// Copyright 2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! A pass that annotates every item and method with its stability level, //! propagating default levels lexically from parent to children ast nodes. use session::Session; use lint; use middle::def; use middle::ty; use middle::privacy::PublicItems; use metadata::csearch; use syntax::parse::token::InternedString; use syntax::codemap::{Span, DUMMY_SP}; use syntax::{attr, visit}; use syntax::ast; use syntax::ast::{Attribute, Block, Crate, DefId, FnDecl, NodeId, Variant}; use syntax::ast::{Item, TypeMethod, Method, Generics, StructField}; use syntax::ast_util::is_local; use syntax::attr::{Stability, AttrMetaMethods}; use syntax::visit::{FnKind, FkMethod, Visitor}; use syntax::feature_gate::emit_feature_warn; use util::nodemap::{NodeMap, DefIdMap, FnvHashSet, FnvHashMap}; use util::ppaux::Repr; use std::mem::replace; /// A stability index, giving the stability level for items and methods. pub struct Index { // Indicates whether this crate has #![feature(staged_api)] staged_api: bool, // stability for crate-local items; unmarked stability == no entry local: NodeMap, // cache for extern-crate items; unmarked stability == entry with None extern_cache: DefIdMap> } // A private tree-walker for producing an Index. struct Annotator<'a> { sess: &'a Session, index: &'a mut Index, parent: Option, export_map: &'a PublicItems, } impl<'a> Annotator<'a> { // Determine the stability for a node based on its attributes and inherited // stability. The stability is recorded in the index and used as the parent. fn annotate(&mut self, id: NodeId, use_parent: bool, attrs: &Vec, item_sp: Span, f: F, required: bool) where F: FnOnce(&mut Annotator), { debug!("annotate(id = {:?}, attrs = {:?})", id, attrs); match attr::find_stability(self.sess.diagnostic(), attrs, item_sp) { Some(stab) => { debug!("annotate: found {:?}", stab); self.index.local.insert(id, stab.clone()); // Don't inherit #[stable(feature = "rust1", since = "1.0.0")] if stab.level != attr::Stable { let parent = replace(&mut self.parent, Some(stab)); f(self); self.parent = parent; } else { f(self); } } None => { debug!("annotate: not found, use_parent = {:?}, parent = {:?}", use_parent, self.parent); if use_parent { if let Some(stab) = self.parent.clone() { self.index.local.insert(id, stab); } else if self.index.staged_api && required && self.export_map.contains(&id) && !self.sess.opts.test { self.sess.span_err(item_sp, "This node does not have a stability attribute"); } } f(self); } } } } impl<'a, 'v> Visitor<'v> for Annotator<'a> { fn visit_item(&mut self, i: &Item) { // FIXME (#18969): the following is a hack around the fact // that we cannot currently annotate the stability of // `deriving`. Basically, we do *not* allow stability // inheritance on trait implementations, so that derived // implementations appear to be unannotated. This then allows // derived implementations to be automatically tagged with the // stability of the trait. This is WRONG, but expedient to get // libstd stabilized for the 1.0 release. let use_parent = match i.node { ast::ItemImpl(_, _, _, Some(_), _, _) => false, _ => true, }; // In case of a `pub use ;`, we should not error since the stability // is inherited from the module itself let required = match i.node { ast::ItemUse(_) => i.vis != ast::Public, _ => true }; self.annotate(i.id, use_parent, &i.attrs, i.span, |v| visit::walk_item(v, i), required); if let ast::ItemStruct(ref sd, _) = i.node { sd.ctor_id.map(|id| { self.annotate(id, true, &i.attrs, i.span, |_| {}, true) }); } } fn visit_fn(&mut self, fk: FnKind<'v>, _: &'v FnDecl, _: &'v Block, sp: Span, _: NodeId) { if let FkMethod(_, _, meth) = fk { // Methods are not already annotated, so we annotate it self.annotate(meth.id, true, &meth.attrs, sp, |_| {}, true); } // Items defined in a function body have no reason to have // a stability attribute, so we don't recurse. } fn visit_trait_item(&mut self, t: &ast::TraitItem) { let (id, attrs, sp) = match *t { ast::RequiredMethod(TypeMethod {id, ref attrs, span, ..}) => (id, attrs, span), // work around lack of pattern matching for @ types ast::ProvidedMethod(ref method) => { match *method { Method {ref attrs, id, span, ..