// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Unsafe pointer utility functions use cast; #[cfg(stage0)] use libc; #[cfg(stage0)] use libc::{c_void, size_t}; use option::{Option, Some, None}; use sys; use unstable::intrinsics; #[cfg(not(test))] use cmp::{Eq, Ord}; use uint; /// Calculate the offset from a pointer #[inline(always)] pub fn offset(ptr: *T, count: uint) -> *T { (ptr as uint + count * sys::size_of::()) as *T } /// Calculate the offset from a const pointer #[inline(always)] pub fn const_offset(ptr: *const T, count: uint) -> *const T { (ptr as uint + count * sys::size_of::()) as *T } /// Calculate the offset from a mut pointer #[inline(always)] pub fn mut_offset(ptr: *mut T, count: uint) -> *mut T { (ptr as uint + count * sys::size_of::()) as *mut T } /// Return the offset of the first null pointer in `buf`. #[inline(always)] pub unsafe fn buf_len(buf: **T) -> uint { position(buf, |i| *i == null()) } /// Return the first offset `i` such that `f(buf[i]) == true`. #[inline(always)] pub unsafe fn position(buf: *T, f: &fn(&T) -> bool) -> uint { let mut i = 0; loop { if f(&(*offset(buf, i))) { return i; } else { i += 1; } } } /// Create an unsafe null pointer #[inline(always)] pub fn null() -> *T { 0 as *T } /// Create an unsafe mutable null pointer #[inline(always)] pub fn mut_null() -> *mut T { 0 as *mut T } /// Returns true if the pointer is equal to the null pointer. #[inline(always)] pub fn is_null(ptr: *const T) -> bool { ptr == null() } /// Returns true if the pointer is not equal to the null pointer. #[inline(always)] pub fn is_not_null(ptr: *const T) -> bool { !is_null(ptr) } /** * Copies data from one location to another * * Copies `count` elements (not bytes) from `src` to `dst`. The source * and destination may overlap. */ #[inline(always)] #[cfg(target_word_size = "32", stage0)] pub unsafe fn copy_memory(dst: *mut T, src: *const T, count: uint) { use unstable::intrinsics::memmove32; let n = count * sys::size_of::(); memmove32(dst as *mut u8, src as *u8, n as u32); } /** * Copies data from one location to another * * Copies `count` elements (not bytes) from `src` to `dst`. The source * and destination may overlap. */ #[inline(always)] #[cfg(target_word_size = "32", not(stage0))] pub unsafe fn copy_memory(dst: *mut T, src: *const T, count: uint) { use unstable::intrinsics::memmove32; memmove32(dst, src as *T, count as u32); } #[inline(always)] #[cfg(target_word_size = "64", stage0)] pub unsafe fn copy_memory(dst: *mut T, src: *const T, count: uint) { use unstable::intrinsics::memmove64; let n = count * sys::size_of::(); memmove64(dst as *mut u8, src as *u8, n as u64); } /** * Copies data from one location to another * * Copies `count` elements (not bytes) from `src` to `dst`. The source * and destination may overlap. */ #[inline(always)] #[cfg(target_word_size = "64", not(stage0))] pub unsafe fn copy_memory(dst: *mut T, src: *const T, count: uint) { use unstable::intrinsics::memmove64; memmove64(dst, src as *T, count as u64); } #[inline(always)] #[cfg(target_word_size = "32", stage0)] pub unsafe fn copy_nonoverlapping_memory(dst: *mut T, src: *const T, count: uint) { use unstable::intrinsics::memmove32; let n = count * sys::size_of::(); memmove32(dst as *mut u8, src as *u8, n as u32); } /** * Copies data from one location to another. This uses memcpy instead of memmove * to take advantage of the knowledge that the memory does not overlap. * * Copies `count` elements (not bytes) from `src` to `dst`. The source * and destination may overlap. */ #[inline(always)] #[cfg(target_word_size = "32", not(stage0))] pub unsafe fn copy_nonoverlapping_memory(dst: *mut T, src: *const T, count: uint) { use unstable::intrinsics::memcpy32; memcpy32(dst, src as *T, count as u32); } #[inline(always)] #[cfg(target_word_size = "64", stage0)] pub unsafe fn copy_nonoverlapping_memory(dst: *mut T, src: *const T, count: uint) { use unstable::intrinsics::memmove64; let n = count * sys::size_of::(); memmove64(dst as *mut u8, src as *u8, n as u64); } /** * Copies data from one location to another. This uses memcpy instead of memmove * to take advantage of the knowledge that the memory does not overlap. * * Copies `count` elements (not bytes) from `src` to `dst`. The source * and destination may overlap. */ #[inline(always)] #[cfg(target_word_size = "64", not(stage0))] pub unsafe fn copy_nonoverlapping_memory(dst: *mut T, src: *const T, count: uint) { use unstable::intrinsics::memcpy64; memcpy64(dst, src as *T, count as u64); } /** * Invokes memset on the specified pointer, setting `count` bytes of memory * starting at `dst` to `c`. */ #[inline(always)] #[cfg(target_word_size = "32", not(stage0))] pub unsafe fn set_memory(dst: *mut T, c: u8, count: uint) { use unstable::intrinsics::memset32; memset32(dst, c, count as u32); } /** * Invokes memset on the specified pointer, setting `count` bytes of memory * starting at `dst` to `c`. */ #[inline(always)] #[cfg(target_word_size = "64", not(stage0))] pub unsafe fn set_memory(dst: *mut T, c: u8, count: uint) { use unstable::intrinsics::memset64; memset64(dst, c, count as u64); } /** * Swap the values at two mutable locations of the same type, without * deinitialising or copying either one. */ #[inline] pub unsafe fn swap_ptr(x: *mut T, y: *mut T) { // Give ourselves some scratch space to work with let mut tmp: T = intrinsics::uninit(); let t: *mut T = &mut tmp; // Perform the swap copy_memory(t, x, 1); copy_memory(x, y, 1); copy_memory(y, t, 1); // y and t now point to the same thing, but we need to completely forget `tmp` // because it's no longer relevant. cast::forget(tmp); } /** * Replace the value at a mutable location with a new one, returning the old * value, without deinitialising or copying either one. */ #[inline(always)] pub unsafe fn replace_ptr(dest: *mut T, mut src: T) -> T { swap_ptr(dest, &mut src); src } /// Transform a region pointer - &T - to an unsafe pointer - *T. #[inline(always)] pub fn to_unsafe_ptr(thing: &T) -> *T { thing as *T } /// Transform a const region pointer - &const T - to a const unsafe pointer - *const T. #[inline(always)] pub fn to_const_unsafe_ptr(thing: &const T) -> *const T { thing as *const T } /// Transform a mutable region pointer - &mut T - to a mutable unsafe pointer - *mut T. #[inline(always)] pub fn to_mut_unsafe_ptr(thing: &mut T) -> *mut T { thing as *mut T } /** Given a **T (pointer to an array of pointers), iterate through each *T, up to the provided `len`, passing to the provided callback function SAFETY NOTE: Pointer-arithmetic. Dragons be here. */ pub unsafe fn array_each_with_len(arr: **T, len: uint, cb: &fn(*T)) { debug!("array_each_with_len: before iterate"); if (arr as uint == 0) { fail!("ptr::array_each_with_len failure: arr input is null pointer"); } //let start_ptr = *arr; uint::iterate(0, len, |e| { let n = offset(arr, e); cb(*n); true }); debug!("array_each_with_len: after iterate"); } /** Given a null-pointer-terminated **T (pointer to an array of pointers), iterate through each *T, passing to the provided callback function SAFETY NOTE: This will only work with a null-terminated pointer array. Barely less-dodgey Pointer Arithmetic. Dragons be here. */ pub unsafe fn array_each(arr: **T, cb: &fn(*T)) { if (arr as uint == 0) { fail!