use rustc_data_structures::fx::FxHashSet; use rustc_hir::def_id::DefId; use rustc_infer::infer::canonical::{Canonical, QueryResponse}; use rustc_infer::infer::TyCtxtInferExt; use rustc_infer::traits::TraitEngineExt as _; use rustc_middle::ty::query::Providers; use rustc_middle::ty::subst::{InternalSubsts, Subst}; use rustc_middle::ty::{self, EarlyBinder, ParamEnvAnd, Ty, TyCtxt}; use rustc_span::source_map::{Span, DUMMY_SP}; use rustc_trait_selection::traits::query::dropck_outlives::trivial_dropck_outlives; use rustc_trait_selection::traits::query::dropck_outlives::{ DropckConstraint, DropckOutlivesResult, }; use rustc_trait_selection::traits::query::normalize::AtExt; use rustc_trait_selection::traits::query::{CanonicalTyGoal, NoSolution}; use rustc_trait_selection::traits::{ Normalized, ObligationCause, TraitEngine, TraitEngineExt as _, }; pub(crate) fn provide(p: &mut Providers) { *p = Providers { dropck_outlives, adt_dtorck_constraint, ..*p }; } fn dropck_outlives<'tcx>( tcx: TyCtxt<'tcx>, canonical_goal: CanonicalTyGoal<'tcx>, ) -> Result<&'tcx Canonical<'tcx, QueryResponse<'tcx, DropckOutlivesResult<'tcx>>>, NoSolution> { debug!("dropck_outlives(goal={:#?})", canonical_goal); tcx.infer_ctxt().enter_with_canonical( DUMMY_SP, &canonical_goal, |ref infcx, goal, canonical_inference_vars| { let tcx = infcx.tcx; let ParamEnvAnd { param_env, value: for_ty } = goal; let mut result = DropckOutlivesResult { kinds: vec![], overflows: vec![] }; // A stack of types left to process. Each round, we pop // something from the stack and invoke // `dtorck_constraint_for_ty`. This may produce new types that // have to be pushed on the stack. This continues until we have explored // all the reachable types from the type `for_ty`. // // Example: Imagine that we have the following code: // // ```rust // struct A { // value: B, // children: Vec, // } // // struct B { // value: u32 // } // // fn f() { // let a: A = ...; // .. // } // here, `a` is dropped // ``` // // at the point where `a` is dropped, we need to figure out // which types inside of `a` contain region data that may be // accessed by any destructors in `a`. We begin by pushing `A` // onto the stack, as that is the type of `a`. We will then // invoke `dtorck_constraint_for_ty` which will expand `A` // into the types of its fields `(B, Vec)`. These will get // pushed onto the stack. Eventually, expanding `Vec` will // lead to us trying to push `A` a second time -- to prevent // infinite recursion, we notice that `A` was already pushed // once and stop. let mut ty_stack = vec![(for_ty, 0)]; // Set used to detect infinite recursion. let mut ty_set = FxHashSet::default(); let mut fulfill_cx = >::new(infcx.tcx); let cause = ObligationCause::dummy(); let mut constraints = DropckConstraint::empty(); while let Some((ty, depth)) = ty_stack.pop() { debug!( "{} kinds, {} overflows, {} ty_stack", result.kinds.len(), result.overflows.len(), ty_stack.len() ); dtorck_constraint_for_ty(tcx, DUMMY_SP, for_ty, depth, ty, &mut constraints)?; // "outlives" represent types/regions that may be touched // by a destructor. result.kinds.append(&mut constraints.outlives); result.overflows.append(&mut constraints.overflows); // If we have even one overflow, we should stop trying to evaluate further -- // chances are, the subsequent overflows for this evaluation won't provide useful // information and will just decrease the speed at which we can emit these errors // (since we'll be printing for just that much longer for the often enormous types // that result here). if !result.overflows.is_empty() { break; } // dtorck types are "types that will get dropped but which // do not themselves define a destructor", more or less. We have // to push them onto the stack to be expanded. for ty in constraints.dtorck_types.drain(..) { match infcx.at(&cause, param_env).normalize(ty) { Ok(Normalized { value: ty, obligations }) => { fulfill_cx.register_predicate_obligations(infcx, obligations); debug!("dropck_outlives: ty from dtorck_types = {:?}", ty); match ty.kind() { // All parameters live for the duration of the // function. ty::Param(..) => {} // A projection that we couldn't resolve - it // might have a destructor. ty::Projection(..) | ty::Opaque(..) => { result.kinds.push(ty.into()); } _ => { if ty_set.insert(ty) { ty_stack.push((ty, depth + 1)); } } } } // We don't actually expect to fail to normalize. // That implies a WF error somewhere else. Err(NoSolution) => { return Err(NoSolution); } } } } debug!("dropck_outlives: result = {:#?}", result); infcx.make_canonicalized_query_response( canonical_inference_vars, result, &mut *fulfill_cx, ) }, ) } /// Returns a set of constraints that needs to be satisfied in /// order for `ty` to be valid for destruction. fn dtorck_constraint_for_ty<'tcx>( tcx: TyCtxt<'tcx>, span: Span, for_ty: Ty<'tcx>, depth: usize, ty: Ty<'tcx>, constraints: &mut DropckConstraint<'tcx>, ) -> Result<(), NoSolution> { debug!("dtorck_constraint_for_ty({:?}, {:?}, {:?}, {:?