// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use lib::llvm::llvm; use lib::llvm::{CallConv, AtomicBinOp, AtomicOrdering, AsmDialect}; use lib::llvm::{Opcode, IntPredicate, RealPredicate}; use lib::llvm::{ValueRef, BasicBlockRef}; use lib; use middle::trans::common::*; use syntax::codemap::span; use middle::trans::builder::Builder; use middle::trans::type_::Type; use std::cast; use std::libc::{c_uint, c_ulonglong, c_char}; pub fn terminate(cx: @mut Block, _: &str) { cx.terminated = true; } pub fn check_not_terminated(cx: @mut Block) { if cx.terminated { fail!("already terminated!"); } } pub fn B(cx: @mut Block) -> Builder { let b = cx.fcx.ccx.builder(); b.position_at_end(cx.llbb); b } // The difference between a block being unreachable and being terminated is // somewhat obscure, and has to do with error checking. When a block is // terminated, we're saying that trying to add any further statements in the // block is an error. On the other hand, if something is unreachable, that // means that the block was terminated in some way that we don't want to check // for (fail/break/return statements, call to diverging functions, etc), and // further instructions to the block should simply be ignored. pub fn RetVoid(cx: @mut Block) { if cx.unreachable { return; } check_not_terminated(cx); terminate(cx, "RetVoid"); B(cx).ret_void(); } pub fn Ret(cx: @mut Block, V: ValueRef) { if cx.unreachable { return; } check_not_terminated(cx); terminate(cx, "Ret"); B(cx).ret(V); } pub fn AggregateRet(cx: @mut Block, RetVals: &[ValueRef]) { if cx.unreachable { return; } check_not_terminated(cx); terminate(cx, "AggregateRet"); B(cx).aggregate_ret(RetVals); } pub fn Br(cx: @mut Block, Dest: BasicBlockRef) { if cx.unreachable { return; } check_not_terminated(cx); terminate(cx, "Br"); B(cx).br(Dest); } pub fn CondBr(cx: @mut Block, If: ValueRef, Then: BasicBlockRef, Else: BasicBlockRef) { if cx.unreachable { return; } check_not_terminated(cx); terminate(cx, "CondBr"); B(cx).cond_br(If, Then, Else); } pub fn Switch(cx: @mut Block, V: ValueRef, Else: BasicBlockRef, NumCases: uint) -> ValueRef { if cx.unreachable { return _Undef(V); } check_not_terminated(cx); terminate(cx, "Switch"); B(cx).switch(V, Else, NumCases) } pub fn AddCase(S: ValueRef, OnVal: ValueRef, Dest: BasicBlockRef) { unsafe { if llvm::LLVMIsUndef(S) == lib::llvm::True { return; } llvm::LLVMAddCase(S, OnVal, Dest); } } pub fn IndirectBr(cx: @mut Block, Addr: ValueRef, NumDests: uint) { if cx.unreachable { return; } check_not_terminated(cx); terminate(cx, "IndirectBr"); B(cx).indirect_br(Addr, NumDests); } pub fn Invoke(cx: @mut Block, Fn: ValueRef, Args: &[ValueRef], Then: BasicBlockRef, Catch: BasicBlockRef) -> ValueRef { if cx.unreachable { return C_null(Type::i8()); } check_not_terminated(cx); terminate(cx, "Invoke"); debug!