j <= i; let mut j = i as isize; unsafe { // `i` is in bounds. let read_ptr = buf_v.offset(i as isize); // find where to insert, we need to do strict <, // rather than <=, to maintain stability. // start <= j - 1 < len, so .offset(j - 1) is in // bounds. while j > start as isize && compare(&*read_ptr, &*buf_dat.offset(j - 1)) == Less { j -= 1; } // shift everything to the right, to make space to // insert this value. // j + 1 could be `len` (for the last `i`), but in // that case, `i == j` so we don't copy. The // `.offset(j)` is always in bounds. ptr::copy(&*buf_dat.offset(j), buf_dat.offset(j + 1), i - j as usize); ptr::copy_nonoverlapping(read_ptr, buf_dat.offset(j), 1); } } } // step 2. merge the sorted runs. let mut width = insertion; while width < len { // merge the sorted runs of length `width` in `buf_dat` two at // a time, placing the result in `buf_tmp`. // 0 <= start <= len. for start in (0..len).step_by(2 * width) { // manipulate pointers directly for speed (rather than // using a `for` loop with `range` and `.offset` inside // that loop). unsafe { // the end of the first run & start of the // second. Offset of `len` is defined, since this is // precisely one byte past the end of the object. let right_start = buf_dat.offset(cmp::min(start + width, len) as isize); // end of the second. Similar reasoning to the above re safety. let right_end_idx = cmp::min(start + 2 * width, len); let right_end = buf_dat.offset(right_end_idx as isize); // the pointers to the elements under consideration // from the two runs. // both of these are in bounds. let mut left = buf_dat.offset(start as isize); let mut right = right_start; // where we're putting the results, it is a run of // length `2*width`, so we step it once for each step // of either `left` or `right`. `buf_tmp` has length // `len`, so these are in bounds. let mut out = buf_tmp.offset(start as isize); let out_end = buf_tmp.offset(right_end_idx as isize); // If left[last] <= right[0], they are already in order: // fast-forward the left side (the right side is handled // in the loop). // If `right` is not empty then left is not empty, and // the offsets are in bounds. if right != right_end && compare(&*right.offset(-1), &*right) != Greater { let elems = (right_start as usize - left as usize) / mem::size_of::(); ptr::copy_nonoverlapping(&*left, out, elems); out = out.offset(elems as isize); left = right_start; } while out < out_end { // Either the left or the right run are exhausted, // so just copy the remainder from the other run // and move on; this gives a huge speed-up (order // of 25%) for mostly sorted vectors (the best // case). if left == right_start { // the number remaining in this run. let elems = (right_end as usize - right as usize) / mem::size_of::(); ptr::copy_nonoverlapping(&*right, out, elems); break; } else if right == right_end { let elems = (right_start as usize - left as usize) / mem::size_of::(); ptr::copy_nonoverlapping(&*left, out, elems); break; } // check which side is smaller, and that's the // next element for the new run. // `left < right_start` and `right < right_end`, // so these are valid. let to_copy = if compare(&*left, &*right) == Greater { step(&mut right) } else { step(&mut left) }; ptr::copy_nonoverlapping(&*to_copy, out, 1); step(&mut out); } } } mem::swap(&mut buf_dat, &mut buf_tmp); width *= 2; } // write the result to `v` in one go, so that there are never two copies // of the same object in `v`. unsafe { ptr::copy_nonoverlapping(&*buf_dat, v.as_mut_ptr(), len); } // increment the pointer, returning the old pointer. #[inline(always)] unsafe fn step(ptr: &mut *mut T) -> *mut T { let old = *ptr; *ptr = ptr.offset(1); old } }