use std::env; use std::ffi::{OsStr, OsString}; use std::fmt::Display; use std::path::{Path, PathBuf}; use std::process::{Command, Stdio}; fn detect_llvm_link() -> (&'static str, &'static str) { // Force the link mode we want, preferring static by default, but // possibly overridden by `configure --enable-llvm-link-shared`. if tracked_env_var_os("LLVM_LINK_SHARED").is_some() { ("dylib", "--link-shared") } else { ("static", "--link-static") } } // Because Cargo adds the compiler's dylib path to our library search path, llvm-config may // break: the dylib path for the compiler, as of this writing, contains a copy of the LLVM // shared library, which means that when our freshly built llvm-config goes to load it's // associated LLVM, it actually loads the compiler's LLVM. In particular when building the first // compiler (i.e., in stage 0) that's a problem, as the compiler's LLVM is likely different from // the one we want to use. As such, we restore the environment to what bootstrap saw. This isn't // perfect -- we might actually want to see something from Cargo's added library paths -- but // for now it works. fn restore_library_path() { let key = tracked_env_var_os("REAL_LIBRARY_PATH_VAR").expect("REAL_LIBRARY_PATH_VAR"); if let Some(env) = tracked_env_var_os("REAL_LIBRARY_PATH") { env::set_var(&key, &env); } else { env::remove_var(&key); } } /// Reads an environment variable and adds it to dependencies. /// Supposed to be used for all variables except those set for build scripts by cargo /// fn tracked_env_var_os + Display>(key: K) -> Option { println!("cargo:rerun-if-env-changed={}", key); env::var_os(key) } fn rerun_if_changed_anything_in_dir(dir: &Path) { let mut stack = dir .read_dir() .unwrap() .map(|e| e.unwrap()) .filter(|e| &*e.file_name() != ".git") .collect::>(); while let Some(entry) = stack.pop() { let path = entry.path(); if entry.file_type().unwrap().is_dir() { stack.extend(path.read_dir().unwrap().map(|e| e.unwrap())); } else { println!("cargo:rerun-if-changed={}", path.display()); } } } #[track_caller] fn output(cmd: &mut Command) -> String { let output = match cmd.stderr(Stdio::inherit()).output() { Ok(status) => status, Err(e) => { println!("\n\nfailed to execute command: {:?}\nerror: {}\n\n", cmd, e); std::process::exit(1); } }; if !output.status.success() { panic!( "command did not execute successfully: {:?}\n\ expected success, got: {}", cmd, output.status ); } String::from_utf8(output.stdout).unwrap() } fn main() { if tracked_env_var_os("RUST_CHECK").is_some() { // If we're just running `check`, there's no need for LLVM to be built. return; } restore_library_path(); let target = env::var("TARGET").expect("TARGET was not set"); let llvm_config = tracked_env_var_os("LLVM_CONFIG").map(|x| Some(PathBuf::from(x))).unwrap_or_else(|| { if let Some(dir) = tracked_env_var_os("CARGO_TARGET_DIR").map(PathBuf::from) { let to_test = dir .parent() .unwrap() .parent() .unwrap() .join(&target) .join("llvm/bin/llvm-config"); if Command::new(&to_test).output().is_ok() { return Some(to_test); } } None }); if let Some(llvm_config) = &llvm_config { println!("cargo:rerun-if-changed={}", llvm_config.display()); } let llvm_config = llvm_config.unwrap_or_else(|| PathBuf::from("llvm-config")); // Test whether we're cross-compiling LLVM. This is a pretty rare case // currently where we're producing an LLVM for a different platform than // what this build script is currently running on. // // In that case, there's no guarantee that we can actually run the target, // so the build system works around this by giving us the LLVM_CONFIG for // the host platform. This only really works if the host LLVM and target // LLVM are compiled the same way, but for us that's typically the case. // // We *want* detect this cross compiling situation by asking llvm-config // what its host-target is. If that's not the TARGET, then we're cross // compiling. Unfortunately `llvm-config` seems