use hir::{HasSource, HirDisplay, Module, Semantics, TypeInfo}; use ide_db::{ base_db::FileId, defs::{Definition, NameRefClass}, famous_defs::FamousDefs, FxHashMap, FxHashSet, RootDatabase, SnippetCap, }; use stdx::to_lower_snake_case; use syntax::{ ast::{ self, edit::{AstNodeEdit, IndentLevel}, make, AstNode, CallExpr, HasArgList, HasModuleItem, }, SyntaxKind, SyntaxNode, TextRange, TextSize, }; use crate::{ utils::convert_reference_type, utils::{find_struct_impl, render_snippet, Cursor}, AssistContext, AssistId, AssistKind, Assists, }; // Assist: generate_function // // Adds a stub function with a signature matching the function under the cursor. // // ``` // struct Baz; // fn baz() -> Baz { Baz } // fn foo() { // bar$0("", baz()); // } // // ``` // -> // ``` // struct Baz; // fn baz() -> Baz { Baz } // fn foo() { // bar("", baz()); // } // // fn bar(arg: &str, baz: Baz) ${0:-> _} { // todo!() // } // // ``` pub(crate) fn generate_function(acc: &mut Assists, ctx: &AssistContext<'_>) -> Option<()> { gen_fn(acc, ctx).or_else(|| gen_method(acc, ctx)) } fn gen_fn(acc: &mut Assists, ctx: &AssistContext<'_>) -> Option<()> { let path_expr: ast::PathExpr = ctx.find_node_at_offset()?; let call = path_expr.syntax().parent().and_then(ast::CallExpr::cast)?; let path = path_expr.path()?; let name_ref = path.segment()?.name_ref()?; if ctx.sema.resolve_path(&path).is_some() { // The function call already resolves, no need to add a function return None; } let fn_name = &*name_ref.text(); let TargetInfo { target_module, adt_name, target, file, insert_offset } = fn_target_info(ctx, path, &call, fn_name)?; let function_builder = FunctionBuilder::from_call(ctx, &call, fn_name, target_module, target)?; let text_range = call.syntax().text_range(); let label = format!("Generate {} function", function_builder.fn_name); add_func_to_accumulator( acc, ctx, text_range, function_builder, insert_offset, file, adt_name, label, ) } struct TargetInfo { target_module: Option, adt_name: Option, target: GeneratedFunctionTarget, file: FileId, insert_offset: TextSize, } fn fn_target_info( ctx: &AssistContext<'_>, path: ast::Path, call: &CallExpr, fn_name: &str, ) -> Option { let target_module; let adt_name = None; let (target, file, insert_offset) = match path.qualifier() { Some(qualifier) => match ctx.sema.resolve_path(&qualifier) { Some(hir::PathResolution::Def(hir::ModuleDef::Module(module))) => { target_module = Some(module); get_fn_target(ctx, &target_module, call.clone())? } Some(hir::PathResolution::Def(hir::ModuleDef::Adt(adt))) => { if let hir::Adt::Enum(_) = adt { // Don't suggest generating function if the name starts with an uppercase letter if fn_name.starts_with(char::is_uppercase) { return None; } } return assoc_fn_target_info(ctx, call, adt, fn_name); } Some(hir::PathResolution::SelfType(impl_)) => { let adt = impl_.self_ty(ctx.db()).as_adt()?; return assoc_fn_target_info(ctx, call, adt, fn_name); } _ => { return None; } }, _ => { target_module = None; get_fn_target(ctx, &target_module, call.clone())? } }; Some(TargetInfo { target_module, adt_name, target, file, insert_offset }) } fn gen_method(acc: &mut Assists, ctx: &AssistContext<'_>) -> Option<()> { let call: ast::MethodCallExpr = ctx.find_node_at_offset()?; if ctx.sema.resolve_method_call(&call).is_some() { return None; } let fn_name = call.name_ref()?; let adt = ctx.sema.type_of_expr(&call.receiver()?)?.original().strip_references().as_adt()?; let current_module = ctx.sema.scope(call.syntax())?.module(); let target_module = adt.module(ctx.sema.db); if current_module.krate() != target_module.krate() { return None; } let (impl_, file) = get_adt_source(ctx, &adt, fn_name.text().as_str())?; let (target, insert_offset) = get_method_target(ctx, &target_module, &impl_)?; let function_builder = FunctionBuilder::from_method_call(ctx, &call, &fn_name, target_module, target)?; let text_range = call.syntax().text_range(); let adt_name = if impl_.is_none() { Some(adt.name(ctx.sema.db)) } else { None }; let label = format!