// Copyright 2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Unordered containers, implemented as hash-tables (`HashSet` and `HashMap` types) //! //! The tables use a keyed hash with new random keys generated for each container, so the ordering //! of a set of keys in a hash table is randomized. //! //! # Example //! //! ```rust //! use std::hashmap::HashMap; //! //! // type inference lets us omit an explicit type signature (which //! // would be `HashMap<&str, &str>` in this example). //! let mut book_reviews = HashMap::new(); //! //! // review some books. //! book_reviews.insert("Adventures of Hucklebury Fin", "My favorite book."); //! book_reviews.insert("Grimms' Fairy Tales", "Masterpiece."); //! book_reviews.insert("Pride and Prejudice", "Very enjoyable."); //! book_reviews.insert("The Adventures of Sherlock Holmes", "Eye lyked it alot."); //! //! // check for a specific one. //! if !book_reviews.contains_key(& &"Les Misérables") { //! println!("We've got {} reviews, but Les Misérables ain't one.", //! book_reviews.len()); //! } //! //! // oops, this review has a lot of spelling mistakes, let's delete it. //! book_reviews.remove(& &"The Adventures of Sherlock Holmes"); //! //! // look up the values associated with some keys. //! let to_find = ["Pride and Prejudice", "Alice's Adventure in Wonderland"]; //! for book in to_find.iter() { //! match book_reviews.find(book) { //! Some(review) => println!("{}: {}", *book, *review), //! None => println!("{} is unreviewed.", *book) //! } //! } //! //! // iterate over everything. //! for (book, review) in book_reviews.iter() { //! println!("{}: \"{}\"", *book, *review); //! } //! ``` use container::{Container, Mutable, Map, MutableMap, Set, MutableSet}; use clone::Clone; use cmp::{Eq, Equiv, max}; use default::Default; use fmt; use hash_old::Hash; use iter; use iter::{Iterator, FromIterator, Extendable}; use iter::{FilterMap, Chain, Repeat, Zip}; use mem::replace; use num; use option::{None, Option, Some}; use rand::Rng; use rand; use result::{Ok, Err}; use vec::{ImmutableVector, MutableVector, OwnedVector, Items, MutItems}; use vec_ng; use vec_ng::Vec; static INITIAL_CAPACITY: uint = 32u; // 2^5 struct Bucket { hash: uint, key: K, value: V, } /// A hash map implementation which uses linear probing along with the SipHash /// hash function for internal state. This means that the order of all hash maps /// is randomized by keying each hash map randomly on creation. /// /// It is required that the keys implement the `Eq` and `Hash` traits, although /// this can frequently be achieved by just implementing the `Eq` and /// `IterBytes` traits as `Hash` is automatically implemented for types that /// implement `IterBytes`. pub struct HashMap { priv k0: u64, priv k1: u64, priv resize_at: uint, priv size: uint, priv buckets: Vec>> } // We could rewrite FoundEntry to have type Option<&Bucket> // which would be nifty enum SearchResult { FoundEntry(uint), FoundHole(uint), TableFull } #[inline] fn resize_at(capacity: uint) -> uint { (capacity * 3) / 4 } impl HashMap { #[inline] fn to_bucket(&self, h: uint) -> uint { // A good hash function with entropy spread over all of the // bits is assumed. SipHash is more than good enough. h % self.buckets.len() } #[inline] fn next_bucket(&self, idx: uint, len_buckets: uint) -> uint { (idx + 1) % len_buckets } #[inline] fn bucket_sequence(&self, hash: uint, op: |uint| -> bool) -> bool { let start_idx = self.to_bucket(hash); let len_buckets = self.buckets.len(); let mut idx = start_idx; loop { if !op(idx) { return false; } idx = self.next_bucket(idx, len_buckets); if idx == start_idx { return true; } } } #[inline] fn bucket_for_key(&self, k: &K) -> SearchResult { let hash = k.hash_keyed(self.k0, self.k1) as uint; self.bucket_for_key_with_hash(hash, k) } #[inline] fn bucket_for_key_equiv>(&self, k: &Q) -> SearchResult { let hash = k.hash_keyed(self.k0, self.k1) as uint; self.bucket_for_key_with_hash_equiv(hash, k) } #[inline] fn bucket_for_key_with_hash(&self, hash: uint, k: &K) -> SearchResult { let mut ret = TableFull; self.bucket_sequence(hash, |i| { match