} => (id, attrs, span), } } ast::TypeTraitItem(ref typedef) => { (typedef.ty_param.id, &typedef.attrs, typedef.ty_param.span) } }; self.annotate(id, true, attrs, sp, |v| visit::walk_trait_item(v, t), true); } fn visit_variant(&mut self, var: &Variant, g: &'v Generics) { self.annotate(var.node.id, true, &var.node.attrs, var.span, |v| visit::walk_variant(v, var, g), true) } fn visit_struct_field(&mut self, s: &StructField) { self.annotate(s.node.id, true, &s.node.attrs, s.span, |v| visit::walk_struct_field(v, s), true); } fn visit_foreign_item(&mut self, i: &ast::ForeignItem) { self.annotate(i.id, true, &i.attrs, i.span, |_| {}, true); } } impl Index { /// Construct the stability index for a crate being compiled. pub fn build(&mut self, sess: &Session, krate: &Crate, export_map: &PublicItems) { if !self.staged_api { return; } let mut annotator = Annotator { sess: sess, index: self, parent: None, export_map: export_map, }; annotator.annotate(ast::CRATE_NODE_ID, true, &krate.attrs, krate.span, |v| visit::walk_crate(v, krate), true); } pub fn new(krate: &Crate) -> Index { let mut staged_api = false; for attr in &krate.attrs { if &attr.name()[..] == "staged_api" { match attr.node.value.node { ast::MetaWord(_) => { attr::mark_used(attr); staged_api = true; } _ => (/*pass*/) } } } Index { staged_api: staged_api, local: NodeMap(), extern_cache: DefIdMap() } } } /// Cross-references the feature names of unstable APIs with enabled /// features and possibly prints errors. Returns a list of all /// features used. pub fn check_unstable_api_usage(tcx: &ty::ctxt) -> FnvHashMap { let ref active_lib_features = tcx.sess.features.borrow().declared_lib_features; // Put the active features into a map for quick lookup let active_features = active_lib_features.iter().map(|&(ref s, _)| s.clone()).collect(); let mut checker = Checker { tcx: tcx, active_features: active_features, used_features: FnvHashMap() }; let krate = tcx.map.krate(); visit::walk_crate(&mut checker, krate); let used_features = checker.used_features; return used_features; } struct Checker<'a, 'tcx: 'a> { tcx: &'a ty::ctxt<'tcx>, active_features: FnvHashSet, used_features: FnvHashMap } impl<'a, 'tcx> Checker<'a, 'tcx> { fn check(&mut self, id: ast::DefId, span: Span, stab: &Option) { // Only the cross-crate scenario matters when checking unstable APIs let cross_crate = !is_local(id); if !cross_crate { return } match *stab { Some(Stability { level: attr::Unstable, ref feature, ref reason, .. }) => { self.used_features.insert(feature.clone(), attr::Unstable); if !self.active_features.contains(feature) { let msg = match *reason { Some(ref r) => format!("use of unstable library feature '{}': {}", &feature, &r), None => format!("use of unstable library feature '{}'", &feature) }; emit_feature_warn(&self.tcx.sess.parse_sess.span_diagnostic, &feature, span, &msg); } } Some(Stability { level, ref feature, .. }) => { self.used_features.insert(feature.clone(), level); // Stable APIs are always ok to call and deprecated APIs are // handled by a lint. } None => { // This is an 'unmarked' API, which should not exist // in the standard library. if self.tcx.sess.features.borrow().unmarked_api { self.tcx.sess.span_warn(span, "use of unmarked library feature"); self.tcx.sess.span_note(span, "this is either a bug in the library you are \ using or a bug in the compiler - please \ report it in both places"); } else { self.tcx.sess.span_err(span, "use of unmarked library feature"); self.tcx.sess.span_note(span, "this is either a bug in the library you are \ using or a bug in the compiler - please \ report it in both places"); self.tcx.sess.span_note(span, "use #![feature(unmarked_api)] in the \ crate attributes to override this"); } } } } } impl<'a, 'v, 'tcx> Visitor<'v> for Checker<'a, 'tcx> { fn visit_item(&mut self, item: &ast::Item) { // When compiling with --test we don't enforce stability on the // compiler-generated test module, demarcated with `DUMMY_SP` plus the // name `__test` if item.span == DUMMY_SP && item.ident.as_str() == "__test" { return } check_item(self.tcx, item, true, &mut |id, sp, stab| self.check(id, sp, stab)); visit::walk_item(self, item); } fn visit_expr(&mut self, ex: &ast::Expr) { check_expr(self.tcx, ex, &mut |id, sp, stab| self.check(id, sp, stab)); visit::walk_expr(self, ex); } fn