("Generate {} method", function_builder.fn_name); add_func_to_accumulator( acc, ctx, text_range, function_builder, insert_offset, file, adt_name, label, ) } fn add_func_to_accumulator( acc: &mut Assists, ctx: &AssistContext<'_>, text_range: TextRange, function_builder: FunctionBuilder, insert_offset: TextSize, file: FileId, adt_name: Option, label: String, ) -> Option<()> { acc.add(AssistId("generate_function", AssistKind::Generate), label, text_range, |builder| { let function_template = function_builder.render(); let mut func = function_template.to_string(ctx.config.snippet_cap); if let Some(name) = adt_name { func = format!("\nimpl {} {{\n{}\n}}", name, func); } builder.edit_file(file); match ctx.config.snippet_cap { Some(cap) => builder.insert_snippet(cap, insert_offset, func), None => builder.insert(insert_offset, func), } }) } fn get_adt_source( ctx: &AssistContext<'_>, adt: &hir::Adt, fn_name: &str, ) -> Option<(Option, FileId)> { let range = adt.source(ctx.sema.db)?.syntax().original_file_range(ctx.sema.db); let file = ctx.sema.parse(range.file_id); let adt_source = ctx.sema.find_node_at_offset_with_macros(file.syntax(), range.range.start())?; find_struct_impl(ctx, &adt_source, fn_name).map(|impl_| (impl_, range.file_id)) } struct FunctionTemplate { leading_ws: String, fn_def: ast::Fn, ret_type: Option, should_focus_return_type: bool, trailing_ws: String, tail_expr: ast::Expr, } impl FunctionTemplate { fn to_string(&self, cap: Option) -> String { let f = match cap { Some(cap) => { let cursor = if self.should_focus_return_type { // Focus the return type if there is one match self.ret_type { Some(ref ret_type) => ret_type.syntax(), None => self.tail_expr.syntax(), } } else { self.tail_expr.syntax() }; render_snippet(cap, self.fn_def.syntax(), Cursor::Replace(cursor)) } None => self.fn_def.to_string(), }; format!("{}{}{}", self.leading_ws, f, self.trailing_ws) } } struct FunctionBuilder { target: GeneratedFunctionTarget, fn_name: ast::Name, type_params: Option, params: ast::ParamList, ret_type: Option, should_focus_return_type: bool, needs_pub: bool, is_async: bool, } impl FunctionBuilder { /// Prepares a generated function that matches `call`. /// The function is generated in `target_module` or next to `call` fn from_call( ctx: &AssistContext<'_>, call: &ast::CallExpr, fn_name: &str, target_module: Option, target: GeneratedFunctionTarget, ) -> Option { let needs_pub = target_module.is_some(); let target_module = target_module.or_else(|| ctx.sema.scope(target.syntax()).map(|it| it.module()))?; let fn_name = make::name(fn_name); let (type_params, params) = fn_args(ctx, target_module, ast::CallableExpr::Call(call.clone()))?; let await_expr = call.syntax().parent().and_then(ast::AwaitExpr::cast); let is_async = await_expr.is_some(); let (ret_type, should_focus_return_type) = make_return_type(ctx, &ast::Expr::CallExpr(call.clone()), target_module); Some(Self { target, fn_name, type_params, params, ret_type, should_focus_return_type, needs_pub, is_async, }) } fn from_method_call( ctx: &AssistContext<'_>, call: &ast::MethodCallExpr, name: &ast::NameRef, target_module: Module, target: GeneratedFunctionTarget, ) -> Option { let needs_pub = !module_is_descendant(&ctx.sema.scope(call.syntax())?.module(), &target_module, ctx); let fn_name = make::name(&name.text()); let (type_params, params) = fn_args(ctx, target_module, ast::CallableExpr::MethodCall(call.clone()))?; let await_expr = call.syntax().parent().and_then(ast::AwaitExpr::cast); let