use crate::prelude::*; use rustc::ty::subst::SubstsRef; macro_rules! intrinsic_pat { (_) => { _ }; ($name:ident) => { stringify!($name) } } macro_rules! intrinsic_arg { (c $fx:expr, $arg:ident) => { $arg }; (v $fx:expr, $arg:ident) => { $arg.load_scalar($fx) }; } macro_rules! intrinsic_substs { ($substs:expr, $index:expr,) => {}; ($substs:expr, $index:expr, $first:ident $(,$rest:ident)*) => { let $first = $substs.type_at($index); intrinsic_substs!($substs, $index+1, $($rest),*); }; } macro_rules! intrinsic_match { ($fx:expr, $intrinsic:expr, $substs:expr, $args:expr, $( $($name:tt)|+ $(if $cond:expr)?, $(<$($subst:ident),*>)? ($($a:ident $arg:ident),*) $content:block; )*) => { match $intrinsic { $( $(intrinsic_pat!($name))|* $(if $cond)? => { #[allow(unused_parens, non_snake_case)] { $( intrinsic_substs!($substs, 0, $($subst),*); )? if let [$($arg),*] = *$args { let ($($arg),*) = ( $(intrinsic_arg!($a $fx, $arg)),* ); #[warn(unused_parens, non_snake_case)] { $content } } else { bug!("wrong number of args for intrinsic {:?}", $intrinsic); } } } )* _ => unimpl!("unsupported intrinsic {}", $intrinsic), } }; } macro_rules! atomic_binop_return_old { ($fx:expr, $op:ident<$T:ident>($ptr:ident, $src:ident) -> $ret:ident) => { let clif_ty = $fx.clif_type($T).unwrap(); let old = $fx.bcx.ins().load(clif_ty, MemFlags::new(), $ptr, 0); let new = $fx.bcx.ins().$op(old, $src); $fx.bcx.ins().store(MemFlags::new(), new, $ptr, 0); $ret.write_cvalue($fx, CValue::ByVal(old, $fx.layout_of($T))); }; } macro_rules! atomic_minmax { ($fx:expr, $cc:expr, <$T:ident> ($ptr:ident, $src:ident) -> $ret:ident) => { // Read old let clif_ty = $fx.clif_type($T).unwrap(); let old = $fx.bcx.ins().load(clif_ty, MemFlags::new(), $ptr, 0); // Compare let is_eq = $fx.bcx.ins().icmp(IntCC::SignedGreaterThan, old, $src); let new = crate::common::codegen_select(&mut $fx.bcx, is_eq, old, $src); // Write new $fx.bcx.ins().store(MemFlags::new(), new, $ptr, 0); let ret_val = CValue::ByVal(old, $ret.layout()); $ret.write_cvalue($fx, ret_val); }; } pub fn codegen_intrinsic_call<'a, 'tcx: 'a>( fx: &mut FunctionCx<'a, 'tcx, impl Backend>, def_id: DefId, substs: SubstsRef<'tcx>, args: Vec>, destination: Option<(CPlace<'tcx>, BasicBlock)>, ) { let intrinsic = fx.tcx.item_name(def_id).as_str(); let intrinsic = &intrinsic[..]; let ret = match destination { Some((place, _)) => place, None => { // Insert non returning intrinsics here match intrinsic { "abort" => { trap_panic(fx, "Called intrinisc::abort."); } "unreachable" => { trap_unreachable(fx, "[corruption] Called intrinsic::unreachable."); } _ => unimplemented!("unsupported instrinsic {}", intrinsic), } return; } }; let u64_layout = fx.layout_of(fx.tcx.types.u64); let usize_layout = fx.layout_of(fx.tcx.types.usize); intrinsic_match! { fx, intrinsic, substs, args, assume, (c _a) {}; likely | unlikely, (c a) { ret.write_cvalue(fx, a); }; breakpoint, () { fx.bcx.ins().debugtrap(); }; copy | copy_nonoverlapping, (v src, v dst, v count) { let elem_size: u64 = fx.layout_of(elem_ty).size.bytes(); let elem_size = fx .bcx .ins() .iconst(fx.pointer_type, elem_size as i64); assert_eq!