("Invoke(%s with arguments (%s))", cx.val_to_str(Fn), Args.map(|a| cx.val_to_str(*a)).connect(", ")); B(cx).invoke(Fn, Args, Then, Catch) } pub fn FastInvoke(cx: @mut Block, Fn: ValueRef, Args: &[ValueRef], Then: BasicBlockRef, Catch: BasicBlockRef) { if cx.unreachable { return; } check_not_terminated(cx); terminate(cx, "FastInvoke"); B(cx).fast_invoke(Fn, Args, Then, Catch); } pub fn Unreachable(cx: @mut Block) { if cx.unreachable { return; } cx.unreachable = true; if !cx.terminated { B(cx).unreachable(); } } pub fn _Undef(val: ValueRef) -> ValueRef { unsafe { return llvm::LLVMGetUndef(val_ty(val).to_ref()); } } /* Arithmetic */ pub fn Add(cx: @mut Block, LHS: ValueRef, RHS: ValueRef) -> ValueRef { if cx.unreachable { return _Undef(LHS); } B(cx).add(LHS, RHS) } pub fn NSWAdd(cx: @mut Block, LHS: ValueRef, RHS: ValueRef) -> ValueRef { if cx.unreachable { return _Undef(LHS); } B(cx).nswadd(LHS, RHS) } pub fn NUWAdd(cx: @mut Block, LHS: ValueRef, RHS: ValueRef) -> ValueRef { if cx.unreachable { return _Undef(LHS); } B(cx).nuwadd(LHS, RHS) } pub fn FAdd(cx: @mut Block, LHS: ValueRef, RHS: ValueRef) -> ValueRef { if cx.unreachable { return _Undef(LHS); } B(cx).fadd(LHS, RHS) } pub fn Sub(cx: @mut Block, LHS: ValueRef, RHS: ValueRef) -> ValueRef { if cx.unreachable { return _Undef(LHS); } B(cx).sub(LHS, RHS) } pub fn NSWSub(cx: @mut Block, LHS: ValueRef, RHS: ValueRef) -> ValueRef { if cx.unreachable { return _Undef(LHS); } B(cx).nswsub(LHS, RHS) } pub fn NUWSub(cx: @mut Block, LHS: ValueRef, RHS: ValueRef) -> ValueRef { if cx.unreachable { return _Undef(LHS); } B(cx).nuwsub(LHS, RHS) } pub fn FSub(cx: @mut Block, LHS: ValueRef, RHS: ValueRef) -> ValueRef { if cx.unreachable { return _Undef(LHS); } B(cx).fsub(LHS, RHS) } pub fn Mul(cx: @mut Block, LHS: ValueRef, RHS: ValueRef) -> ValueRef { if cx.unreachable { return _Undef(LHS); } B(cx).mul(LHS, RHS) } pub fn NSWMul(cx: @mut Block, LHS: ValueRef, RHS: ValueRef) -> ValueRef { if cx.unreachable { return _Undef(LHS); } B(cx).nswmul(LHS, RHS) } pub fn NUWMul(cx: @mut Block, LHS: ValueRef, RHS: ValueRef) -> ValueRef { if cx.unreachable { return _Undef(LHS); } B(cx).nuwmul(LHS, RHS) } pub fn FMul(cx: @mut Block, LHS: ValueRef, RHS: ValueRef) -> ValueRef { if cx.unreachable { return _Undef(LHS); } B(cx).fmul(LHS, RHS) } pub fn UDiv(cx: @mut Block, LHS: ValueRef, RHS: ValueRef) -> ValueRef { if cx.unreachable { return _Undef(LHS); } B(cx).udiv(LHS, RHS) } pub fn SDiv(cx: @mut Block, LHS: ValueRef, RHS: ValueRef) -> ValueRef { if cx.unreachable { return _Undef(LHS); } B(cx).sdiv(LHS, RHS) } pub fn ExactSDiv(cx: @mut Block, LHS: ValueRef, RHS: ValueRef) -> ValueRef { if cx.unreachable { return _Undef(LHS); } B(cx).exactsdiv(LHS, RHS) } pub fn FDiv(cx: @mut Block, LHS: ValueRef, RHS: ValueRef) -> ValueRef { if cx.unreachable { return _Undef(LHS); } B(cx).fdiv(LHS, RHS) } pub