either be buggy, or we're // misconfiguring it, because the `i686-pc-windows-gnu` build of LLVM will // report itself with a `--host-target` of `x86_64-pc-windows-gnu`. This // tricks us into thinking we're doing a cross build when we aren't, so // havoc ensues. // // In any case, if we're cross compiling, this generally just means that we // can't trust all the output of llvm-config because it might be targeted // for the host rather than the target. As a result a bunch of blocks below // are gated on `if !is_crossed` let target = env::var("TARGET").expect("TARGET was not set"); let host = env::var("HOST").expect("HOST was not set"); let is_crossed = target != host; let optional_components = &[ "x86", "arm", "aarch64", "amdgpu", "avr", "m68k", "mips", "powerpc", "systemz", "jsbackend", "webassembly", "msp430", "sparc", "nvptx", "hexagon", "riscv", "bpf", ]; let required_components = &[ "ipo", "bitreader", "bitwriter", "linker", "asmparser", "lto", "coverage", "instrumentation", ]; let components = output(Command::new(&llvm_config).arg("--components")); let mut components = components.split_whitespace().collect::>(); components.retain(|c| optional_components.contains(c) || required_components.contains(c)); for component in required_components { if !components.contains(component) { panic!("require llvm component {} but wasn't found", component); } } for component in components.iter() { println!("cargo:rustc-cfg=llvm_component=\"{}\"", component); } // Link in our own LLVM shims, compiled with the same flags as LLVM let mut cmd = Command::new(&llvm_config); cmd.arg("--cxxflags"); let cxxflags = output(&mut cmd); let mut cfg = cc::Build::new(); cfg.warnings(false); for flag in cxxflags.split_whitespace() { // Ignore flags like `-m64` when we're doing a cross build if is_crossed && flag.starts_with("-m") { continue; } if flag.starts_with("-flto") { continue; } // -Wdate-time is not supported by the netbsd cross compiler if is_crossed && target.contains("netbsd") && flag.contains("date-time") { continue; } // Include path contains host directory, replace it with target if is_crossed && flag.starts_with("-I") { cfg.flag(&flag.replace(&host, &target)); continue; } cfg.flag(flag); } for component in &components { let mut flag = String::from("LLVM_COMPONENT_"); flag.push_str(&component.to_uppercase()); cfg.define(&flag, None); } if tracked_env_var_os("LLVM_RUSTLLVM").is_some() { cfg.define("LLVM_RUSTLLVM", None); } if tracked_env_var_os("LLVM_NDEBUG").is_some() { cfg.define("NDEBUG", None); cfg.debug(false); } rerun_if_changed_anything_in_dir(Path::new("llvm-wrapper")); cfg.file("llvm-wrapper/PassWrapper.cpp") .file("llvm-wrapper/RustWrapper.cpp") .file("llvm-wrapper/ArchiveWrapper.cpp") .file("llvm-wrapper/CoverageMappingWrapper.cpp") .file("llvm-wrapper/Linker.cpp") .cpp(true) .cpp_link_stdlib(None) // we handle this below .compile("llvm-wrapper"); let (llvm_kind, llvm_link_arg) = detect_llvm_link(); // Link in all LLVM libraries, if we're using the "wrong" llvm-config then // we don't pick up system libs because unfortunately they're for the host // of llvm-config, not the target that we're attempting to link. let mut cmd = Command::new(&llvm_config); cmd.arg(llvm_link_arg).arg("--libs"); if !is_crossed { cmd.arg("--system-libs"); } else if target.contains("windows-gnu") { println!("cargo:rustc-link-lib=shell32"); println!("cargo:rustc-link-lib=uuid"); } else if target.contains("netbsd") || target.contains("haiku") || target.contains("darwin") { println!