self.buckets.as_slice()[i] { Some(ref bkt) if bkt.hash == hash && *k == bkt.key => { ret = FoundEntry(i); false }, None => { ret = FoundHole(i); false } _ => true, } }); ret } #[inline] fn bucket_for_key_with_hash_equiv>(&self, hash: uint, k: &Q) -> SearchResult { let mut ret = TableFull; self.bucket_sequence(hash, |i| { match self.buckets.as_slice()[i] { Some(ref bkt) if bkt.hash == hash && k.equiv(&bkt.key) => { ret = FoundEntry(i); false }, None => { ret = FoundHole(i); false } _ => true, } }); ret } /// Expand the capacity of the array to the next power of two /// and re-insert each of the existing buckets. #[inline] fn expand(&mut self) { let new_capacity = self.buckets.len() * 2; self.resize(new_capacity); } /// Expands the capacity of the array and re-insert each of the /// existing buckets. fn resize(&mut self, new_capacity: uint) { self.resize_at = resize_at(new_capacity); let old_buckets = replace(&mut self.buckets, Vec::from_fn(new_capacity, |_| None)); self.size = 0; for bucket in old_buckets.move_iter() { self.insert_opt_bucket(bucket); } } fn insert_opt_bucket(&mut self, bucket: Option>) { match bucket { Some(Bucket{hash: hash, key: key, value: value}) => { self.insert_internal(hash, key, value); } None => {} } } #[inline] fn value_for_bucket<'a>(&'a self, idx: uint) -> &'a V { match self.buckets.as_slice()[idx] { Some(ref bkt) => &bkt.value, None => fail!("HashMap::find: internal logic error"), } } #[inline] fn mut_value_for_bucket<'a>(&'a mut self, idx: uint) -> &'a mut V { match self.buckets.as_mut_slice()[idx] { Some(ref mut bkt) => &mut bkt.value, None => unreachable!() } } /// Inserts the key value pair into the buckets. /// Assumes that there will be a bucket. /// True if there was no previous entry with that key fn insert_internal(&mut self, hash: uint, k: K, v: V) -> Option { match self.bucket_for_key_with_hash(hash, &k) { TableFull => { fail!("Internal logic error"); } FoundHole(idx) => { self.buckets.as_mut_slice()[idx] = Some(Bucket{hash: hash, key: k, value: v}); self.size += 1; None } FoundEntry(idx) => { match self.buckets.as_mut_slice()[idx] { None => { fail!("insert_internal: Internal logic error") } Some(ref mut b) => { b.hash = hash; b.key = k; Some(replace(&mut b.value, v)) } } } } } fn pop_internal(&mut self, hash: uint, k: &K) -> Option { // Removing from an open-addressed hashtable // is, well, painful. The problem is that // the entry may lie on the probe path for other // entries, so removing it would make you think that // those probe paths are empty. // // To address this we basically have to keep walking, // re-inserting entries we find until we reach an empty // bucket. We know we will eventually reach one because // we insert one ourselves at the beginning (the removed // entry). // // I found this explanation elucidating: // http://www.maths.lse.ac.uk/Courses/MA407/del-hash.pdf let mut idx = match self.bucket_for_key_with_hash(hash, k) { TableFull | FoundHole(_) => return None, FoundEntry(idx) => idx }; let len_buckets = self.buckets.len(); let bucket = self.buckets.as_mut_slice()[idx].take(); let value = bucket.map(|bucket| bucket.value); /* re-inserting buckets may cause changes in size, so remember what our new size is ahead of time before we start insertions */ let size = self.size - 1; idx = self.next_bucket(idx, len_buckets); while self.buckets.as_slice()[idx].is_some() { let bucket = self.buckets.as_mut_slice()[idx].take(); self.insert_opt_bucket(bucket); idx = self.next_bucket(idx, len_buckets); } self.size = size; value } } impl Container for HashMap { /// Return the number of elements in the map fn len(&self) -> uint { self.size } } impl Mutable for HashMap { /// Clear the map, removing all key-value pairs. fn clear(&mut self) { for bkt in self.buckets.as_mut_slice().mut_iter() { *bkt = None; } self.size = 0; } } impl Map for HashMap { /// Return a reference to the value corresponding to the key fn find<'a>(&'a self, k: &K) -> Option<&'a V> { match self.bucket_for_key(k) { FoundEntry(idx) => Some(self.value_for_bucket(idx)), TableFull | FoundHole(_) => None, } } } impl MutableMap for HashMap { /// Return a mutable reference to the value corresponding to the key fn find_mut<'a>(&'a mut self, k: &K) -> Option<&'a mut V> { let idx = match self.bucket_for_key(k) { FoundEntry(idx) => idx, TableFull | FoundHole(_) => return None }; Some(self.mut_value_for_bucket(idx)) } /// Insert a key-value pair from the map. If the key already had a value /// present in the map, that value is returned. Otherwise None is returned. fn swap(&mut self, k: K, v: V) -> Option { // this could be faster. if self.size >= self.resize_at { // n.b.: We could also do this after searching, so // that we do not resize if this call to insert is // simply going to update a key in place. My sense // though is that it's worse to have to search through // buckets to find the right spot twice than to just // resize in this corner case. self.expand(); } let hash = k.hash_keyed(self.k0, self.k1) as uint; self.insert_internal(hash, k, v) } /// Removes a key from the map, returning the value at the key if the key /// was previously in the map. fn pop(&mut self, k: &K) -> Option { let hash = k.hash_keyed(self.k0, self.k1) as uint; self.pop_internal(hash, k) } } impl HashMap { /// Create an empty HashMap pub fn new() -> HashMap { HashMap::with_capacity(INITIAL_CAPACITY) } /// Create an empty HashMap with space for at least `capacity` /// elements in the hash table. pub fn with_capacity(capacity: uint) -> HashMap { let mut r = rand::task_rng(); HashMap::with_capacity_and_keys(r.gen(), r.gen(), capacity) } /// Create an empty HashMap with space for at least `capacity` /// elements, using `k0` and `k1` as the keys. /// /// Warning: `k0` and `k1` are normally randomly generated, and /// are designed to allow HashMaps to be resistant to attacks that /// cause many collisions and very poor performance. Setting them /// manually using this function can expose a DoS attack vector. pub fn with_capacity_and_keys(k0: u64, k1: u64, capacity: uint) -> HashMap { let cap = max(INITIAL_CAPACITY, capacity); HashMap { k0: k0, k1: k1, resize_at: resize_at(cap), size: 0, buckets: Vec::from_fn(cap, |_| None) } } /// Reserve space for at least `n` elements in the hash table. pub fn reserve(&mut self, n: uint) { if n > self.buckets.len() { let buckets = n * 4 / 3 + 1; self.resize(num::next_power_of_two(buckets)); } } /// Modify and return the value corresponding to the key in the map, or /// insert and return a new value if it doesn't exist. /// /// This method allows for all insertion behaviours of a hashmap, /// see methods like `insert`, `find_or_insert` and /// `insert_or_update_with` for less general and more friendly /// variations of this. /// /// # Example /// /// ```rust /// use std::hashmap::HashMap; /// /// // map some strings to vectors of strings /// let mut map = HashMap::<~str, ~[~str]>::new(); /// map.insert(~"a key", ~[~"value"]); /// map.insert(~"z key", ~[~"value"]); /// /// let new = ~[~"a key", ~"b key", ~"z key"]; /// for k in new.move_iter() { /// map.mangle(k, ~"new value", /// // if the key doesn't exist in the map yet, add it in /// // the obvious way. /// |_k, v| ~[v], /// // if the key does exist either prepend or append this /// // new value based on the first letter of the key. /// |key, already, new| { /// if key.starts_with("z") { /// already.unshift(new); /// } else { /// already.push(new); /// } /// }); /// } /// /// for (k, v) in map.iter() { /// println!("{} -> {:?}", *k, *v); /// } /// ``` pub fn mangle<'a, A>( &'a mut self, k: K, a: A, not_found: |&K, A| -> V, found: |&K, &mut V, A|) -> &'a mut V { if self.size >= self.resize_at { // n.b.: We could also do this after searching, so // that we do not resize if this call to insert is // simply going to update a key in place. My sense // though is that it's worse to have to search through // buckets to find the right spot twice than to just // resize in this corner case. self.expand(); } let hash = k.hash_keyed(self.k0, self.k1) as uint; let idx = match self.bucket_for_key_with_hash(hash, &k) { TableFull => fail!