is_async = await_expr.is_some(); let (ret_type, should_focus_return_type) = make_return_type(ctx, &ast::Expr::MethodCallExpr(call.clone()), target_module); Some(Self { target, fn_name, type_params, params, ret_type, should_focus_return_type, needs_pub, is_async, }) } fn render(self) -> FunctionTemplate { let placeholder_expr = make::ext::expr_todo(); let fn_body = make::block_expr(vec![], Some(placeholder_expr)); let visibility = if self.needs_pub { Some(make::visibility_pub_crate()) } else { None }; let mut fn_def = make::fn_( visibility, self.fn_name, self.type_params, self.params, fn_body, self.ret_type, self.is_async, ); let leading_ws; let trailing_ws; match self.target { GeneratedFunctionTarget::BehindItem(it) => { let indent = IndentLevel::from_node(&it); leading_ws = format!("\n\n{}", indent); fn_def = fn_def.indent(indent); trailing_ws = String::new(); } GeneratedFunctionTarget::InEmptyItemList(it) => { let indent = IndentLevel::from_node(&it); leading_ws = format!("\n{}", indent + 1); fn_def = fn_def.indent(indent + 1); trailing_ws = format!("\n{}", indent); } }; FunctionTemplate { leading_ws, ret_type: fn_def.ret_type(), // PANIC: we guarantee we always create a function body with a tail expr tail_expr: fn_def.body().unwrap().tail_expr().unwrap(), should_focus_return_type: self.should_focus_return_type, fn_def, trailing_ws, } } } /// Makes an optional return type along with whether the return type should be focused by the cursor. /// If we cannot infer what the return type should be, we create a placeholder type. /// /// The rule for whether we focus a return type or not (and thus focus the function body), /// is rather simple: /// * If we could *not* infer what the return type should be, focus it (so the user can fill-in /// the correct return type). /// * If we could infer the return type, don't focus it (and thus focus the function body) so the /// user can change the `todo!` function body. fn make_return_type( ctx: &AssistContext<'_>, call: &ast::Expr, target_module: Module, ) -> (Option, bool) { let (ret_ty, should_focus_return_type) = { match ctx.sema.type_of_expr(call).map(TypeInfo::original) { Some(ty) if ty.is_unknown() => (Some(make::ty_placeholder()), true), None => (Some(make::ty_placeholder()), true), Some(ty) if ty.is_unit() => (None, false), Some(ty) => { let rendered = ty.display_source_code(ctx.db(), target_module.into()); match rendered { Ok(rendered) => (Some(make::ty(&rendered)), false), Err(_) => (Some(make::ty_placeholder()), true), } } } }; let ret_type = ret_ty.map(make::ret_type); (ret_type, should_focus_return_type) } fn get_fn_target( ctx: &AssistContext<'_>, target_module: &Option, call: CallExpr, ) -> Option<(GeneratedFunctionTarget, FileId, TextSize)> { let mut file = ctx.file_id(); let target = match target_module { Some(target_module) => { let module_source = target_module.definition_source(ctx.db()); let (in_file, target) = next_space_for_fn_in_module(ctx.sema.db, &module_source)?; file = in_file; target } None => next_space_for_fn_after_call_site(ast::CallableExpr::Call(call))?, }; Some((target.clone(), file, get_insert_offset(&target))) } fn get_method_target( ctx: &AssistContext<'_>, target_module: &Module, impl_: &Option, ) -> Option<(GeneratedFunctionTarget, TextSize)> { let target = match impl_ { Some(impl_) => next_space_for_fn_in_impl(impl_)?, None => { next_space_for_fn_in_module(ctx.sema.db, &target_module.definition_source(ctx.sema.db))? .1 } }; Some((target.clone(), get_insert_offset(&target))) } fn assoc_fn_target_info( ctx: &AssistContext<'_>, call: &CallExpr, adt: hir::Adt, fn_name: &str, ) -> Option { let mut target_module = None; let mut adt_name = None; let (target, file, insert_offset) = { let target_module: &mut Option = &mut target_module; let adt_name: &mut Option = &mut adt_name; let current_module = ctx.sema.scope(call.syntax())?.module(); let module = adt.module(ctx.sema.db); *target_module = if current_module == module { None } else { Some(module) }; if current_module.krate() != module.krate() { return None; } let (impl_, file) = get_adt_source(ctx, &adt, fn_name)?; let (target, insert_offset) = get_method_target(ctx, &module, &impl_)?; *adt_name = if impl_.is_none() { Some(adt.name(ctx.sema.db)) } else { None }; Some((target, file, insert_offset)) }?; Some(TargetInfo { target_module, adt_name, target, file, insert_offset }) } fn get_insert_offset(target: &GeneratedFunctionTarget) -> TextSize { match &target { GeneratedFunctionTarget::BehindItem(it) => it.text_range().end(), GeneratedFunctionTarget::InEmptyItemList(it) => it.text_range().start() + TextSize::of('{'), } } #[derive(Clone)] enum GeneratedFunctionTarget { BehindItem(SyntaxNode), InEmptyItemList(SyntaxNode), } impl GeneratedFunctionTarget { fn syntax(&self) -> &SyntaxNode { match self { GeneratedFunctionTarget::BehindItem(it) => it, GeneratedFunctionTarget::InEmptyItemList(it) => it, } } } /// Computes the type variables and arguments required for the generated function fn fn_args( ctx: &AssistContext<'_>, target_module: hir::Module, call: ast::CallableExpr, ) -> Option<(Option, ast::ParamList)> { let mut arg_names = Vec::new(); let mut arg_types = Vec::new(); for arg in call.arg_list()?.args() { arg_names.push(fn_arg_name(&ctx.sema, &arg)); arg_types.push(fn_arg_type(ctx, target_module, &arg)); } deduplicate_arg_names(&mut arg_names); let params = arg_names.into_iter().zip(arg_types).map(|(name, ty)| { make::param(make::ext::simple_ident_pat(make::name(&name)).into(), make::ty(&ty)) }); Some(( None, make::param_list( match call { ast::CallableExpr::Call(_) => None, ast::CallableExpr::MethodCall(_) => Some(make::self_param()), }, params, ), )) } /// Makes duplicate argument names unique by appending incrementing numbers. /// /// ``` /// let mut names: Vec = /// vec!["foo".into(), "foo".into(), "bar".into(), "baz".into(), "bar".into()]; /// deduplicate_arg_names(&mut names); /// let expected: Vec = /// vec!["foo_1".into(), "foo_2".into(), "bar_1".into(), "baz".into(), "bar_2".into()]; /// assert_eq!(names, expected); /// ``` fn deduplicate_arg_names(arg_names: &mut Vec) { let mut arg_name_counts = FxHashMap::default(); for name in arg_names.iter() { *arg_name_counts.entry(name).or_insert(0) += 1; } let duplicate_arg_names: FxHashSet = arg_name_counts .into_iter() .filter(|(_, count)| *count >= 2) .map(|(name, _)| name.clone()) .collect(); let mut counter_per_name = FxHashMap::default(); for arg_name in arg_names.iter_mut() { if duplicate_arg_names.contains(arg_name) { let counter = counter_per_name.entry(arg_name.clone()).or_insert(1); arg_name.push('_'); arg_name.push_str(&counter.to_string()); *counter += 1; } } } fn fn_arg_name(sema: &Semantics<'_, RootDatabase>, arg_expr: &ast::Expr) -> String { let name = (|| match arg_expr { ast::Expr::CastExpr(cast_expr) => Some(fn_arg_name(sema, &cast_expr.expr()?)), expr => { let name_ref = expr .syntax() .descendants() .filter_map(ast::NameRef::cast) .filter(|name| name.ident_token().is_some()) .last()?; if let Some(NameRefClass::Definition(Definition::Const(_) | Definition::Static(_))) = NameRefClass::classify(sema, &name_ref) { return Some(name_ref.to_string().to_lowercase()); }; Some(to_lower_snake_case(&name_ref.to_string())) } })(); match name { Some(mut name) if name.starts_with(|c: char| c.is_ascii_digit()) => { name.insert_str(0, "arg"); name } Some(name) => name, None => "arg".to_string(), } } fn fn_arg_type(ctx: &AssistContext<'_>, target_module: hir::Module, fn_arg: &ast::Expr) -> String { fn maybe_displayed_type( ctx: &AssistContext<'_>, target_module: hir::Module, fn_arg: &ast::Expr, ) -> Option { let ty = ctx.sema.type_of_expr(fn_arg)?.adjusted(); if ty.is_unknown() { return None; } if ty.is_reference() || ty.is_mutable_reference() { let famous_defs = &FamousDefs(&ctx.sema, ctx.sema.scope(fn_arg.syntax())?.krate()); convert_reference_type(ty.strip_references(), ctx.db(), famous_defs) .map(|conversion| conversion.convert_type(ctx.db())) .or_else(|| ty.display_source_code(ctx.db(), target_module.into()).ok()) } else { ty.display_source_code(ctx.db(), target_module.into()).ok() } } maybe_displayed_type(ctx, target_module, fn_arg).unwrap_or_else(|| String::from("_")) } /// Returns the position inside the current mod or file /// directly after the current block /// We want to write the generated function directly after /// fns, impls or macro calls, but inside mods fn next_space_for_fn_after_call_site(expr: ast::CallableExpr) -> Option { let mut ancestors = expr.syntax().ancestors().peekable(); let mut last_ancestor: Option = None; while let Some(next_ancestor) = ancestors.next() { match next_ancestor.kind() { SyntaxKind::SOURCE_FILE => { break; } SyntaxKind::ITEM_LIST => { if ancestors.peek().map(|a| a.kind()) == Some(SyntaxKind::MODULE) { break; } } _ => {} } last_ancestor = Some(next_ancestor); } last_ancestor.map(GeneratedFunctionTarget::BehindItem) } fn next_space_for_fn_in_module( db: &dyn hir::db::AstDatabase, module_source: &hir::InFile, ) -> Option<(FileId, GeneratedFunctionTarget)> { let file = module_source.file_id.original_file(db); let assist_item = match &module_source.value { hir::ModuleSource::SourceFile(it) => match it.items().last() { Some(last_item) => GeneratedFunctionTarget::BehindItem(last_item.syntax().clone()), None => GeneratedFunctionTarget::BehindItem(it.syntax().clone()), }, hir::ModuleSource::Module(it) => match it.item_list().and_then(|it| it.items().last()) { Some(last_item) => GeneratedFunctionTarget::BehindItem(last_item.syntax().clone()), None => GeneratedFunctionTarget::InEmptyItemList(it.item_list()?.syntax().clone()), }, hir::ModuleSource::BlockExpr(it) => { if let Some(last_item) = it.statements().take_while(|stmt| matches!(stmt, ast::Stmt::Item(_))).last() { GeneratedFunctionTarget::BehindItem(last_item.syntax().clone()) } else { GeneratedFunctionTarget::InEmptyItemList(it.syntax().clone()) } } }; Some((file, assist_item)) } fn next_space_for_fn_in_impl(impl_: &ast::Impl) -> Option { if let Some(last_item) = impl_.assoc_item_list().and_then(|it| it.assoc_items().last()) { Some(GeneratedFunctionTarget::BehindItem(last_item.syntax().clone())) } else { Some(GeneratedFunctionTarget::InEmptyItemList(impl_.assoc_item_list()?.syntax().clone())) } } fn module_is_descendant(module: &hir::Module, ans: &hir::Module, ctx: &AssistContext<'_>) -> bool { if module == ans { return true; } for c in ans.children(ctx.sema.db) { if module_is_descendant(module, &c, ctx) { return true; } } false } #[cfg(test)] mod tests { use crate::tests::{check_assist, check_assist_not_applicable}; use super::*; #[test] fn add_function_with_no_args() { check_assist( generate_function, r" fn foo() { bar$0(); } ", r" fn foo() { bar(); } fn bar() ${0:-> _} { todo!() } ", ) } #[test] fn add_function_from_method() { // This ensures that the function is correctly generated // in the next outer mod or file check_assist( generate_function, r" impl Foo { fn foo() { bar$0(); } } ", r" impl Foo { fn foo() { bar(); } } fn bar() ${0:-> _} { todo!() } ", ) } #[test] fn add_function_directly_after_current_block() { // The new fn should not be created at the end of the file or module check_assist( generate_function, r" fn foo1() { bar$0(); } fn foo2() {} ", r" fn foo1() { bar(); } fn bar() ${0:-> _} { todo!