//! `mbe` (short for Macro By Example) crate contains code for handling //! `macro_rules` macros. It uses `TokenTree` (from `tt` package) as the //! interface, although it contains some code to bridge `SyntaxNode`s and //! `TokenTree`s as well! mod parser; mod expander; mod syntax_bridge; mod tt_iter; mod subtree_source; #[cfg(test)] mod tests; #[cfg(test)] mod benchmark; mod token_map; use std::fmt; pub use tt::{Delimiter, DelimiterKind, Punct}; use crate::{ parser::{parse_pattern, parse_template, MetaTemplate, Op}, tt_iter::TtIter, }; #[derive(Debug, PartialEq, Eq)] pub enum ParseError { UnexpectedToken(String), Expected(String), InvalidRepeat, RepetitionEmptyTokenTree, } #[derive(Debug, PartialEq, Eq, Clone)] pub enum ExpandError { NoMatchingRule, UnexpectedToken, BindingError(String), ConversionError, ProcMacroError(tt::ExpansionError), UnresolvedProcMacro, Other(String), } impl From for ExpandError { fn from(it: tt::ExpansionError) -> Self { ExpandError::ProcMacroError(it) } } impl fmt::Display for ExpandError { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match self { ExpandError::NoMatchingRule => f.write_str("no rule matches input tokens"), ExpandError::UnexpectedToken => f.write_str("unexpected token in input"), ExpandError::BindingError(e) => f.write_str(e), ExpandError::ConversionError => f.write_str("could not convert tokens"), ExpandError::ProcMacroError(e) => e.fmt(f), ExpandError::UnresolvedProcMacro => f.write_str("unresolved proc macro"), ExpandError::Other(e) => f.write_str(e), } } } pub use crate::{ syntax_bridge::{ parse_exprs_with_sep, parse_to_token_tree, syntax_node_to_token_tree, token_tree_to_syntax_node, }, token_map::TokenMap, }; /// This struct contains AST for a single `macro_rules` definition. What might /// be very confusing is that AST has almost exactly the same shape as /// `tt::TokenTree`, but there's a crucial difference: in macro rules, `$ident` /// and `$()*` have special meaning (see `Var` and `Repeat` data structures) #[derive(Clone, Debug, PartialEq, Eq)] pub struct MacroRules { rules: Vec, /// Highest id of the token we have in TokenMap shift: Shift, } /// For Macro 2.0 #[derive(Clone, Debug, PartialEq, Eq)] pub struct MacroDef { rules: Vec, /// Highest id of the token we have in TokenMap shift: Shift, } #[derive(Clone, Debug, PartialEq, Eq)] struct Rule { lhs: MetaTemplate, rhs: MetaTemplate, } #[derive(Clone, Copy, Debug, PartialEq, Eq)] struct Shift(u32); impl Shift { fn new(tt: &tt::Subtree) -> Shift { // Note that TokenId is started from zero, // We have to add 1 to prevent duplication. let value = max_id(tt).map_or(0, |it| it + 1); return Shift(value); // Find the max token id inside a subtree fn max_id(subtree: &tt::Subtree) -> Option { subtree .token_trees .iter() .filter_map(|tt| match tt { tt::TokenTree::Subtree(subtree) => { let tree_id = max_id(subtree); match subtree.delimiter { Some(it) if it.id != tt::TokenId::unspecified() => { Some(tree_id.map_or(it.id.0, |t| t.max(it.id.0))) } _ => tree_id, } } tt::TokenTree::Leaf(tt::Leaf::Ident(ident)) if ident.id != tt::TokenId::unspecified() => { Some(ident.id.0) } _ => None, }) .max() } } /// Shift given TokenTree token id fn shift_all(self, tt: &mut tt::Subtree) { for t in &mut tt.token_trees { match t { tt::TokenTree::Leaf(leaf) => match leaf { tt::Leaf::Ident(ident) => ident.id = self.shift(ident.id), tt::Leaf::Punct(punct) => punct.id = self.shift(punct.id), tt::Leaf::Literal(lit) => lit.id = self.shift(lit.id), }, tt::TokenTree::Subtree(tt) => { if let Some(it) = tt.delimiter.as_mut() { it.id = self.shift(it.id); }; self.shift_all(tt) } } } } fn shift(self, id: tt::TokenId) -> tt::TokenId { if id == tt::TokenId::unspecified() { return id; } tt::TokenId(id.0 + self.0) } fn unshift(self, id: tt::TokenId) -> Option { id.0.checked_sub(self.0).map(tt::TokenId) } } #[derive(Debug, Eq, PartialEq)] pub enum Origin { Def, Call, } impl MacroRules { pub fn parse(tt: &tt::Subtree) -> Result { // Note: this parsing can be implemented using mbe machinery itself, by // matching against `$($lhs:tt => $rhs:tt);*` pattern, but implementing // manually