("Internal logic error"), FoundEntry(idx) => { found(&k, self.mut_value_for_bucket(idx), a); idx } FoundHole(idx) => { let v = not_found(&k, a); self.buckets.as_mut_slice()[idx] = Some(Bucket{hash: hash, key: k, value: v}); self.size += 1; idx } }; self.mut_value_for_bucket(idx) } /// Return the value corresponding to the key in the map, or insert /// and return the value if it doesn't exist. pub fn find_or_insert<'a>(&'a mut self, k: K, v: V) -> &'a mut V { self.mangle(k, v, |_k, a| a, |_k,_v,_a| ()) } /// Return the value corresponding to the key in the map, or create, /// insert, and return a new value if it doesn't exist. pub fn find_or_insert_with<'a>(&'a mut self, k: K, f: |&K| -> V) -> &'a mut V { self.mangle(k, (), |k,_a| f(k), |_k,_v,_a| ()) } /// Insert a key-value pair into the map if the key is not already present. /// Otherwise, modify the existing value for the key. /// Returns the new or modified value for the key. pub fn insert_or_update_with<'a>( &'a mut self, k: K, v: V, f: |&K, &mut V|) -> &'a mut V { self.mangle(k, v, |_k,a| a, |k,v,_a| f(k,v)) } /// Retrieves a value for the given key, failing if the key is not /// present. pub fn get<'a>(&'a self, k: &K) -> &'a V { match self.find(k) { Some(v) => v, None => fail!("No entry found for key: {:?}", k), } } /// Retrieves a (mutable) value for the given key, failing if the key /// is not present. pub fn get_mut<'a>(&'a mut self, k: &K) -> &'a mut V { match self.find_mut(k) { Some(v) => v, None => fail!("No entry found for key: {:?}", k), } } /// Return true if the map contains a value for the specified key, /// using equivalence pub fn contains_key_equiv>(&self, key: &Q) -> bool { match self.bucket_for_key_equiv(key) { FoundEntry(_) => {true} TableFull | FoundHole(_) => {false} } } /// Return the value corresponding to the key in the map, using /// equivalence pub fn find_equiv<'a, Q:Hash + Equiv>(&'a self, k: &Q) -> Option<&'a V> { match self.bucket_for_key_equiv(k) { FoundEntry(idx) => Some(self.value_for_bucket(idx)), TableFull | FoundHole(_) => None, } } /// An iterator visiting all keys in arbitrary order. /// Iterator element type is &'a K. pub fn keys<'a>(&'a self) -> Keys<'a, K, V> { self.iter().map(|(k, _v)| k) } /// An iterator visiting all values in arbitrary order. /// Iterator element type is &'a V. pub fn values<'a>(&'a self) -> Values<'a, K, V> { self.iter().map(|(_k, v)| v) } /// An iterator visiting all key-value pairs in arbitrary order. /// Iterator element type is (&'a K, &'a V). pub fn iter<'a>(&'a self) -> Entries<'a, K, V> { Entries { iter: self.buckets.as_slice().iter() } } /// An iterator visiting all key-value pairs in arbitrary order, /// with mutable references to the values. /// Iterator element type is (&'a K, &'a mut V). pub fn mut_iter<'a>(&'a mut self) -> MutEntries<'a, K, V> { MutEntries { iter: self.buckets.as_mut_slice().mut_iter() } } /// Creates a consuming iterator, that is, one that moves each key-value /// pair out of the map in arbitrary order. The map cannot be used after /// calling this. pub fn move_iter(self) -> MoveEntries { MoveEntries {iter: self.buckets.move_iter()} } } impl HashMap { /// Like `find`, but returns a copy of the value. pub fn find_copy(&self, k: &K) -> Option { self.find(k).map(|v| (*v).clone()) } /// Like `get`, but returns a copy of the value. pub fn get_copy(&self, k: &K) -> V { (*self.get(k)).clone() } } impl Eq for HashMap { fn eq(&self, other: &HashMap) -> bool { if self.len() != other.len() { return false; } self.iter().all(|(key, value)| { match other.find(key) { None => false, Some(v) => value == v } }) } fn ne(&self, other: &HashMap) -> bool { !self.eq(other) } } impl Clone for HashMap { fn clone(&self) -> HashMap { let mut new_map = HashMap::with_capacity(self.len()); for (key, value) in self.iter() { new_map.insert((*key).clone(), (*value).clone()); } new_map } } impl fmt::Show for HashMap { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { try!(write!(f.buf, r"\{")) let mut first = true; for (key, value) in self.iter() { if first { first = false; } else { try!(write!(f.buf, ", ")); } try!(write!(f.buf, "{}: {}", *key, *value)); } write!