() } fn foo2() {} ", ) } #[test] fn add_function_with_no_args_in_same_module() { check_assist( generate_function, r" mod baz { fn foo() { bar$0(); } } ", r" mod baz { fn foo() { bar(); } fn bar() ${0:-> _} { todo!() } } ", ) } #[test] fn add_function_with_upper_camel_case_arg() { check_assist( generate_function, r" struct BazBaz; fn foo() { bar$0(BazBaz); } ", r" struct BazBaz; fn foo() { bar(BazBaz); } fn bar(baz_baz: BazBaz) ${0:-> _} { todo!() } ", ); } #[test] fn add_function_with_upper_camel_case_arg_as_cast() { check_assist( generate_function, r" struct BazBaz; fn foo() { bar$0(&BazBaz as *const BazBaz); } ", r" struct BazBaz; fn foo() { bar(&BazBaz as *const BazBaz); } fn bar(baz_baz: *const BazBaz) ${0:-> _} { todo!() } ", ); } #[test] fn add_function_with_function_call_arg() { check_assist( generate_function, r" struct Baz; fn baz() -> Baz { todo!() } fn foo() { bar$0(baz()); } ", r" struct Baz; fn baz() -> Baz { todo!() } fn foo() { bar(baz()); } fn bar(baz: Baz) ${0:-> _} { todo!() } ", ); } #[test] fn add_function_with_method_call_arg() { check_assist( generate_function, r" struct Baz; impl Baz { fn foo(&self) -> Baz { ba$0r(self.baz()) } fn baz(&self) -> Baz { Baz } } ", r" struct Baz; impl Baz { fn foo(&self) -> Baz { bar(self.baz()) } fn baz(&self) -> Baz { Baz } } fn bar(baz: Baz) -> Baz { ${0:todo!()} } ", ) } #[test] fn add_function_with_string_literal_arg() { check_assist( generate_function, r#" fn foo() { $0bar("bar") } "#, r#" fn foo() { bar("bar") } fn bar(arg: &str) { ${0:todo!()} } "#, ) } #[test] fn add_function_with_char_literal_arg() { check_assist( generate_function, r#" fn foo() { $0bar('x') } "#, r#" fn foo() { bar('x') } fn bar(arg: char) { ${0:todo!()} } "#, ) } #[test] fn add_function_with_int_literal_arg() { check_assist( generate_function, r" fn foo() { $0bar(42) } ", r" fn foo() { bar(42) } fn bar(arg: i32) { ${0:todo!()} } ", ) } #[test] fn add_function_with_cast_int_literal_arg() { check_assist( generate_function, r" fn foo() { $0bar(42 as u8) } ", r" fn foo() { bar(42 as u8) } fn bar(arg: u8) { ${0:todo!()} } ", ) } #[test] fn name_of_cast_variable_is_used() { // Ensures that the name of the cast type isn't used // in the generated function signature. check_assist( generate_function, r" fn foo() { let x = 42; bar$0(x as u8) } ", r" fn foo() { let x = 42; bar(x as u8) } fn bar(x: u8) { ${0:todo!()} } ", ) } #[test] fn add_function_with_variable_arg() { check_assist( generate_function, r" fn foo() { let worble = (); $0bar(worble) } ", r" fn foo() { let worble = (); bar(worble) } fn bar(worble: ()) { ${0:todo!()} } ", ) } #[test] fn add_function_with_impl_trait_arg() { check_assist( generate_function, r#" //- minicore: sized trait Foo {} fn foo() -> impl Foo { todo!() } fn baz() { $0bar(foo()) } "#, r#" trait Foo {} fn foo() -> impl Foo { todo!() } fn baz() { bar(foo()) } fn bar(foo: impl Foo) { ${0:todo!()} } "#, ) } #[test] fn borrowed_arg() { check_assist( generate_function, r" struct Baz; fn baz() -> Baz { todo!() } fn foo() { bar$0(&baz()) } ", r" struct Baz; fn baz() -> Baz { todo!() } fn foo() { bar(&baz()) } fn bar(baz: &Baz) { ${0:todo!()} } ", ) } #[test] fn add_function_with_qualified_path_arg() { check_assist( generate_function, r" mod Baz { pub struct Bof; pub fn baz() -> Bof { Bof } } fn foo() { $0bar(Baz::baz()) } ", r" mod Baz { pub struct Bof; pub fn baz() -> Bof { Bof } } fn foo() { bar(Baz::baz()) } fn bar(baz: Baz::Bof) { ${0:todo!()} } ", ) } #[test] fn add_function_with_generic_arg() { // FIXME: This is wrong, generated `bar` should include generic parameter. check_assist( generate_function, r" fn foo(t: T) { $0bar(t) } ", r" fn foo(t: T) { bar(t) } fn bar(t: T) { ${0:todo!