fn URem(cx: @mut Block, LHS: ValueRef, RHS: ValueRef) -> ValueRef { if cx.unreachable { return _Undef(LHS); } B(cx).urem(LHS, RHS) } pub fn SRem(cx: @mut Block, LHS: ValueRef, RHS: ValueRef) -> ValueRef { if cx.unreachable { return _Undef(LHS); } B(cx).srem(LHS, RHS) } pub fn FRem(cx: @mut Block, LHS: ValueRef, RHS: ValueRef) -> ValueRef { if cx.unreachable { return _Undef(LHS); } B(cx).frem(LHS, RHS) } pub fn Shl(cx: @mut Block, LHS: ValueRef, RHS: ValueRef) -> ValueRef { if cx.unreachable { return _Undef(LHS); } B(cx).shl(LHS, RHS) } pub fn LShr(cx: @mut Block, LHS: ValueRef, RHS: ValueRef) -> ValueRef { if cx.unreachable { return _Undef(LHS); } B(cx).lshr(LHS, RHS) } pub fn AShr(cx: @mut Block, LHS: ValueRef, RHS: ValueRef) -> ValueRef { if cx.unreachable { return _Undef(LHS); } B(cx).ashr(LHS, RHS) } pub fn And(cx: @mut Block, LHS: ValueRef, RHS: ValueRef) -> ValueRef { if cx.unreachable { return _Undef(LHS); } B(cx).and(LHS, RHS) } pub fn Or(cx: @mut Block, LHS: ValueRef, RHS: ValueRef) -> ValueRef { if cx.unreachable { return _Undef(LHS); } B(cx).or(LHS, RHS) } pub fn Xor(cx: @mut Block, LHS: ValueRef, RHS: ValueRef) -> ValueRef { if cx.unreachable { return _Undef(LHS); } B(cx).xor(LHS, RHS) } pub fn BinOp(cx: @mut Block, Op: Opcode, LHS: ValueRef, RHS: ValueRef) -> ValueRef { if cx.unreachable { return _Undef(LHS); } B(cx).binop(Op, LHS, RHS) } pub fn Neg(cx: @mut Block, V: ValueRef) -> ValueRef { if cx.unreachable { return _Undef(V); } B(cx).neg(V) } pub fn NSWNeg(cx: @mut Block, V: ValueRef) -> ValueRef { if cx.unreachable { return _Undef(V); } B(cx).nswneg(V) } pub fn NUWNeg(cx: @mut Block, V: ValueRef) -> ValueRef { if cx.unreachable { return _Undef(V); } B(cx).nuwneg(V) } pub fn FNeg(cx: @mut Block, V: ValueRef) -> ValueRef { if cx.unreachable { return _Undef(V); } B(cx).fneg(V) } pub fn Not(cx: @mut Block, V: ValueRef) -> ValueRef { if cx.unreachable { return _Undef(V); } B(cx).not(V) } /* Memory */ pub fn Malloc(cx: @mut Block, Ty: Type) -> ValueRef { unsafe { if cx.unreachable { return llvm::LLVMGetUndef(Type::i8p().to_ref()); } B(cx).malloc(Ty) } } pub fn ArrayMalloc(cx: @mut Block, Ty: Type, Val: ValueRef) -> ValueRef { unsafe { if cx.unreachable { return llvm::LLVMGetUndef(Type::i8p().to_ref()); } B(cx).array_malloc(Ty, Val) } } pub fn Alloca(cx: @mut Block, Ty: Type, name: &str) -> ValueRef { unsafe { if cx.unreachable { return llvm::LLVMGetUndef(Ty.ptr_to().to_ref()); } let b = cx.fcx.ccx.builder(); b.position_before(cx.fcx.alloca_insert_pt.get()); b.alloca(Ty, name) } } pub fn ArrayAlloca(cx: @mut Block, Ty: Type, Val: ValueRef) -> ValueRef { unsafe { if cx.unreachable { return llvm::LLVMGetUndef(Ty.ptr_to().to_ref()); } let b = cx.fcx.ccx.builder(); b.position_before(cx.fcx.alloca_insert_pt.get()); b.array_alloca(Ty, Val) } } pub fn Free(cx: @mut Block, PointerVal: ValueRef) { if cx.unreachable { return; } B(cx).free(PointerVal) } pub fn Load(cx: @mut Block, PointerVal: ValueRef) -> ValueRef { unsafe { let ccx = cx.fcx.ccx; if cx.unreachable { let ty = val_ty(PointerVal); let eltty = if ty.kind() == lib::llvm::Array { ty.element_type() } else { ccx.int_type }; return llvm::LLVMGetUndef(eltty.to_ref()); } B(cx).load(PointerVal) } } pub fn AtomicLoad(cx: @mut Block, PointerVal: ValueRef, order: AtomicOrdering) -> ValueRef { unsafe { let ccx = cx.fcx.ccx; if cx.unreachable { return llvm::LLVMGetUndef(ccx.int_type.to_ref()); } B(cx).atomic_load(PointerVal, order) } } pub fn LoadRangeAssert(cx: @mut Block, PointerVal: ValueRef, lo: c_ulonglong, hi: c_ulonglong, signed: lib::llvm::Bool) -> ValueRef { if cx.unreachable { let ccx = cx.fcx.ccx; let ty = val_ty(PointerVal); let eltty = if ty.kind() == lib::llvm::Array { ty.element_type() } else { ccx.int_type }; unsafe { llvm::LLVMGetUndef(eltty.to_ref()) } } else { B(cx).load_range_assert(PointerVal, lo, hi, signed) } } pub fn Store(cx: @mut Block, Val: ValueRef, Ptr: ValueRef) { if cx.unreachable { return; } B(cx).store(Val, Ptr) } pub fn AtomicStore(cx: @mut Block, Val: ValueRef, Ptr: ValueRef, order: AtomicOrdering) { if cx.unreachable { return; } B(cx).atomic_store(Val, Ptr, order) } pub fn GEP(cx: @mut Block, Pointer: ValueRef, Indices: &[ValueRef]) -> ValueRef { unsafe { if cx.unreachable { return llvm::LLVMGetUndef(Type::nil().ptr_to().to_ref()); } B(cx).gep(Pointer, Indices) } } // Simple wrapper around GEP that takes an array of ints and wraps them // in C_i32() #[inline] pub fn GEPi(cx: @mut Block, base: ValueRef, ixs: &[uint]) -> ValueRef { unsafe { if cx.unreachable { return llvm::LLVMGetUndef(Type::nil().ptr_to().to_ref()); } B(cx).gepi(base, ixs) } } pub fn InBoundsGEP(cx: @mut Block, Pointer: ValueRef, Indices: &[ValueRef]) -> ValueRef { unsafe { if cx.unreachable { return llvm::LLVMGetUndef(Type::nil().ptr_to().to_ref()); } B(cx).inbounds_gep(Pointer, Indices) } } pub fn StructGEP(cx: @mut Block, Pointer: ValueRef, Idx: uint) -> ValueRef { unsafe { if cx.unreachable { return llvm::LLVMGetUndef(Type::nil().ptr_to().to_ref()); } B(cx).struct_gep(Pointer, Idx) } } pub fn GlobalString(cx: @mut Block, _Str: *c_char) -> ValueRef { unsafe { if cx.unreachable { return llvm::LLVMGetUndef(Type::i8p().to_ref()); } B(cx).global_string(_Str) } } pub fn GlobalStringPtr(cx: @mut Block, _Str: *c_char) -> ValueRef { unsafe { if cx.unreachable { return llvm::LLVMGetUndef(Type::i8p().to_ref()); } B(cx).global_string_ptr(_Str) } } /* Casts */ pub fn Trunc(cx: @mut Block, Val: ValueRef, DestTy: Type) -> ValueRef { unsafe { if cx.unreachable { return llvm::LLVMGetUndef(DestTy.to_ref()); } B(cx).trunc(Val, DestTy) } } pub fn ZExt(cx: @mut Block, Val: ValueRef, DestTy: Type) -> ValueRef { unsafe { if cx.unreachable { return llvm::LLVMGetUndef(DestTy.to_ref()); } B(cx).zext(Val, DestTy) } } pub fn SExt(cx: @mut Block, Val: ValueRef, DestTy: Type) -> ValueRef { unsafe { if cx.unreachable { return llvm::LLVMGetUndef(DestTy.to_ref()); } B(cx).sext(Val, DestTy) } } pub fn FPToUI(cx: @mut Block, Val: ValueRef, DestTy: Type) -> ValueRef { unsafe { if cx.unreachable { return llvm::LLVMGetUndef(DestTy.to_ref()); } B(cx).fptoui(Val, DestTy) } } pub fn FPToSI(cx: @mut Block, Val: ValueRef, DestTy: Type) -> ValueRef { unsafe { if cx.unreachable { return llvm::LLVMGetUndef(DestTy.to_ref()); } B(cx).fptosi(Val, DestTy) } } pub fn UIToFP(cx: @mut Block, Val: ValueRef, DestTy: Type) -> ValueRef { unsafe { if cx.unreachable { return llvm::LLVMGetUndef(DestTy.to_ref()); } B(cx).uitofp(Val, DestTy) } } pub fn SIToFP(cx: @mut Block, Val: ValueRef, DestTy: Type) -> ValueRef { unsafe { if cx.unreachable { return llvm::LLVMGetUndef(DestTy.to_ref()); } B(cx).sitofp(Val, DestTy) } } pub fn FPTrunc(cx: @mut Block, Val: ValueRef, DestTy: Type) -> ValueRef { unsafe { if cx.unreachable { return llvm::LLVMGetUndef(DestTy.to_ref()); } B(cx).fptrunc(Val, DestTy) } } pub fn FPExt(cx: @mut Block, Val: ValueRef, DestTy: Type) -> ValueRef { unsafe { if cx.unreachable { return llvm::LLVMGetUndef(DestTy.to_ref()); } B(cx).fpext(Val, DestTy) } } pub fn PtrToInt(cx: @mut Block, Val: ValueRef, DestTy: Type) -> ValueRef { unsafe { if cx.unreachable { return llvm::LLVMGetUndef(DestTy.to_ref()); } B(cx).ptrtoint(Val, DestTy) } } pub fn IntToPtr(cx: @mut Block, Val: ValueRef, DestTy: Type) -> ValueRef { unsafe { if cx.unreachable { return llvm::LLVMGetUndef(DestTy.to_ref()); } B(cx).inttoptr(Val, DestTy) } } pub fn BitCast(cx: @mut Block, Val: ValueRef, DestTy: Type) -> ValueRef { unsafe { if cx.unreachable { return llvm::LLVMGetUndef(DestTy.to_ref()); } B(cx).bitcast(Val, DestTy) } } pub fn ZExtOrBitCast(cx: @mut Block, Val: ValueRef, DestTy: Type) -> ValueRef { unsafe { if cx.unreachable { return llvm::LLVMGetUndef(DestTy.to_ref()); } B(cx).zext_or_bitcast(Val, DestTy) } } pub fn SExtOrBitCast(cx: @mut Block, Val: ValueRef, DestTy: Type) -> ValueRef { unsafe { if cx.unreachable { return llvm::LLVMGetUndef(DestTy.to_ref()); } B(cx).sext_or_bitcast(Val, DestTy) } } pub fn TruncOrBitCast(cx: @mut Block, Val: ValueRef, DestTy: Type) -> ValueRef { unsafe { if cx.unreachable { return llvm::LLVMGetUndef(DestTy.to_ref()); } B(cx).trunc_or_bitcast(Val, DestTy) } } pub fn Cast(cx: @mut Block, Op: Opcode, Val: ValueRef, DestTy: Type, _: *u8) -> ValueRef { unsafe { if cx.unreachable { return llvm::LLVMGetUndef(DestTy.to_ref()); } B(cx).cast(Op, Val, DestTy) } } pub fn PointerCast(cx: @mut Block, Val: ValueRef, DestTy: Type) -> ValueRef { unsafe { if cx.unreachable { return llvm::LLVMGetUndef(DestTy.to_ref()); } B(cx).pointercast(Val, DestTy) } } pub