(args.len(), 3); let byte_amount = fx.bcx.ins().imul(count, elem_size); if intrinsic.ends_with("_nonoverlapping") { fx.bcx.call_memcpy(fx.module.target_config(), dst, src, byte_amount); } else { fx.bcx.call_memmove(fx.module.target_config(), dst, src, byte_amount); } }; discriminant_value, (c val) { let pointee_layout = fx.layout_of(val.layout().ty.builtin_deref(true).unwrap().ty); let place = CPlace::Addr(val.load_scalar(fx), None, pointee_layout); let discr = crate::base::trans_get_discriminant(fx, place, ret.layout()); ret.write_cvalue(fx, discr); }; size_of, () { let size_of = fx.layout_of(T).size.bytes(); let size_of = CValue::const_val(fx, usize_layout.ty, size_of as i64); ret.write_cvalue(fx, size_of); }; size_of_val, (c ptr) { let layout = fx.layout_of(T); let size = if layout.is_unsized() { let (_ptr, info) = ptr.load_scalar_pair(fx); let (size, _align) = crate::unsize::size_and_align_of_dst(fx, layout.ty, info); size } else { fx .bcx .ins() .iconst(fx.pointer_type, layout.size.bytes() as i64) }; ret.write_cvalue(fx, CValue::ByVal(size, usize_layout)); }; min_align_of, () { let min_align = fx.layout_of(T).align.abi.bytes(); let min_align = CValue::const_val(fx, usize_layout.ty, min_align as i64); ret.write_cvalue(fx, min_align); }; min_align_of_val, (c ptr) { let layout = fx.layout_of(T); let align = if layout.is_unsized() { let (_ptr, info) = ptr.load_scalar_pair(fx); let (_size, align) = crate::unsize::size_and_align_of_dst(fx, layout.ty, info); align } else { fx .bcx .ins() .iconst(fx.pointer_type, layout.align.abi.bytes() as i64) }; ret.write_cvalue(fx, CValue::ByVal(align, usize_layout)); }; type_id, () { let type_id = fx.tcx.type_id_hash(T); let type_id = CValue::const_val(fx, u64_layout.ty, type_id as i64); ret.write_cvalue(fx, type_id); }; _ if intrinsic.starts_with("unchecked_") || intrinsic == "exact_div", (c x, c y) { // FIXME trap on overflow let bin_op = match intrinsic { "unchecked_div" | "exact_div" => BinOp::Div, "unchecked_rem" => BinOp::Rem, "unchecked_shl" => BinOp::Shl, "unchecked_shr" => BinOp::Shr, _ => unimplemented!("intrinsic {}", intrinsic), }; let res = match ret.layout().ty.sty { ty::Uint(_) => crate::base::trans_int_binop( fx, bin_op, x, y, ret.layout().ty, false, ), ty::Int(_) => crate::base::trans_int_binop( fx, bin_op, x, y, ret.layout().ty, true, ), _ => panic!(), }; ret.write_cvalue(fx, res); }; _ if intrinsic.ends_with("_with_overflow"), (c x, c y) { assert_eq!(x.layout().ty, y.layout().ty); let bin_op = match intrinsic { "add_with_overflow" => BinOp::Add, "sub_with_overflow" => BinOp::Sub, "mul_with_overflow" => BinOp::Mul, _ => unimplemented!("intrinsic {}", intrinsic), }; let res = match T.sty { ty::Uint(_) => crate::base::trans_checked_int_binop( fx, bin_op, x, y, ret.layout().ty, false, ), ty::Int(_) => crate::base::trans_checked_int_binop( fx, bin_op, x, y, ret.layout().ty, true, ), _ => panic!(), }; ret.write_cvalue(fx, res); }; _ if intrinsic.starts_with("overflowing_"), (c x, c y) { assert_eq!(x.layout().ty, y.layout().ty); let bin_op = match intrinsic { "overflowing_add" => BinOp::Add, "overflowing_sub" => BinOp::Sub, "overflowing_mul" => BinOp::Mul, _ => unimplemented!("intrinsic {}", intrinsic), }; let res = match T.sty { ty::Uint(_) => crate::base::trans_int_binop( fx, bin_op, x, y, ret.layout().ty, false, ), ty::Int(_) => crate::base::trans_int_binop( fx, bin_op, x, y, ret.layout().ty, true, ), _ => panic!(), }; ret.write_cvalue(fx, res); }; _ if intrinsic.starts_with("saturating_"), (c x, c y) { // FIXME implement saturating behavior assert_eq!