})", span, for_ty, depth, ty); if !tcx.recursion_limit().value_within_limit(depth) { constraints.overflows.push(ty); return Ok(()); } if trivial_dropck_outlives(tcx, ty) { return Ok(()); } match ty.kind() { ty::Bool | ty::Char | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Str | ty::Never | ty::Foreign(..) | ty::RawPtr(..) | ty::Ref(..) | ty::FnDef(..) | ty::FnPtr(_) | ty::GeneratorWitness(..) => { // these types never have a destructor } ty::Array(ety, _) | ty::Slice(ety) => { // single-element containers, behave like their element rustc_data_structures::stack::ensure_sufficient_stack(|| { dtorck_constraint_for_ty(tcx, span, for_ty, depth + 1, *ety, constraints) })?; } ty::Tuple(tys) => rustc_data_structures::stack::ensure_sufficient_stack(|| { for ty in tys.iter() { dtorck_constraint_for_ty(tcx, span, for_ty, depth + 1, ty, constraints)?; } Ok::<_, NoSolution>(()) })?, ty::Closure(_, substs) => { if !substs.as_closure().is_valid() { // By the time this code runs, all type variables ought to // be fully resolved. tcx.sess.delay_span_bug( span, &format!("upvar_tys for closure not found. Expected capture information for closure {}", ty,), ); return Err(NoSolution); } rustc_data_structures::stack::ensure_sufficient_stack(|| { for ty in substs.as_closure().upvar_tys() { dtorck_constraint_for_ty(tcx, span, for_ty, depth + 1, ty, constraints)?; } Ok::<_, NoSolution>(()) })? } ty::Generator(_, substs, _movability) => { // rust-lang/rust#49918: types can be constructed, stored // in the interior, and sit idle when generator yields // (and is subsequently dropped). // // It would be nice to descend into interior of a // generator to determine what effects dropping it might // have (by looking at any drop effects associated with // its interior). // // However, the interior's representation uses things like // GeneratorWitness that explicitly assume they are not // traversed in such a manner. So instead, we will // simplify things for now by treating all generators as // if they were like trait objects, where its upvars must // all be alive for the generator's (potential) // destructor. // // In particular, skipping over `_interior` is safe // because any side-effects from dropping `_interior` can // only take place through references with lifetimes // derived from lifetimes attached to the upvars and resume // argument, and we *do* incorporate those here. if !substs.as_generator().is_valid() { // By the time this code runs, all type variables ought to // be fully resolved. tcx.sess.delay_span_bug( span, &format!("upvar_tys for generator not found. Expected capture information for generator {}", ty,), ); return Err(NoSolution); } constraints.outlives.extend( substs .as_generator() .upvar_tys() .map(|t| -> ty::subst::GenericArg<'tcx> { t.into() }), ); constraints.outlives.push(substs.as_generator().resume_ty().into()); } ty::Adt(def, substs) => { let DropckConstraint { dtorck_types, outlives, overflows } = tcx.at(span).adt_dtorck_constraint(def.did())?; // FIXME: we can try to recursively `dtorck_constraint_on_ty` // there, but that needs some way to handle cycles. constraints .dtorck_types .extend(dtorck_types.iter().map(|t| EarlyBinder(*t).subst(tcx, substs))); constraints .outlives .extend(outlives.iter().map(|t| EarlyBinder(*t).subst(tcx, substs))); constraints .overflows .extend(overflows.iter().map(|t| EarlyBinder(*t).subst(tcx, substs))); } // Objects must be alive in order for their destructor // to be called. ty::Dynamic(..) => { constraints.outlives.push(ty.into()); } // Types that can't be resolved. Pass them forward. ty::Projection(..) | ty::Opaque(..) | ty::Param(..) => { constraints.dtorck_types.push(ty); } ty::Placeholder(..) | ty::Bound(..) | ty::Infer(..) | ty::Error(_) => { // By the time this code runs, all type variables ought to // be fully resolved. return Err(NoSolution); } } Ok(()) } /// Calculates the dtorck constraint for a type. pub(crate) fn adt_dtorck_constraint( tcx: TyCtxt<'_>, def_id: DefId, ) -> Result<&DropckConstraint<'_>, NoSolution> { let def = tcx.adt_def(def_id); let span = tcx.def_span(def_id); debug!("dtorck_constraint: {:?}", def); if def.is_phantom_data() { // The first generic parameter here is guaranteed to be a type because it's // `PhantomData`. let substs = InternalSubsts::identity_for_item(tcx, def_id); assert_eq!(substs.len(), 1); let result = DropckConstraint { outlives: vec![], dtorck_types: vec![substs.type_at(0)], overflows: vec![], }; debug!("dtorck_constraint: {:?} => {:?}", def, result); return Ok(tcx.arena.alloc(result)); } let mut result = DropckConstraint::empty(); for field in def.all_fields() { let fty = tcx.type_of(field.did); dtorck_constraint_for_ty(tcx, span, fty, 0, fty, &mut result)?; } result.outlives.extend(tcx.destructor_constraints(def)); dedup_dtorck_constraint(&mut result); debug!("dtorck_constraint: {:?} => {:?}", def, result); Ok(tcx.arena.alloc(result)) } fn dedup_dtorck_constraint(c: &mut DropckConstraint<'_>) { let mut outlives = FxHashSet::default(); let mut dtorck_types = FxHashSet::default(); c.outlives.retain(|&val| outlives.replace(val).is_none()); c.dtorck_types.retain(|&val| dtorck_types.replace(val).is_none()); }