(f.buf, r"\}") } } /// HashMap iterator #[deriving(Clone)] pub struct Entries<'a, K, V> { priv iter: Items<'a, Option>>, } /// HashMap mutable values iterator pub struct MutEntries<'a, K, V> { priv iter: MutItems<'a, Option>>, } /// HashMap move iterator pub struct MoveEntries { priv iter: vec_ng::MoveItems>>, } /// HashMap keys iterator pub type Keys<'a, K, V> = iter::Map<'static, (&'a K, &'a V), &'a K, Entries<'a, K, V>>; /// HashMap values iterator pub type Values<'a, K, V> = iter::Map<'static, (&'a K, &'a V), &'a V, Entries<'a, K, V>>; /// HashSet iterator #[deriving(Clone)] pub struct SetItems<'a, K> { priv iter: Items<'a, Option>>, } /// HashSet move iterator pub struct SetMoveItems { priv iter: vec_ng::MoveItems>>, } impl<'a, K, V> Iterator<(&'a K, &'a V)> for Entries<'a, K, V> { #[inline] fn next(&mut self) -> Option<(&'a K, &'a V)> { for elt in self.iter { match elt { &Some(ref bucket) => return Some((&bucket.key, &bucket.value)), &None => {}, } } None } } impl<'a, K, V> Iterator<(&'a K, &'a mut V)> for MutEntries<'a, K, V> { #[inline] fn next(&mut self) -> Option<(&'a K, &'a mut V)> { for elt in self.iter { match elt { &Some(ref mut bucket) => return Some((&bucket.key, &mut bucket.value)), &None => {}, } } None } } impl Iterator<(K, V)> for MoveEntries { #[inline] fn next(&mut self) -> Option<(K, V)> { for elt in self.iter { match elt { Some(Bucket {key, value, ..}) => return Some((key, value)), None => {}, } } None } } impl<'a, K> Iterator<&'a K> for SetItems<'a, K> { #[inline] fn next(&mut self) -> Option<&'a K> { for elt in self.iter { match elt { &Some(ref bucket) => return Some(&bucket.key), &None => {}, } } None } } impl Iterator for SetMoveItems { #[inline] fn next(&mut self) -> Option { for elt in self.iter { match elt { Some(bucket) => return Some(bucket.key), None => {}, } } None } } impl FromIterator<(K, V)> for HashMap { fn from_iterator>(iter: &mut T) -> HashMap { let (lower, _) = iter.size_hint(); let mut map = HashMap::with_capacity(lower); map.extend(iter); map } } impl Extendable<(K, V)> for HashMap { fn extend>(&mut self, iter: &mut T) { for (k, v) in *iter { self.insert(k, v); } } } impl Default for HashMap { fn default() -> HashMap { HashMap::new() } } /// An implementation of a hash set using the underlying representation of a /// HashMap where the value is (). As with the `HashMap` type, a `HashSet` /// requires that the elements implement the `Eq` and `Hash` traits. pub struct HashSet { priv map: HashMap } impl Eq for HashSet { fn eq(&self, other: &HashSet) -> bool { self.map == other.map } fn ne(&self, other: &HashSet) -> bool { self.map != other.map } } impl Container for HashSet { /// Return the number of elements in the set fn len(&self) -> uint { self.map.len() } } impl Mutable for HashSet { /// Clear the set, removing all values. fn clear(&mut self) { self.map.clear() } } impl Set for HashSet { /// Return true if the set contains a value fn contains(&self, value: &T) -> bool { self.map.contains_key(value) } /// Return true if the set has no elements in common with `other`. /// This is equivalent to checking for an empty intersection. fn is_disjoint(&self, other: &HashSet) -> bool { self.iter().all(|v| !other.contains(v)) } /// Return true if the set is a subset of another fn is_subset(&self, other: &HashSet) -> bool { self.iter().all(|v| other.contains(v)) } /// Return true if the set is a superset of another fn is_superset(&self, other: &HashSet) -> bool { other.is_subset(self) } } impl MutableSet for HashSet { /// Add a value to the set. Return true if the value was not already /// present in the set. fn insert(&mut self, value: T) -> bool { self.map.insert(value, ()) } /// Remove a value from the set. Return true if the value was /// present in the set. fn remove(&mut self, value: &T) -> bool { self.map.remove(value) } } impl HashSet { /// Create an empty HashSet pub fn new() -> HashSet { HashSet::with_capacity(INITIAL_CAPACITY) } /// Create an empty HashSet with space for at least `n` elements in /// the hash table. pub fn with_capacity(capacity: uint) -> HashSet { HashSet { map: HashMap::with_capacity(capacity) } } /// Create an empty HashSet with