(x.layout().ty, y.layout().ty); let bin_op = match intrinsic { "saturating_add" => BinOp::Add, "saturating_sub" => BinOp::Sub, "saturating_mul" => BinOp::Mul, _ => unimplemented!("intrinsic {}", intrinsic), }; let res = match T.sty { ty::Uint(_) => crate::base::trans_int_binop( fx, bin_op, x, y, ret.layout().ty, false, ), ty::Int(_) => crate::base::trans_int_binop( fx, bin_op, x, y, ret.layout().ty, true, ), _ => panic!(), }; ret.write_cvalue(fx, res); }; rotate_left, (v x, v y) { let layout = fx.layout_of(T); let res = fx.bcx.ins().rotl(x, y); ret.write_cvalue(fx, CValue::ByVal(res, layout)); }; rotate_right, (v x, v y) { let layout = fx.layout_of(T); let res = fx.bcx.ins().rotr(x, y); ret.write_cvalue(fx, CValue::ByVal(res, layout)); }; // The only difference between offset and arith_offset is regarding UB. Because Cranelift // doesn't have UB both are codegen'ed the same way offset | arith_offset, (c base, v offset) { let pointee_ty = base.layout().ty.builtin_deref(true).unwrap().ty; let pointee_size = fx.layout_of(pointee_ty).size.bytes(); let ptr_diff = fx.bcx.ins().imul_imm(offset, pointee_size as i64); let base_val = base.load_scalar(fx); let res = fx.bcx.ins().iadd(base_val, ptr_diff); ret.write_cvalue(fx, CValue::ByVal(res, args[0].layout())); }; transmute, (c from) { assert_eq!(from.layout().ty, src_ty); let addr = from.force_stack(fx); let dst_layout = fx.layout_of(dst_ty); ret.write_cvalue(fx, CValue::ByRef(addr, dst_layout)) }; init, () { if ret.layout().abi == Abi::Uninhabited { crate::trap::trap_panic(fx, "[panic] Called intrinsic::init for uninhabited type."); return; } match ret { CPlace::NoPlace(_layout) => {} CPlace::Var(var, layout) => { let clif_ty = fx.clif_type(layout.ty).unwrap(); let val = match clif_ty { types::I8 | types::I16 | types::I32 | types::I64 => fx.bcx.ins().iconst(clif_ty, 0), types::F32 => { let zero = fx.bcx.ins().iconst(types::I32, 0); fx.bcx.ins().bitcast(types::F32, zero) } types::F64 => { let zero = fx.bcx.ins().iconst(types::I64, 0); fx.bcx.ins().bitcast(types::F64, zero) } _ => panic!("clif_type returned {}", clif_ty), }; fx.bcx.def_var(mir_var(var), val); } _ => { let addr = ret.to_addr(fx); let layout = ret.layout(); fx.bcx.emit_small_memset(fx.module.target_config(), addr, 0, layout.size.bytes(), 1); } } }; write_bytes, (c dst, v val, v count) { let pointee_ty = dst.layout().ty.builtin_deref(true).unwrap().ty; let pointee_size = fx.layout_of(pointee_ty).size.bytes(); let count = fx.bcx.ins().imul_imm(count, pointee_size as i64); let dst_ptr = dst.load_scalar(fx); fx.bcx.call_memset(fx.module.target_config(), dst_ptr, val, count); }; uninit, () { if ret.layout().abi == Abi::Uninhabited { crate::trap::trap_panic(fx, "[panic] Called intrinsic::uninit for uninhabited type."); return; } let uninit_place = CPlace::new_stack_slot(fx, T); let uninit_val = uninit_place.to_cvalue(fx); ret.write_cvalue(fx, uninit_val); }; ctlz | ctlz_nonzero, (v arg) { let res = CValue::ByVal(fx.bcx.ins().clz(arg), fx.layout_of(T)); ret.write_cvalue(fx, res); }; cttz | cttz_nonzero, (v arg) { let res = CValue::ByVal(fx.bcx.ins().ctz(arg), fx.layout_of(T)); ret.write_cvalue(fx, res); }; ctpop, (v arg) { let res = CValue::ByVal(fx.bcx.ins().popcnt(arg), fx.layout_of(T)); ret.write_cvalue(fx, res); }; bitreverse, (v