fn IntCast(cx: @mut Block, Val: ValueRef, DestTy: Type) -> ValueRef { unsafe { if cx.unreachable { return llvm::LLVMGetUndef(DestTy.to_ref()); } B(cx).intcast(Val, DestTy) } } pub fn FPCast(cx: @mut Block, Val: ValueRef, DestTy: Type) -> ValueRef { unsafe { if cx.unreachable { return llvm::LLVMGetUndef(DestTy.to_ref()); } B(cx).fpcast(Val, DestTy) } } /* Comparisons */ pub fn ICmp(cx: @mut Block, Op: IntPredicate, LHS: ValueRef, RHS: ValueRef) -> ValueRef { unsafe { if cx.unreachable { return llvm::LLVMGetUndef(Type::i1().to_ref()); } B(cx).icmp(Op, LHS, RHS) } } pub fn FCmp(cx: @mut Block, Op: RealPredicate, LHS: ValueRef, RHS: ValueRef) -> ValueRef { unsafe { if cx.unreachable { return llvm::LLVMGetUndef(Type::i1().to_ref()); } B(cx).fcmp(Op, LHS, RHS) } } /* Miscellaneous instructions */ pub fn EmptyPhi(cx: @mut Block, Ty: Type) -> ValueRef { unsafe { if cx.unreachable { return llvm::LLVMGetUndef(Ty.to_ref()); } B(cx).empty_phi(Ty) } } pub fn Phi(cx: @mut Block, Ty: Type, vals: &[ValueRef], bbs: &[BasicBlockRef]) -> ValueRef { unsafe { if cx.unreachable { return llvm::LLVMGetUndef(Ty.to_ref()); } B(cx).phi(Ty, vals, bbs) } } pub fn AddIncomingToPhi(phi: ValueRef, val: ValueRef, bb: BasicBlockRef) { unsafe { if llvm::LLVMIsUndef(phi) == lib::llvm::True { return; } let valptr = cast::transmute(&val); let bbptr = cast::transmute(&bb); llvm::LLVMAddIncoming(phi, valptr, bbptr, 1 as c_uint); } } pub fn _UndefReturn(cx: @mut Block, Fn: ValueRef) -> ValueRef { unsafe { let ccx = cx.fcx.ccx; let ty = val_ty(Fn); let retty = if ty.kind() == lib::llvm::Integer { ty.return_type() } else { ccx.int_type }; B(cx).count_insn("ret_undef"); llvm::LLVMGetUndef(retty.to_ref()) } } pub fn add_span_comment(cx: @mut Block, sp: span, text: &str) { B(cx).add_span_comment(sp, text) } pub fn add_comment(cx: @mut Block, text: &str) { B(cx).add_comment(text) } pub fn InlineAsmCall(cx: @mut Block, asm: *c_char, cons: *c_char, inputs: &[ValueRef], output: Type, volatile: bool, alignstack: bool, dia: AsmDialect) -> ValueRef { B(cx).inline_asm_call(asm, cons, inputs, output, volatile, alignstack, dia) } pub fn Call(cx: @mut Block, Fn: ValueRef, Args: &[ValueRef]) -> ValueRef { if cx.unreachable { return _UndefReturn(cx, Fn); } B(cx).call(Fn, Args) } pub fn FastCall(cx: @mut Block, Fn: ValueRef, Args: &[ValueRef]) -> ValueRef { if cx.unreachable { return _UndefReturn(cx, Fn); } B(cx).call(Fn, Args) } pub fn CallWithConv(cx: @mut Block, Fn: ValueRef, Args: &[ValueRef], Conv: CallConv) -> ValueRef { if cx.unreachable { return _UndefReturn(cx, Fn); } B(cx).call_with_conv(Fn, Args, Conv) } pub fn AtomicFence(cx: @mut Block, order: AtomicOrdering) { if cx.unreachable { return; } B(cx).atomic_fence(order) } pub fn Select(cx: @mut Block, If: ValueRef, Then: ValueRef, Else: ValueRef) -> ValueRef { if cx.unreachable { return _Undef(Then); } B(cx).select(If, Then, Else) } pub fn VAArg(cx: @mut Block, list: ValueRef, Ty: Type) -> ValueRef { unsafe { if cx.unreachable { return llvm::LLVMGetUndef(Ty.to_ref()); } B(cx).va_arg(list, Ty) } } pub fn ExtractElement(cx: @mut Block, VecVal: ValueRef, Index: ValueRef) -> ValueRef { unsafe { if cx.unreachable { return llvm::LLVMGetUndef(Type::nil().to_ref()); } B(cx).extract_element(VecVal, Index) } } pub fn InsertElement(cx: @mut Block, VecVal: ValueRef, EltVal: ValueRef, Index: ValueRef) -> ValueRef { unsafe { if cx.unreachable { return llvm::LLVMGetUndef(Type::nil().to_ref()); } B(cx).insert_element(VecVal, EltVal, Index) } } pub fn ShuffleVector(cx: @mut Block, V1: ValueRef, V2: ValueRef, Mask: ValueRef) -> ValueRef { unsafe { if cx.unreachable { return llvm::LLVMGetUndef(Type::nil().to_ref()); } B(cx).shuffle_vector(V1, V2, Mask) } } pub fn VectorSplat(cx: @mut Block, NumElts: uint, EltVal: ValueRef) -> ValueRef { unsafe { if cx.unreachable { return llvm::LLVMGetUndef(Type::nil().to_ref()); } B(cx).vector_splat(NumElts, EltVal) } } pub fn ExtractValue(cx: @mut Block, AggVal: ValueRef, Index: uint) -> ValueRef { unsafe { if cx.unreachable { return llvm::LLVMGetUndef(Type::nil().to_ref()); } B(cx).extract_value(AggVal, Index) } } pub fn InsertValue(cx: @mut Block, AggVal: ValueRef, EltVal: ValueRef, Index: uint) { if cx.unreachable { return; } B(cx).insert_value(AggVal, EltVal, Index) } pub fn IsNull(cx: @mut Block, Val: ValueRef) -> ValueRef { unsafe { if cx.unreachable { return llvm::LLVMGetUndef(Type::i1().to_ref()); } B(cx).is_null(Val) } } pub fn IsNotNull(cx: @mut Block, Val: ValueRef) -> ValueRef { unsafe { if cx.unreachable { return llvm::LLVMGetUndef(Type::i1().to_ref()); } B(cx).is_not_null(Val) } } pub fn PtrDiff(cx: @mut Block, LHS: ValueRef, RHS: ValueRef) -> ValueRef { unsafe { let ccx = cx.fcx.ccx; if cx.unreachable { return llvm::LLVMGetUndef(ccx.int_type.to_ref()); } B(cx).ptrdiff(LHS, RHS) } } pub fn Trap(cx: @mut Block) { if cx.unreachable { return; } B(cx).trap(); } pub fn LandingPad(cx: @mut Block, Ty: Type, PersFn: ValueRef, NumClauses: uint) -> ValueRef { check_not_terminated(cx); assert!(!cx.unreachable); B(cx).landing_pad(Ty, PersFn, NumClauses) } pub fn SetCleanup(cx: @mut Block, LandingPad: ValueRef) { B(cx).set_cleanup(LandingPad) } pub fn Resume(cx: @mut Block, Exn: ValueRef) -> ValueRef { check_not_terminated(cx); terminate(cx, "Resume"); B(cx).resume(Exn) } // Atomic Operations pub fn AtomicCmpXchg(cx: @mut Block, dst: ValueRef, cmp: ValueRef, src: ValueRef, order: AtomicOrdering) -> ValueRef { B(cx).atomic_cmpxchg(dst, cmp, src, order) } pub fn AtomicRMW(cx: @mut Block, op: AtomicBinOp, dst: ValueRef, src: ValueRef, order: AtomicOrdering) -> ValueRef { B(cx).atomic_rmw(op, dst, src, order) }