("ptr::array_each_with_len failure: arr input is null pointer"); } let len = buf_len(arr); debug!("array_each inferred len: %u", len); array_each_with_len(arr, len, cb); } #[allow(missing_doc)] pub trait RawPtr { fn is_null(&const self) -> bool; fn is_not_null(&const self) -> bool; unsafe fn to_option(&const self) -> Option<&T>; fn offset(&self, count: uint) -> Self; } /// Extension methods for immutable pointers impl RawPtr for *T { /// Returns true if the pointer is equal to the null pointer. #[inline(always)] fn is_null(&const self) -> bool { is_null(*self) } /// Returns true if the pointer is not equal to the null pointer. #[inline(always)] fn is_not_null(&const self) -> bool { is_not_null(*self) } /// /// Returns `None` if the pointer is null, or else returns the value wrapped /// in `Some`. /// /// # Safety Notes /// /// While this method is useful for null-safety, it is important to note /// that this is still an unsafe operation because the returned value could /// be pointing to invalid memory. /// #[inline(always)] unsafe fn to_option(&const self) -> Option<&T> { if self.is_null() { None } else { Some(cast::transmute(*self)) } } /// Calculates the offset from a pointer. #[inline(always)] fn offset(&self, count: uint) -> *T { offset(*self, count) } } /// Extension methods for mutable pointers impl RawPtr for *mut T { /// Returns true if the pointer is equal to the null pointer. #[inline(always)] fn is_null(&const self) -> bool { is_null(*self) } /// Returns true if the pointer is not equal to the null pointer. #[inline(always)] fn is_not_null(&const self) -> bool { is_not_null(*self) } /// /// Returns `None` if the pointer is null, or else returns the value wrapped /// in `Some`. /// /// # Safety Notes /// /// While this method is useful for null-safety, it is important to note /// that this is still an unsafe operation because the returned value could /// be pointing to invalid memory. /// #[inline(always)] unsafe fn to_option(&const self) -> Option<&T> { if self.is_null() { None } else { Some(cast::transmute(*self)) } } /// Calculates the offset from a mutable pointer. #[inline(always)] fn offset(&self, count: uint) -> *mut T { mut_offset(*self, count) } } // Equality for pointers #[cfg(not(test))] impl Eq for *const T { #[inline(always)] fn eq(&self, other: &*const T) -> bool { (*self as uint) == (*other as uint) } #[inline(always)] fn ne(&self, other: &*const T) -> bool { !self.eq(other) } } // Comparison for pointers #[cfg(not(test))] impl Ord for *const T { #[inline(always)] fn lt(&self, other: &*const T) -> bool { (*self as uint) < (*other as uint) } #[inline(always)] fn le(&self, other: &*const T) -> bool { (*self as uint) <= (*other as uint) } #[inline(always)] fn ge(&self, other: &*const T) -> bool { (*self as uint) >= (*other as uint) } #[inline(always)] fn gt(&self, other: &*const T) -> bool { (*self as uint) > (*other as uint) } } #[cfg(test)] pub mod ptr_tests { use super::*; use prelude::*; use cast; use libc; use str; use vec; #[test] fn test() { unsafe { struct Pair { fst: int, snd: int }; let mut p = Pair {fst: 10, snd: 20}; let pptr: *mut Pair = &mut p; let iptr: *mut int = cast::transmute(pptr); assert_eq!(*iptr, 10); *iptr = 30; assert_eq!(*iptr, 30); assert_eq!(p.fst, 30); *pptr = Pair {fst: 50, snd: 60}; assert_eq!(*iptr, 50); assert_eq!(p.fst, 50); assert_eq!