arg) { let res = CValue::ByVal(fx.bcx.ins().bitrev(arg), fx.layout_of(T)); ret.write_cvalue(fx, res); }; needs_drop, () { let needs_drop = if T.needs_drop(fx.tcx, ParamEnv::reveal_all()) { 1 } else { 0 }; let needs_drop = CValue::const_val(fx, fx.tcx.types.bool, needs_drop); ret.write_cvalue(fx, needs_drop); }; panic_if_uninhabited, () { if fx.layout_of(T).abi.is_uninhabited() { crate::trap::trap_panic(fx, "[panic] Called intrinsic::panic_if_uninhabited for uninhabited type."); return; } }; _ if intrinsic.starts_with("atomic_fence"), () {}; _ if intrinsic.starts_with("atomic_singlethreadfence"), () {}; _ if intrinsic.starts_with("atomic_load"), (c ptr) { let inner_layout = fx.layout_of(ptr.layout().ty.builtin_deref(true).unwrap().ty); let val = CValue::ByRef(ptr.load_scalar(fx), inner_layout); ret.write_cvalue(fx, val); }; _ if intrinsic.starts_with("atomic_store"), (v ptr, c val) { let dest = CPlace::Addr(ptr, None, val.layout()); dest.write_cvalue(fx, val); }; _ if intrinsic.starts_with("atomic_xchg"), (v ptr, c src) { // Read old let clif_ty = fx.clif_type(T).unwrap(); let old = fx.bcx.ins().load(clif_ty, MemFlags::new(), ptr, 0); ret.write_cvalue(fx, CValue::ByVal(old, fx.layout_of(T))); // Write new let dest = CPlace::Addr(ptr, None, src.layout()); dest.write_cvalue(fx, src); }; _ if intrinsic.starts_with("atomic_cxchg"), (v ptr, v test_old, v new) { // both atomic_cxchg_* and atomic_cxchgweak_* // Read old let clif_ty = fx.clif_type(T).unwrap(); let old = fx.bcx.ins().load(clif_ty, MemFlags::new(), ptr, 0); // Compare let is_eq = fx.bcx.ins().icmp(IntCC::Equal, old, test_old); let new = crate::common::codegen_select(&mut fx.bcx, is_eq, new, old); // Keep old if not equal to test_old // Write new fx.bcx.ins().store(MemFlags::new(), new, ptr, 0); let ret_val = CValue::ByValPair(old, fx.bcx.ins().bint(types::I8, is_eq), ret.layout()); ret.write_cvalue(fx, ret_val); }; _ if intrinsic.starts_with("atomic_xadd"), (v ptr, v amount) { atomic_binop_return_old! (fx, iadd(ptr, amount) -> ret); }; _ if intrinsic.starts_with("atomic_xsub"), (v ptr, v amount) { atomic_binop_return_old! (fx, isub(ptr, amount) -> ret); }; _ if intrinsic.starts_with("atomic_and"), (v ptr, v src) { atomic_binop_return_old! (fx, band(ptr, src) -> ret); }; _ if intrinsic.starts_with("atomic_nand"), (v ptr, v src) { atomic_binop_return_old! (fx, band_not(ptr, src) -> ret); }; _ if intrinsic.starts_with("atomic_or"), (v ptr, v src) { atomic_binop_return_old! (fx, bor(ptr, src) -> ret); }; _ if intrinsic.starts_with("atomic_xor"), (v ptr, v src) { atomic_binop_return_old! (fx, bxor(ptr, src) -> ret); }; _ if intrinsic.starts_with("atomic_max"), (v ptr, v src) { atomic_minmax!(fx, IntCC::SignedGreaterThan, (ptr, src) -> ret); }; _ if intrinsic.starts_with("atomic_umax"), (v ptr, v src) { atomic_minmax!(fx, IntCC::UnsignedGreaterThan, (ptr, src) -> ret); }; _ if intrinsic.starts_with("atomic_min"), (v ptr, v src) { atomic_minmax!(fx, IntCC::SignedLessThan, (ptr, src) -> ret); }; _ if intrinsic.starts_with("atomic_umin"), (v ptr, v src) { atomic_minmax!(fx, IntCC::UnsignedLessThan, (ptr, src) -> ret); }; } if let Some((_, dest)) = destination { let ret_ebb = fx.get_ebb(dest); fx.bcx.ins().jump(ret_ebb, &[]); } else { trap_unreachable(fx, "[corruption] Diverging intrinsic returned."); } }