space for at least `capacity` /// elements in the hash table, using `k0` and `k1` as the keys. /// /// Warning: `k0` and `k1` are normally randomly generated, and /// are designed to allow HashSets to be resistant to attacks that /// cause many collisions and very poor performance. Setting them /// manually using this function can expose a DoS attack vector. pub fn with_capacity_and_keys(k0: u64, k1: u64, capacity: uint) -> HashSet { HashSet { map: HashMap::with_capacity_and_keys(k0, k1, capacity) } } /// Reserve space for at least `n` elements in the hash table. pub fn reserve(&mut self, n: uint) { self.map.reserve(n) } /// Returns true if the hash set contains a value equivalent to the /// given query value. pub fn contains_equiv>(&self, value: &Q) -> bool { self.map.contains_key_equiv(value) } /// An iterator visiting all elements in arbitrary order. /// Iterator element type is &'a T. pub fn iter<'a>(&'a self) -> SetItems<'a, T> { SetItems { iter: self.map.buckets.as_slice().iter() } } /// Creates a consuming iterator, that is, one that moves each value out /// of the set in arbitrary order. The set cannot be used after calling /// this. pub fn move_iter(self) -> SetMoveItems { SetMoveItems {iter: self.map.buckets.move_iter()} } /// Visit the values representing the difference pub fn difference<'a>(&'a self, other: &'a HashSet) -> SetAlgebraItems<'a, T> { Repeat::new(other) .zip(self.iter()) .filter_map(|(other, elt)| { if !other.contains(elt) { Some(elt) } else { None } }) } /// Visit the values representing the symmetric difference pub fn symmetric_difference<'a>(&'a self, other: &'a HashSet) -> Chain, SetAlgebraItems<'a, T>> { self.difference(other).chain(other.difference(self)) } /// Visit the values representing the intersection pub fn intersection<'a>(&'a self, other: &'a HashSet) -> SetAlgebraItems<'a, T> { Repeat::new(other) .zip(self.iter()) .filter_map(|(other, elt)| { if other.contains(elt) { Some(elt) } else { None } }) } /// Visit the values representing the union pub fn union<'a>(&'a self, other: &'a HashSet) -> Chain, SetAlgebraItems<'a, T>> { self.iter().chain(other.difference(self)) } } impl Clone for HashSet { fn clone(&self) -> HashSet { HashSet { map: self.map.clone() } } } impl fmt::Show for HashSet { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { try!(write!(f.buf, r"\{")) let mut first = true; for x in self.iter() { if first { first = false; } else { try!(write!(f.buf, ", ")); } try!(write!(f.buf, "{}", *x)); } write!(f.buf, r"\}") } } impl FromIterator for HashSet { fn from_iterator>(iter: &mut T) -> HashSet { let (lower, _) = iter.size_hint(); let mut set = HashSet::with_capacity(lower); set.extend(iter); set } } impl Extendable for HashSet { fn extend>(&mut self, iter: &mut T) { for k in *iter { self.insert(k); } } } impl Default for HashSet { fn default() -> HashSet { HashSet::new() } } // `Repeat` is used to feed the filter closure an explicit capture // of a reference to the other set /// Set operations iterator pub type SetAlgebraItems<'a, T> = FilterMap<'static,(&'a HashSet, &'a T), &'a T, Zip>,SetItems<'a,T>>>; #[cfg(test)] mod test_map { use prelude::*; use super::*; use fmt; #[test] fn test_create_capacity_zero() { let mut m = HashMap::with_capacity(0); assert!(m.insert(1, 1)); } #[test] fn test_insert() { let mut m = HashMap::new(); assert!(m.insert(1, 2)); assert!(m.insert(2, 4)); assert_eq!(*m.get(&1), 2); assert_eq!(*m.get(&2), 4); } #[test] fn test_find_mut() { let mut m = HashMap::new(); assert!(m.insert(1, 12)); assert!(m.insert(2, 8)); assert!(m.insert(5, 14)); let new = 100; match m.find_mut(&5) { None => fail!(), Some(x) => *x = new } assert_eq!(m.find(&5), Some(&new)); } #[test] fn test_insert_overwrite() { let mut m = HashMap::new(); assert!(m.insert(1, 2)); assert_eq!(*m.get(&1), 2); assert!(!m.insert(1, 3)); assert_eq!(*m.get(&1), 3); } #[test] fn test_insert_conflicts() { let mut m = HashMap::with_capacity(4); assert!(m.insert(1, 2)); assert!(m.insert(5, 3)); assert!(m.insert(9, 4)); assert_eq!(*m.get(&9), 4); assert_eq!(*m.get(&5), 3); assert_eq!