/* Module: float */ /** * Section: String Conversions */ /* Function: to_str_common Converts a float to a string Parameters: num - The float value digits - The number of significant digits exact - Whether to enforce the exact number of significant digits */ fn to_str_common(num: float, digits: uint, exact: bool) -> str { let (num, accum) = num < 0.0 ? (-num, "-") : (num, ""); let trunc = num as uint; let frac = num - (trunc as float); accum += uint::str(trunc); if frac == 0.0 || digits == 0u { ret accum; } accum += "."; let i = digits; let epsilon = 1. / pow_uint_to_uint_as_float(10u, i); while i > 0u && (frac >= epsilon || exact) { frac *= 10.0; epsilon *= 10.0; let digit = frac as uint; accum += uint::str(digit); frac -= digit as float; i -= 1u; } ret accum; } /* Function: to_str Converts a float to a string with exactly the number of provided significant digits Parameters: num - The float value digits - The number of significant digits */ fn to_str_exact(num: float, digits: uint) -> str { to_str_common(num, digits, true) } /* Function: to_str Converts a float to a string with a maximum number of significant digits Parameters: num - The float value digits - The number of significant digits */ fn to_str(num: float, digits: uint) -> str { to_str_common(num, digits, false) } /* Function: from_str Convert a string to a float This function accepts strings such as * "3.14" * "+3.14", equivalent to "3.14" * "-3.14" * "2.5E10", or equivalently, "2.5e10" * "2.5E-10" * "", or, equivalently, "." (understood as 0) * "5." * ".5", or, equivalently, "0.5" Leading and trailing whitespace are ignored. Parameters: num - A string, possibly empty. Returns: If the string did not represent a valid number. Otherwise, the floating-point number represented [num]. */ fn from_str(num: str) -> float { let num = str::trim(num); let pos = 0u; //Current byte position in the string. //Used to walk the string in O(n). let len = str::byte_len(num); //Length of the string, in bytes. if len == 0u { ret 0.; } let total = 0f; //Accumulated result let c = 'z'; //Latest char. //The string must start with one of the following characters. alt str::char_at(num, 0u) { '-' | '+' | '0' to '9' | '.' {} _ { ret NaN; } } //Determine if first char is '-'/'+'. Set [pos] and [neg] accordingly. let neg = false; //Sign of the result alt str::char_at(num, 0u) { '-' { neg = true; pos = 1u; } '+' { pos = 1u; } _ {} } //Examine the following chars until '.', 'e', 'E' while(pos < len) { let char_range = str::char_range_at(num, pos); c = char_range.ch; pos = char_range.next; alt c { '0' to '9' { total = total * 10f; total += ((c as int) - ('0' as int)) as float; } '.' | 'e' | 'E' { break; } _ { ret NaN; } } } if c == '.' {//Examine decimal part let decimal = 1.f; while(pos < len) { let char_range = str::char_range_at(num, pos); c = char_range.ch; pos = char_range.next; alt c { '0' | '1' | '2' | '3' | '4' | '5' | '6'| '7' | '8' | '9' { decimal /= 10.f; total += (((c as int) - ('0' as int)) as float)*decimal; } 'e' | 'E' { break; } _ { ret NaN; } } } } if (c == 'e') | (c == 'E') {//Examine exponent let exponent = 0u; let neg_exponent = false; if(pos < len) { let char_range = str::char_range_at(num, pos); c = char_range.ch; alt c { '+' { pos = char_range.next; } '-' { pos = char_range.next; neg_exponent = true; } _ {} } while(pos < len) { let char_range = str::char_range_at(num, pos); c = char_range.ch; alt c { '0' | '1' | '2' | '3' | '4' | '5' | '6'| '7' | '8' | '9' { exponent *= 10u; exponent += ((c as uint) - ('0' as uint)); } _ { break; } } pos = char_range.next; } let multiplier = pow_uint_to_uint_as_float(10u, exponent); //Note: not [int::pow], otherwise, we'll quickly //end up with a nice overflow if neg_exponent { total = total / multiplier; } else { total = total * multiplier; } } else { ret NaN; } } if(pos < len) { ret NaN; } else { if(neg) { total *= -1f; } ret total; } } /** * Section: Arithmetics */ /* Function: pow_uint_to_uint_as_float Compute the exponentiation of an integer by another integer as a float. Parameters: x - The base. pow - The exponent. Returns: of both `x` and `pow` are `0u`, otherwise `x^pow`. */ fn pow_uint_to_uint_as_float(x: uint, pow: uint) -> float { if x == 0u { if pow == 0u { ret NaN; } ret 0.; } let my_pow = pow; let total = 1f; let multiplier = x as float; while (my_pow > 0u) { if my_pow % 2u == 1u { total = total * multiplier; } my_pow /= 2u; multiplier *= multiplier; } ret total; } /** * Section: Constants */ //TODO: Once this is possible, replace the body of these functions //by an actual constant. /* Const: NaN */ const NaN: float = 0./0.; /* Predicate: isNaN */ pure fn isNaN(f: float) -> bool { f != f } /* Const: infinity */ const infinity: float = 1./0.; /* Const: neg_infinity */ const neg_infinity: float = -1./0.; /* Function: add */ pure fn add(x: float, y: float) -> float { ret x + y; } /* Function: sub */ pure fn sub(x: float, y: float) -> float { ret x - y; } /* Function: mul */ pure fn mul(x: float, y: float) -> float { ret x * y; } /* Function: div */ pure fn div(x: float, y: float) -> float { ret x / y; } /* Function: rem */ pure fn rem(x: float, y: float) -> float { ret x % y; } /* Predicate: lt */ pure fn lt(x: float, y: float) -> bool { ret x < y; } /* Predicate: le */ pure fn le(x: float, y: float) -> bool { ret x <= y; } /* Predicate: eq */ pure fn eq(x: float, y: float) -> bool { ret x == y; } /* Predicate: ne */ pure fn ne(x: float, y: float) -> bool { ret x != y; } /* Predicate: ge */ pure fn ge(x: float, y: float) -> bool { ret x >= y; } /* Predicate: gt */ pure fn gt(x: float, y: float) -> bool { ret x > y; } /* Predicate: positive Returns true if `x` is a positive number, including +0.0 and +Infinity. */ pure fn positive(x: float) -> bool { ret x > 0. || (1./x) == infinity; } /* Predicate: negative Returns true if `x` is a negative number, including -0.0 and -Infinity. */ pure fn negative(x: float) -> bool { ret x < 0. || (1./x) == neg_infinity; } /* Predicate: nonpositive Returns true if `x` is a negative number, including -0.0 and -Infinity. (This is the same as `float::negative`.) */ pure fn nonpositive(x: float) -> bool { ret x < 0. || (1./x) == neg_infinity; } /* Predicate: nonnegative Returns true if `x` is a positive number, including +0.0 and +Infinity. (This is the same as `float::positive`.) */ pure fn nonnegative(x: float) -> bool { ret x > 0. || (1./x) == infinity; } // // Local Variables: // mode: rust // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // End: //