visit_path(&mut self, path: &ast::Path, id: ast::NodeId) { check_path(self.tcx, path, id, &mut |id, sp, stab| self.check(id, sp, stab)); visit::walk_path(self, path) } fn visit_pat(&mut self, pat: &ast::Pat) { check_pat(self.tcx, pat, &mut |id, sp, stab| self.check(id, sp, stab)); visit::walk_pat(self, pat) } } /// Helper for discovering nodes to check for stability pub fn check_item(tcx: &ty::ctxt, item: &ast::Item, warn_about_defns: bool, cb: &mut FnMut(ast::DefId, Span, &Option)) { match item.node { ast::ItemExternCrate(_) => { // compiler-generated `extern crate` items have a dummy span. if item.span == DUMMY_SP { return } let cnum = match tcx.sess.cstore.find_extern_mod_stmt_cnum(item.id) { Some(cnum) => cnum, None => return, }; let id = ast::DefId { krate: cnum, node: ast::CRATE_NODE_ID }; maybe_do_stability_check(tcx, id, item.span, cb); } // For implementations of traits, check the stability of each item // individually as it's possible to have a stable trait with unstable // items. ast::ItemImpl(_, _, _, Some(ref t), _, ref impl_items) => { let trait_did = tcx.def_map.borrow()[t.ref_id].def_id(); let trait_items = ty::trait_items(tcx, trait_did); for impl_item in impl_items { let (ident, span) = match **impl_item { ast::MethodImplItem(ref method) => { (match method.node { ast::MethDecl(ident, _, _, _, _, _, _, _) => ident, ast::MethMac(..) => unreachable!(), }, method.span) } ast::TypeImplItem(ref typedef) => { (typedef.ident, typedef.span) } }; let item = trait_items.iter().find(|item| { item.name() == ident.name }).unwrap(); if warn_about_defns { maybe_do_stability_check(tcx, item.def_id(), span, cb); } } } _ => (/* pass */) } } /// Helper for discovering nodes to check for stability pub fn check_expr(tcx: &ty::ctxt, e: &ast::Expr, cb: &mut FnMut(ast::DefId, Span, &Option)) { let span; let id = match e.node { ast::ExprMethodCall(i, _, _) => { span = i.span; let method_call = ty::MethodCall::expr(e.id); match tcx.method_map.borrow().get(&method_call) { Some(method) => { match method.origin { ty::MethodStatic(def_id) => { def_id } ty::MethodStaticClosure(def_id) => { def_id } ty::MethodTypeParam(ty::MethodParam { ref trait_ref, method_num: index, .. }) | ty::MethodTraitObject(ty::MethodObject { ref trait_ref, method_num: index, .. }) => { ty::trait_item(tcx, trait_ref.def_id, index).def_id() } } } None => return } } ast::ExprField(ref base_e, ref field) => { span = field.span; match ty::expr_ty_adjusted(tcx, base_e).sty { ty::ty_struct(did, _) => { ty::lookup_struct_fields(tcx, did) .iter() .find(|f| f.name == field.node.name) .unwrap_or_else(|| { tcx.sess.span_bug(field.span, "stability::check_expr: unknown named field access") }) .id } _ => tcx.sess.span_bug(e.span, "stability::check_expr: named field access on non-struct") } } ast::ExprTupField(ref base_e, ref field) => { span = field.span; match ty::expr_ty_adjusted(tcx, base_e).sty { ty::ty_struct(did, _) => { ty::lookup_struct_fields(tcx, did) .get(field.node) .unwrap_or_else(|| { tcx.sess.span_bug(field.span, "stability::check_expr: unknown unnamed field access") }) .id } ty::ty_tup(..) => return, _ => tcx.sess.span_bug(e.span, "stability::check_expr: unnamed field access on \ something other than a tuple or struct") } } ast::ExprStruct(_, ref expr_fields, _) => { let type_ = ty::expr_ty(tcx, e); match type_.sty { ty::ty_struct(did, _) => { let struct_fields = ty::lookup_struct_fields(tcx, did); // check the stability of each field that appears // in the construction expression. for field in expr_fields { let did = struct_fields .iter() .find(|f| f.name == field.ident.node.name) .unwrap_or_else(|| { tcx.sess.span_bug(field.span, "stability::check_expr: unknown named \ field access") }) .id; maybe_do_stability_check(tcx, did, field.span, cb); } // we're done. return } // we don't look at stability attributes on // struct-like enums (yet...), but it's definitely not // a bug to have construct one. ty::ty_enum(..) => return, _ => { tcx.sess.span_bug(e.span, &format!("stability::check_expr: struct construction \ of non-struct, type {:?