()} } ", ) } #[test] fn add_function_with_fn_arg() { // FIXME: The argument in `bar` is wrong. check_assist( generate_function, r" struct Baz; impl Baz { fn new() -> Self { Baz } } fn foo() { $0bar(Baz::new); } ", r" struct Baz; impl Baz { fn new() -> Self { Baz } } fn foo() { bar(Baz::new); } fn bar(new: fn) ${0:-> _} { todo!() } ", ) } #[test] fn add_function_with_closure_arg() { // FIXME: The argument in `bar` is wrong. check_assist( generate_function, r" fn foo() { let closure = |x: i64| x - 1; $0bar(closure) } ", r" fn foo() { let closure = |x: i64| x - 1; bar(closure) } fn bar(closure: _) { ${0:todo!()} } ", ) } #[test] fn unresolveable_types_default_to_placeholder() { check_assist( generate_function, r" fn foo() { $0bar(baz) } ", r" fn foo() { bar(baz) } fn bar(baz: _) { ${0:todo!()} } ", ) } #[test] fn arg_names_dont_overlap() { check_assist( generate_function, r" struct Baz; fn baz() -> Baz { Baz } fn foo() { $0bar(baz(), baz()) } ", r" struct Baz; fn baz() -> Baz { Baz } fn foo() { bar(baz(), baz()) } fn bar(baz_1: Baz, baz_2: Baz) { ${0:todo!()} } ", ) } #[test] fn arg_name_counters_start_at_1_per_name() { check_assist( generate_function, r#" struct Baz; fn baz() -> Baz { Baz } fn foo() { $0bar(baz(), baz(), "foo", "bar") } "#, r#" struct Baz; fn baz() -> Baz { Baz } fn foo() { bar(baz(), baz(), "foo", "bar") } fn bar(baz_1: Baz, baz_2: Baz, arg_1: &str, arg_2: &str) { ${0:todo!()} } "#, ) } #[test] fn add_function_in_module() { check_assist( generate_function, r" mod bar {} fn foo() { bar::my_fn$0() } ", r" mod bar { pub(crate) fn my_fn() { ${0:todo!()} } } fn foo() { bar::my_fn() } ", ) } #[test] fn qualified_path_uses_correct_scope() { check_assist( generate_function, r#" mod foo { pub struct Foo; } fn bar() { use foo::Foo; let foo = Foo; baz$0(foo) } "#, r#" mod foo { pub struct Foo; } fn bar() { use foo::Foo; let foo = Foo; baz(foo) } fn baz(foo: foo::Foo) { ${0:todo!()} } "#, ) } #[test] fn add_function_in_module_containing_other_items() { check_assist( generate_function, r" mod bar { fn something_else() {} } fn foo() { bar::my_fn$0() } ", r" mod bar { fn something_else() {} pub(crate) fn my_fn() { ${0:todo!()} } } fn foo() { bar::my_fn() } ", ) } #[test] fn add_function_in_nested_module() { check_assist( generate_function, r" mod bar { mod baz {} } fn foo() { bar::baz::my_fn$0() } ", r" mod bar { mod baz { pub(crate) fn my_fn() { ${0:todo!()} } } } fn foo() { bar::baz::my_fn() } ", ) } #[test] fn add_function_in_another_file() { check_assist( generate_function, r" //- /main.rs mod foo; fn main() { foo::bar$0() } //- /foo.rs ", r" pub(crate) fn bar() { ${0:todo!()} }", ) } #[test] fn add_function_with_return_type() { check_assist( generate_function, r" fn main() { let x: u32 = foo$0(); } ", r" fn main() { let x: u32 = foo(); } fn foo() -> u32 { ${0:todo!()} } ", ) } #[test] fn add_function_not_applicable_if_function_already_exists() { check_assist_not_applicable( generate_function, r" fn foo() { bar$0(); } fn bar() {} ", ) } #[test] fn add_function_not_applicable_if_unresolved_variable_in_call_is_selected() { check_assist_not_applicable( // bar is resolved, but baz isn't. // The assist is only active if the cursor is on an unresolved path, // but the assist should only be offered if the path is a function call. generate_function, r#" fn foo() { bar(b$0az); } fn bar(baz: ()) {} "#, ) } #[test] fn create_method_with_no_args() { check_assist( generate_function, r#" struct Foo; impl Foo { fn foo(&self) { self.bar()$0; } } "#, r#" struct Foo; impl Foo { fn foo(&self) { self.bar(); } fn bar(&self) ${0:-> _} { todo!() } } "#, ) } #[test] fn create_function_with_async() { check_assist( generate_function, r" fn foo() { $0bar(42).await(); } ", r" fn foo() { bar(42).await(); } async fn bar(arg: i32) ${0:-> _} { todo!