(*m.get(&1), 2); } #[test] fn test_conflict_remove() { let mut m = HashMap::with_capacity(4); assert!(m.insert(1, 2)); assert!(m.insert(5, 3)); assert!(m.insert(9, 4)); assert!(m.remove(&1)); assert_eq!(*m.get(&9), 4); assert_eq!(*m.get(&5), 3); } #[test] fn test_is_empty() { let mut m = HashMap::with_capacity(4); assert!(m.insert(1, 2)); assert!(!m.is_empty()); assert!(m.remove(&1)); assert!(m.is_empty()); } #[test] fn test_pop() { let mut m = HashMap::new(); m.insert(1, 2); assert_eq!(m.pop(&1), Some(2)); assert_eq!(m.pop(&1), None); } #[test] fn test_swap() { let mut m = HashMap::new(); assert_eq!(m.swap(1, 2), None); assert_eq!(m.swap(1, 3), Some(2)); assert_eq!(m.swap(1, 4), Some(3)); } #[test] fn test_find_or_insert() { let mut m: HashMap = HashMap::new(); assert_eq!(*m.find_or_insert(1, 2), 2); assert_eq!(*m.find_or_insert(1, 3), 2); } #[test] fn test_find_or_insert_with() { let mut m: HashMap = HashMap::new(); assert_eq!(*m.find_or_insert_with(1, |_| 2), 2); assert_eq!(*m.find_or_insert_with(1, |_| 3), 2); } #[test] fn test_insert_or_update_with() { let mut m: HashMap = HashMap::new(); assert_eq!(*m.insert_or_update_with(1, 2, |_,x| *x+=1), 2); assert_eq!(*m.insert_or_update_with(1, 2, |_,x| *x+=1), 3); } #[test] fn test_move_iter() { let hm = { let mut hm = HashMap::new(); hm.insert('a', 1); hm.insert('b', 2); hm }; let v = hm.move_iter().collect::<~[(char, int)]>(); assert!([('a', 1), ('b', 2)] == v || [('b', 2), ('a', 1)] == v); } #[test] fn test_iterate() { let mut m = HashMap::with_capacity(4); for i in range(0u, 32) { assert!(m.insert(i, i*2)); } let mut observed = 0; for (k, v) in m.iter() { assert_eq!(*v, *k * 2); observed |= (1 << *k); } assert_eq!(observed, 0xFFFF_FFFF); } #[test] fn test_keys() { let vec = ~[(1, 'a'), (2, 'b'), (3, 'c')]; let map = vec.move_iter().collect::>(); let keys = map.keys().map(|&k| k).collect::<~[int]>(); assert_eq!(keys.len(), 3); assert!(keys.contains(&1)); assert!(keys.contains(&2)); assert!(keys.contains(&3)); } #[test] fn test_values() { let vec = ~[(1, 'a'), (2, 'b'), (3, 'c')]; let map = vec.move_iter().collect::>(); let values = map.values().map(|&v| v).collect::<~[char]>(); assert_eq!(values.len(), 3); assert!(values.contains(&'a')); assert!(values.contains(&'b')); assert!(values.contains(&'c')); } #[test] fn test_find() { let mut m = HashMap::new(); assert!(m.find(&1).is_none()); m.insert(1, 2); match m.find(&1) { None => fail!(), Some(v) => assert!(*v == 2) } } #[test] fn test_eq() { let mut m1 = HashMap::new(); m1.insert(1, 2); m1.insert(2, 3); m1.insert(3, 4); let mut m2 = HashMap::new(); m2.insert(1, 2); m2.insert(2, 3); assert!(m1 != m2); m2.insert(3, 4); assert_eq!(m1, m2); } #[test] fn test_expand() { let mut m = HashMap::new(); assert_eq!(m.len(), 0); assert!(m.is_empty()); let mut i = 0u; let old_resize_at = m.resize_at; while old_resize_at == m.resize_at { m.insert(i, i); i += 1; } assert_eq!(m.len(), i); assert!(!m.is_empty()); } #[test] fn test_find_equiv() { let mut m = HashMap::new(); let (foo, bar, baz) = (1,2,3); m.insert(~"foo", foo); m.insert(~"bar", bar); m.insert(~"baz", baz); assert_eq!(m.find_equiv(&("foo")), Some(&foo)); assert_eq!(m.find_equiv(&("bar")), Some(&bar)); assert_eq!(m.find_equiv(&("baz")), Some(&baz)); assert_eq!(m.find_equiv(&("qux")), None); } #[test] fn test_from_iter() { let xs = ~[(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)]; let map: HashMap = xs.iter().map(|&x| x).collect(); for &(k, v) in xs.iter() { assert_eq!(map.find(&k), Some(&v)); } } struct ShowableStruct { value: int, } impl fmt::Show for ShowableStruct { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f.buf, r"s{}", self.value) } } #[test] fn test_show() { let mut table: HashMap = HashMap::new(); let empty: HashMap = HashMap::new(); table.insert(3, ShowableStruct { value: 4 }); table.insert(1, ShowableStruct { value: 2 }); let table_str = format!("{}", table); assert!(table_str == ~"{1: s2, 3: s4}" || table_str == ~"{3: s4, 1: s2}"); assert_eq!(format!("{}", empty), ~"{}"); } } #[cfg(test)] mod test_set { use super::*; use prelude::*; use container::Container; use vec::ImmutableEqVector; #[test] fn test_disjoint() { let mut xs = HashSet::new(); let mut ys = HashSet::new(); assert!