("cargo:rustc-link-lib=z"); } cmd.args(&components); for lib in output(&mut cmd).split_whitespace() { let name = if let Some(stripped) = lib.strip_prefix("-l") { stripped } else if let Some(stripped) = lib.strip_prefix('-') { stripped } else if Path::new(lib).exists() { // On MSVC llvm-config will print the full name to libraries, but // we're only interested in the name part let name = Path::new(lib).file_name().unwrap().to_str().unwrap(); name.trim_end_matches(".lib") } else if lib.ends_with(".lib") { // Some MSVC libraries just come up with `.lib` tacked on, so chop // that off lib.trim_end_matches(".lib") } else { continue; }; // Don't need or want this library, but LLVM's CMake build system // doesn't provide a way to disable it, so filter it here even though we // may or may not have built it. We don't reference anything from this // library and it otherwise may just pull in extra dependencies on // libedit which we don't want if name == "LLVMLineEditor" { continue; } let kind = if name.starts_with("LLVM") { llvm_kind } else { "dylib" }; println!("cargo:rustc-link-lib={}={}", kind, name); } // LLVM ldflags // // If we're a cross-compile of LLVM then unfortunately we can't trust these // ldflags (largely where all the LLVM libs are located). Currently just // hack around this by replacing the host triple with the target and pray // that those -L directories are the same! let mut cmd = Command::new(&llvm_config); cmd.arg(llvm_link_arg).arg("--ldflags"); for lib in output(&mut cmd).split_whitespace() { if is_crossed { if let Some(stripped) = lib.strip_prefix("-LIBPATH:") { println!("cargo:rustc-link-search=native={}", stripped.replace(&host, &target)); } else if let Some(stripped) = lib.strip_prefix("-L") { println!("cargo:rustc-link-search=native={}", stripped.replace(&host, &target)); } } else if let Some(stripped) = lib.strip_prefix("-LIBPATH:") { println!("cargo:rustc-link-search=native={}", stripped); } else if let Some(stripped) = lib.strip_prefix("-l") { println!("cargo:rustc-link-lib={}", stripped); } else if let Some(stripped) = lib.strip_prefix("-L") { println!("cargo:rustc-link-search=native={}", stripped); } } // Some LLVM linker flags (-L and -l) may be needed even when linking // rustc_llvm, for example when using static libc++, we may need to // manually specify the library search path and -ldl -lpthread as link // dependencies. let llvm_linker_flags = tracked_env_var_os("LLVM_LINKER_FLAGS"); if let Some(s) = llvm_linker_flags { for lib in s.into_string().unwrap().split_whitespace() { if let Some(stripped) = lib.strip_prefix("-l") { println!("cargo:rustc-link-lib={}", stripped); } else if let Some(stripped) = lib.strip_prefix("-L") { println!("cargo:rustc-link-search=native={}", stripped); } } } let llvm_static_stdcpp = tracked_env_var_os("LLVM_STATIC_STDCPP"); let llvm_use_libcxx = tracked_env_var_os("LLVM_USE_LIBCXX"); let stdcppname = if target.contains("openbsd") { if target.contains("sparc64") { "estdc++" } else { "c++" } } else if target.contains("freebsd") { "c++" } else if target.contains("darwin") { "c++" } else if target.contains("netbsd") && llvm_static_stdcpp.is_some() { // NetBSD uses a separate library when relocation is required "stdc++_pic" } else if llvm_use_libcxx.is_some() { "c++" } else { "stdc++" }; // RISC-V GCC erroneously requires libatomic for sub-word // atomic operations. FreeBSD uses Clang as its system // compiler and provides no libatomic in its base system so // does not want this. if !target.contains("freebsd") && target.starts_with("riscv") { println!("cargo:rustc-link-lib=atomic"); } // C++ runtime library if !target.contains("msvc") { if let Some(s) = llvm_static_stdcpp { assert!(!cxxflags.contains("stdlib=libc++")); let path = PathBuf::from(s); println!("cargo:rustc-link-search=native={}", path.parent().unwrap().display()); if target.contains("windows") { println!("cargo:rustc-link-lib=static:-bundle={}", stdcppname); } else { println!("cargo:rustc-link-lib=static={}", stdcppname); } } else if cxxflags.contains("stdlib=libc++") { println!("cargo:rustc-link-lib=c++"); } else { println!("cargo:rustc-link-lib={}", stdcppname); } } // Libstdc++ depends on pthread which Rust doesn't link on MinGW // since nothing else requires it. if target.contains("windows-gnu") { println!("cargo:rustc-link-lib=static:-bundle=pthread"); } }