() } ", ) } #[test] fn create_method() { check_assist( generate_function, r" struct S; fn foo() {S.bar$0();} ", r" struct S; fn foo() {S.bar();} impl S { fn bar(&self) ${0:-> _} { todo!() } } ", ) } #[test] fn create_method_within_an_impl() { check_assist( generate_function, r" struct S; fn foo() {S.bar$0();} impl S {} ", r" struct S; fn foo() {S.bar();} impl S { fn bar(&self) ${0:-> _} { todo!() } } ", ) } #[test] fn create_method_from_different_module() { check_assist( generate_function, r" mod s { pub struct S; } fn foo() {s::S.bar$0();} ", r" mod s { pub struct S; impl S { pub(crate) fn bar(&self) ${0:-> _} { todo!() } } } fn foo() {s::S.bar();} ", ) } #[test] fn create_method_from_descendant_module() { check_assist( generate_function, r" struct S; mod s { fn foo() { super::S.bar$0(); } } ", r" struct S; mod s { fn foo() { super::S.bar(); } } impl S { fn bar(&self) ${0:-> _} { todo!() } } ", ) } #[test] fn create_method_with_cursor_anywhere_on_call_expresion() { check_assist( generate_function, r" struct S; fn foo() {$0S.bar();} ", r" struct S; fn foo() {S.bar();} impl S { fn bar(&self) ${0:-> _} { todo!() } } ", ) } #[test] fn create_static_method() { check_assist( generate_function, r" struct S; fn foo() {S::bar$0();} ", r" struct S; fn foo() {S::bar();} impl S { fn bar() ${0:-> _} { todo!() } } ", ) } #[test] fn create_static_method_within_an_impl() { check_assist( generate_function, r" struct S; fn foo() {S::bar$0();} impl S {} ", r" struct S; fn foo() {S::bar();} impl S { fn bar() ${0:-> _} { todo!() } } ", ) } #[test] fn create_static_method_from_different_module() { check_assist( generate_function, r" mod s { pub struct S; } fn foo() {s::S::bar$0();} ", r" mod s { pub struct S; impl S { pub(crate) fn bar() ${0:-> _} { todo!() } } } fn foo() {s::S::bar();} ", ) } #[test] fn create_static_method_with_cursor_anywhere_on_call_expresion() { check_assist( generate_function, r" struct S; fn foo() {$0S::bar();} ", r" struct S; fn foo() {S::bar();} impl S { fn bar() ${0:-> _} { todo!() } } ", ) } #[test] fn create_static_method_within_an_impl_with_self_syntax() { check_assist( generate_function, r" struct S; impl S { fn foo(&self) { Self::bar$0(); } } ", r" struct S; impl S { fn foo(&self) { Self::bar(); } fn bar() ${0:-> _} { todo!() } } ", ) } #[test] fn no_panic_on_invalid_global_path() { check_assist( generate_function, r" fn main() { ::foo$0(); } ", r" fn main() { ::foo(); } fn foo() ${0:-> _} { todo!() } ", ) } #[test] fn handle_tuple_indexing() { check_assist( generate_function, r" fn main() { let a = ((),); foo$0(a.0); } ", r" fn main() { let a = ((),); foo(a.0); } fn foo(a: ()) ${0:-> _} { todo!() } ", ) } #[test] fn add_function_with_const_arg() { check_assist( generate_function, r" const VALUE: usize = 0; fn main() { foo$0(VALUE); } ", r" const VALUE: usize = 0; fn main() { foo(VALUE); } fn foo(value: usize) ${0:-> _} { todo!() } ", ) } #[test] fn add_function_with_static_arg() { check_assist( generate_function, r" static VALUE: usize = 0; fn main() { foo$0(VALUE); } ", r" static VALUE: usize = 0; fn main() { foo(VALUE); } fn foo(value: usize) ${0:-> _} { todo!() } ", ) } #[test] fn add_function_with_static_mut_arg() { check_assist( generate_function, r" static mut VALUE: usize = 0; fn main() { foo$0(VALUE); } ", r" static mut VALUE: usize = 0; fn main() { foo(VALUE); } fn foo(value: usize) ${0:-> _} { todo!() } ", ) } #[test] fn not_applicable_for_enum_variant() { check_assist_not_applicable( generate_function, r" enum Foo {} fn main() { Foo::Bar$0(true) } ", ); } #[test] fn applicable_for_enum_method() { check_assist( generate_function, r" enum Foo {} fn main() { Foo::new$0(); } ", r" enum Foo {} fn main() { Foo::new(); } impl Foo { fn new() ${0:-> _} { todo!() } } ", ) } }