(p.snd, 60); let v0 = ~[32000u16, 32001u16, 32002u16]; let mut v1 = ~[0u16, 0u16, 0u16]; copy_memory(mut_offset(vec::raw::to_mut_ptr(v1), 1u), offset(vec::raw::to_ptr(v0), 1u), 1u); assert!((v1[0] == 0u16 && v1[1] == 32001u16 && v1[2] == 0u16)); copy_memory(vec::raw::to_mut_ptr(v1), offset(vec::raw::to_ptr(v0), 2u), 1u); assert!((v1[0] == 32002u16 && v1[1] == 32001u16 && v1[2] == 0u16)); copy_memory(mut_offset(vec::raw::to_mut_ptr(v1), 2u), vec::raw::to_ptr(v0), 1u); assert!((v1[0] == 32002u16 && v1[1] == 32001u16 && v1[2] == 32000u16)); } } #[test] fn test_position() { use str::as_c_str; use libc::c_char; let s = ~"hello"; unsafe { assert!(2u == as_c_str(s, |p| position(p, |c| *c == 'l' as c_char))); assert!(4u == as_c_str(s, |p| position(p, |c| *c == 'o' as c_char))); assert!(5u == as_c_str(s, |p| position(p, |c| *c == 0 as c_char))); } } #[test] fn test_buf_len() { let s0 = ~"hello"; let s1 = ~"there"; let s2 = ~"thing"; do str::as_c_str(s0) |p0| { do str::as_c_str(s1) |p1| { do str::as_c_str(s2) |p2| { let v = ~[p0, p1, p2, null()]; do vec::as_imm_buf(v) |vp, len| { assert_eq!(unsafe { buf_len(vp) }, 3u); assert_eq!(len, 4u); } } } } } #[test] fn test_is_null() { let p: *int = null(); assert!(p.is_null()); assert!(!p.is_not_null()); let q = offset(p, 1u); assert!(!q.is_null()); assert!(q.is_not_null()); let mp: *mut int = mut_null(); assert!(mp.is_null()); assert!(!mp.is_not_null()); let mq = mp.offset(1u); assert!(!mq.is_null()); assert!(mq.is_not_null()); } #[test] fn test_to_option() { unsafe { let p: *int = null(); assert_eq!(p.to_option(), None); let q: *int = &2; assert_eq!(q.to_option().unwrap(), &2); let p: *mut int = mut_null(); assert_eq!(p.to_option(), None); let q: *mut int = &mut 2; assert_eq!(q.to_option().unwrap(), &2); } } #[test] fn test_ptr_array_each_with_len() { unsafe { let one = ~"oneOne"; let two = ~"twoTwo"; let three = ~"threeThree"; let arr: ~[*i8] = ~[ ::cast::transmute(&one[0]), ::cast::transmute(&two[0]), ::cast::transmute(&three[0]), ]; let expected_arr = [ one, two, three ]; let arr_ptr = &arr[0]; let mut ctr = 0; let mut iteration_count = 0; array_each_with_len(arr_ptr, arr.len(), |e| { let actual = str::raw::from_c_str(e); let expected = copy expected_arr[ctr]; debug!( "test_ptr_array_each e: %s, a: %s", expected, actual); assert_eq!(actual, expected); ctr += 1; iteration_count += 1; }); assert_eq!(iteration_count, 3u); } } #[test] fn test_ptr_array_each() { unsafe { let one = ~"oneOne"; let two = ~"twoTwo"; let three = ~"threeThree"; let arr: ~[*i8] = ~[ ::cast::transmute(&one[0]), ::cast::transmute(&two[0]), ::cast::transmute(&three[0]), // fake a null terminator 0 as *i8 ]; let expected_arr = [ one, two, three ]; let arr_ptr = &arr[0]; let mut ctr = 0; let mut iteration_count = 0; array_each(arr_ptr, |e| { let actual = str::raw::from_c_str(e); let expected = copy expected_arr[ctr]; debug!( "test_ptr_array_each e: %s, a: %s", expected, actual); assert_eq!(actual, expected); ctr += 1; iteration_count += 1; }); assert_eq!(iteration_count, 3); } } #[test] #[should_fail] #[ignore(cfg(windows))] fn test_ptr_array_each_with_len_null_ptr() { unsafe { array_each_with_len(0 as **libc::c_char, 1, |e| { str::raw::from_c_str(e); }); } } #[test] #[should_fail] #[ignore(cfg(windows))] fn test_ptr_array_each_null_ptr() { unsafe { array_each(0 as **libc::c_char, |e| { str::raw::from_c_str(e); }); } } #[test] #[cfg(not(stage0))] fn test_set_memory() { let mut xs = [0u8, ..20]; let ptr = vec::raw::to_mut_ptr(xs); unsafe { set_memory(ptr, 5u8, xs.len()); } assert_eq!(xs, [5u8, ..20]); } }