}", type_.repr(tcx))); } } } _ => return }; maybe_do_stability_check(tcx, id, span, cb); } pub fn check_path(tcx: &ty::ctxt, path: &ast::Path, id: ast::NodeId, cb: &mut FnMut(ast::DefId, Span, &Option)) { match tcx.def_map.borrow().get(&id).map(|d| d.full_def()) { Some(def::DefPrimTy(..)) => {} Some(def) => { maybe_do_stability_check(tcx, def.def_id(), path.span, cb); } None => {} } } pub fn check_pat(tcx: &ty::ctxt, pat: &ast::Pat, cb: &mut FnMut(ast::DefId, Span, &Option)) { debug!("check_pat(pat = {:?})", pat); if is_internal(tcx, pat.span) { return; } let did = match ty::pat_ty_opt(tcx, pat) { Some(&ty::TyS { sty: ty::ty_struct(did, _), .. }) => did, Some(_) | None => return, }; let struct_fields = ty::lookup_struct_fields(tcx, did); match pat.node { // Foo(a, b, c) ast::PatEnum(_, Some(ref pat_fields)) => { for (field, struct_field) in pat_fields.iter().zip(struct_fields.iter()) { // a .. pattern is fine, but anything positional is // not. if let ast::PatWild(ast::PatWildMulti) = field.node { continue } maybe_do_stability_check(tcx, struct_field.id, field.span, cb) } } // Foo { a, b, c } ast::PatStruct(_, ref pat_fields, _) => { for field in pat_fields { let did = struct_fields .iter() .find(|f| f.name == field.node.ident.name) .unwrap_or_else(|| { tcx.sess.span_bug(field.span, "stability::check_pat: unknown named field access") }) .id; maybe_do_stability_check(tcx, did, field.span, cb); } } // everything else is fine. _ => {} } } fn maybe_do_stability_check(tcx: &ty::ctxt, id: ast::DefId, span: Span, cb: &mut FnMut(ast::DefId, Span, &Option)) { if !is_staged_api(tcx, id) { return } if is_internal(tcx, span) { return } let ref stability = lookup(tcx, id); cb(id, span, stability); } fn is_internal(tcx: &ty::ctxt, span: Span) -> bool { tcx.sess.codemap().span_allows_unstable(span) } fn is_staged_api(tcx: &ty::ctxt, id: DefId) -> bool { match ty::trait_item_of_item(tcx, id) { Some(ty::MethodTraitItemId(trait_method_id)) if trait_method_id != id => { is_staged_api(tcx, trait_method_id) } _ if is_local(id) => { tcx.stability.borrow().staged_api } _ => { csearch::is_staged_api(&tcx.sess.cstore, id) } } } /// Lookup the stability for a node, loading external crate /// metadata as necessary. pub fn lookup(tcx: &ty::ctxt, id: DefId) -> Option { debug!("lookup(id={})", id.repr(tcx)); // is this definition the implementation of a trait method? match ty::trait_item_of_item(tcx, id) { Some(ty::MethodTraitItemId(trait_method_id)) if trait_method_id != id => { debug!("lookup: trait_method_id={:?}", trait_method_id); return lookup(tcx, trait_method_id) } _ => {} } let item_stab = if is_local(id) { tcx.stability.borrow().local.get(&id.node).cloned() } else { let stab = csearch::get_stability(&tcx.sess.cstore, id); let mut index = tcx.stability.borrow_mut(); (*index).extern_cache.insert(id, stab.clone()); stab }; item_stab.or_else(|| { if let Some(trait_id) = ty::trait_id_of_impl(tcx, id) { // FIXME (#18969): for the time being, simply use the // stability of the trait to determine the stability of any // unmarked impls for it. See FIXME above for more details. debug!("lookup: trait_id={:?}", trait_id); lookup(tcx, trait_id) } else { None } }) } /// Given the list of enabled features that were not language features (i.e. that /// were expected to be library features), and the list of features used from /// libraries, identify activated features that don't exist and error about them. pub fn check_unused_or_stable_features(sess: &Session, lib_features_used: &FnvHashMap) { let ref declared_lib_features = sess.features.borrow().declared_lib_features; let mut remaining_lib_features: FnvHashMap = declared_lib_features.clone().into_iter().collect(); let stable_msg = "this feature is stable. attribute no longer needed"; for &span in sess.features.borrow().declared_stable_lang_features.iter() { sess.add_lint(lint::builtin::STABLE_FEATURES, ast::CRATE_NODE_ID, span, stable_msg.to_string()); } for (used_lib_feature, level) in lib_features_used.iter() { match remaining_lib_features.remove(used_lib_feature) { Some(span) => { if *level == attr::Stable { sess.add_lint(lint::builtin::STABLE_FEATURES, ast::CRATE_NODE_ID, span, stable_msg.to_string()); } } None => ( /* used but undeclared, handled during the previous ast visit */ ) } } for (_, &span) in remaining_lib_features.iter() { sess.add_lint(lint::builtin::UNUSED_FEATURES, ast::CRATE_NODE_ID, span, "unused or unknown feature".to_string()); } }