seems easier. let mut src = TtIter::new(tt); let mut rules = Vec::new(); while src.len() > 0 { let rule = Rule::parse(&mut src, true)?; rules.push(rule); if let Err(()) = src.expect_char(';') { if src.len() > 0 { return Err(ParseError::Expected("expected `;`".to_string())); } break; } } for rule in &rules { validate(&rule.lhs)?; } Ok(MacroRules { rules, shift: Shift::new(tt) }) } pub fn expand(&self, tt: &tt::Subtree) -> ExpandResult { // apply shift let mut tt = tt.clone(); self.shift.shift_all(&mut tt); expander::expand_rules(&self.rules, &tt) } pub fn map_id_down(&self, id: tt::TokenId) -> tt::TokenId { self.shift.shift(id) } pub fn map_id_up(&self, id: tt::TokenId) -> (tt::TokenId, Origin) { match self.shift.unshift(id) { Some(id) => (id, Origin::Call), None => (id, Origin::Def), } } } impl MacroDef { pub fn parse(tt: &tt::Subtree) -> Result { let mut src = TtIter::new(tt); let mut rules = Vec::new(); if Some(tt::DelimiterKind::Brace) == tt.delimiter_kind() { cov_mark::hit!(parse_macro_def_rules); while src.len() > 0 { let rule = Rule::parse(&mut src, true)?; rules.push(rule); if let Err(()) = src.expect_any_char(&[';', ',']) { if src.len() > 0 { return Err(ParseError::Expected( "expected `;` or `,` to delimit rules".to_string(), )); } break; } } } else { cov_mark::hit!(parse_macro_def_simple); let rule = Rule::parse(&mut src, false)?; if src.len() != 0 { return Err(ParseError::Expected("remain tokens in macro def".to_string())); } rules.push(rule); } for rule in &rules { validate(&rule.lhs)?; } Ok(MacroDef { rules, shift: Shift::new(tt) }) } pub fn expand(&self, tt: &tt::Subtree) -> ExpandResult { // apply shift let mut tt = tt.clone(); self.shift.shift_all(&mut tt); expander::expand_rules(&self.rules, &tt) } pub fn map_id_down(&self, id: tt::TokenId) -> tt::TokenId { self.shift.shift(id) } pub fn map_id_up(&self, id: tt::TokenId) -> (tt::TokenId, Origin) { match self.shift.unshift(id) { Some(id) => (id, Origin::Call), None => (id, Origin::Def), } } } impl Rule { fn parse(src: &mut TtIter, expect_arrow: bool) -> Result { let lhs = src .expect_subtree() .map_err(|()| ParseError::Expected("expected subtree".to_string()))?; if expect_arrow { src.expect_char('=').map_err(|()| ParseError::Expected("expected `=`".to_string()))?; src.expect_char('>').map_err(|()| ParseError::Expected("expected `>`".to_string()))?; } let rhs = src .expect_subtree() .map_err(|()| ParseError::Expected("expected subtree".to_string()))?; let lhs = MetaTemplate(parse_pattern(lhs)?); let rhs = MetaTemplate(parse_template(rhs)?); Ok(crate::Rule { lhs, rhs }) } } fn validate(pattern: &MetaTemplate) -> Result<(), ParseError> { for op in pattern.iter() { match op { Op::Subtree { tokens, .. } => validate(tokens)?, Op::Repeat { tokens: subtree, separator, .. } => { // Checks that no repetition which could match an empty token // https://github.com/rust-lang/rust/blob/a58b1ed44f5e06976de2bdc4d7dc81c36a96934f/src/librustc_expand/mbe/macro_rules.rs#L558 if separator.is_none() && subtree.iter().all(|child_op| { match child_op { Op::Var { kind, .. } => { // vis is optional if kind.as_ref().map_or(false, |it| it == "vis") { return true; } } Op::Repeat { kind, .. } => { return matches!( kind, parser::RepeatKind::ZeroOrMore | parser::RepeatKind::ZeroOrOne ) } Op::Leaf(_) => {} Op::Subtree { .. } => {} } false }) { return Err(ParseError::RepetitionEmptyTokenTree); } validate(subtree)? } _ => (), } } Ok(()) } #[derive(Debug, Clone, Eq, PartialEq)] pub struct ExpandResult { pub value: T, pub err: Option, } impl ExpandResult { pub fn ok(value: T) -> Self { Self { value, err: None } } pub fn only_err(err: ExpandError) -> Self where T: Default, { Self { value: Default::default(), err: Some(err) } } pub fn str_err(err: String) -> Self where T: Default, { Self::only_err(ExpandError::Other(err)) } pub fn map(self, f: impl FnOnce(T) -> U) -> ExpandResult { ExpandResult { value: f(self.value), err: self.err } } pub fn result(self) -> Result { self.err.map_or(Ok(self.value), Err) } } impl From> for ExpandResult { fn from(result: Result) -> Self { result.map_or_else(Self::only_err, Self::ok) } }