(xs.is_disjoint(&ys)); assert!(ys.is_disjoint(&xs)); assert!(xs.insert(5)); assert!(ys.insert(11)); assert!(xs.is_disjoint(&ys)); assert!(ys.is_disjoint(&xs)); assert!(xs.insert(7)); assert!(xs.insert(19)); assert!(xs.insert(4)); assert!(ys.insert(2)); assert!(ys.insert(-11)); assert!(xs.is_disjoint(&ys)); assert!(ys.is_disjoint(&xs)); assert!(ys.insert(7)); assert!(!xs.is_disjoint(&ys)); assert!(!ys.is_disjoint(&xs)); } #[test] fn test_subset_and_superset() { let mut a = HashSet::new(); assert!(a.insert(0)); assert!(a.insert(5)); assert!(a.insert(11)); assert!(a.insert(7)); let mut b = HashSet::new(); assert!(b.insert(0)); assert!(b.insert(7)); assert!(b.insert(19)); assert!(b.insert(250)); assert!(b.insert(11)); assert!(b.insert(200)); assert!(!a.is_subset(&b)); assert!(!a.is_superset(&b)); assert!(!b.is_subset(&a)); assert!(!b.is_superset(&a)); assert!(b.insert(5)); assert!(a.is_subset(&b)); assert!(!a.is_superset(&b)); assert!(!b.is_subset(&a)); assert!(b.is_superset(&a)); } #[test] fn test_iterate() { let mut a = HashSet::new(); for i in range(0u, 32) { assert!(a.insert(i)); } let mut observed = 0; for k in a.iter() { observed |= (1 << *k); } assert_eq!(observed, 0xFFFF_FFFF); } #[test] fn test_intersection() { let mut a = HashSet::new(); let mut b = HashSet::new(); assert!(a.insert(11)); assert!(a.insert(1)); assert!(a.insert(3)); assert!(a.insert(77)); assert!(a.insert(103)); assert!(a.insert(5)); assert!(a.insert(-5)); assert!(b.insert(2)); assert!(b.insert(11)); assert!(b.insert(77)); assert!(b.insert(-9)); assert!(b.insert(-42)); assert!(b.insert(5)); assert!(b.insert(3)); let mut i = 0; let expected = [3, 5, 11, 77]; for x in a.intersection(&b) { assert!(expected.contains(x)); i += 1 } assert_eq!(i, expected.len()); } #[test] fn test_difference() { let mut a = HashSet::new(); let mut b = HashSet::new(); assert!(a.insert(1)); assert!(a.insert(3)); assert!(a.insert(5)); assert!(a.insert(9)); assert!(a.insert(11)); assert!(b.insert(3)); assert!(b.insert(9)); let mut i = 0; let expected = [1, 5, 11]; for x in a.difference(&b) { assert!(expected.contains(x)); i += 1 } assert_eq!(i, expected.len()); } #[test] fn test_symmetric_difference() { let mut a = HashSet::new(); let mut b = HashSet::new(); assert!(a.insert(1)); assert!(a.insert(3)); assert!(a.insert(5)); assert!(a.insert(9)); assert!(a.insert(11)); assert!(b.insert(-2)); assert!(b.insert(3)); assert!(b.insert(9)); assert!(b.insert(14)); assert!(b.insert(22)); let mut i = 0; let expected = [-2, 1, 5, 11, 14, 22]; for x in a.symmetric_difference(&b) { assert!(expected.contains(x)); i += 1 } assert_eq!(i, expected.len()); } #[test] fn test_union() { let mut a = HashSet::new(); let mut b = HashSet::new(); assert!(a.insert(1)); assert!(a.insert(3)); assert!(a.insert(5)); assert!(a.insert(9)); assert!(a.insert(11)); assert!(a.insert(16)); assert!(a.insert(19)); assert!(a.insert(24)); assert!(b.insert(-2)); assert!(b.insert(1)); assert!(b.insert(5)); assert!(b.insert(9)); assert!(b.insert(13)); assert!(b.insert(19)); let mut i = 0; let expected = [-2, 1, 3, 5, 9, 11, 13, 16, 19, 24]; for x in a.union(&b) { assert!(expected.contains(x)); i += 1 } assert_eq!(i, expected.len()); } #[test] fn test_from_iter() { let xs = ~[1, 2, 3, 4, 5, 6, 7, 8, 9]; let set: HashSet = xs.iter().map(|&x| x).collect(); for x in xs.iter() { assert!(set.contains(x)); } } #[test] fn test_move_iter() { let hs = { let mut hs = HashSet::new(); hs.insert('a'); hs.insert('b'); hs }; let v = hs.move_iter().collect::<~[char]>(); assert!(['a', 'b'] == v || ['b', 'a'] == v); } #[test] fn test_eq() { let mut s1 = HashSet::new(); s1.insert(1); s1.insert(2); s1.insert(3); let mut s2 = HashSet::new(); s2.insert(1); s2.insert(2); assert!(s1 != s2); s2.insert(3); assert_eq!(s1, s2); } #[test] fn test_show() { let mut set: HashSet = HashSet::new(); let empty: HashSet = HashSet::new(); set.insert(1); set.insert(2); let set_str = format!("{}", set); assert!(set_str == ~"{1, 2}" || set_str == ~"{2, 1}"); assert_eq!(format!("{}", empty), ~"{}"); } }